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◮ In the last decade many new unexpected states have been found close or above
threshold.

Voloshin

2008

◮ The states that do not fit Quarkonium
potential models are called Exotics and labeled
Xs, Ys and Zs.

◮ This states are candidates for non traditional
hadronic states, including four constituent
quark or an excited gluon constituent.

◮ There is an ongoing experimental effort to
study normal and Exotic quarkonium: new
states, production mechanisms, decays and
transitions, precision and high statistics data.

◮ BaBar, Belle2, BESIII, LHCb and Panda
(under construction).
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Quarkonium Hybrids

What are quarkonium Hybrids?

◮ A quarkonium hybrid consists of Q, Q̄ in a color octet configuration and a
gluonic excitation g .

Born-Oppenheimer Hybrids:

The heavy quarks are nearly static, and the gluons adapt nearly instantaneously.

Born-Oppenheimer approximation Heavy Hybrids

• The gluonic static energies can be defined in NRQCD and computed on the
lattice or, in the short range, using pNRQCD.

• The hybrid state energy levels are obtained solving the Schrödinger equation with
Hkin + Eg .

• Hkin acts on the gluon wave functions. Additional approximations are needed,
because the gluonic wave functions are not available.

• The mixing terms have to be taken into account because the static energies are
degenerate at short distances.

Pioneered by Juge, Kuti, Morningstar 1999
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Symmetries of the static system

Static states classified by symmetry group D∞ h

Representations labeled Λσ
η

◮ Λ rotational quantum number
|n̂ · K| = 0, 1, 2 . . . corresponds to
Λ = Σ, Π, ∆ . . .

◮ η eigenvalue of CP:
g =̂ + 1 (gerade), u =̂− 1 (ungerade)

◮ σ eigenvalue of reflections

◮ σ label only displayed on Σ states
(others are degenerate)

• The static energies correspond to the irreducible representations of D∞ h.

• In general it can be more than one state for each irreducible representations of
D∞ h, usually denoted by primes, e.g. Πu , Π′

u , Π
′′
u ...
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Lattice data on hybrid static energies
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◮ Σ+
g is the ground state potential that

generates the standard quarkonium states.

◮ The rest of the static energies correspond to
excited gluonic states that generate hybrids.

◮ The two lowest hybrid static energies are Πu

and Σ−
u , they are nearly degenerate at short

distances.

◮ The static energies have been computed in
quenched lattice QCD, the most recent data
by Juge, Kuti, Morningstar, 2002 and Bali and
Pineda 2003.

◮ Quenched and unquenched calculations for Σ+
g

and Πu were compared in Bali et al 2000 and
good agreement was found below string
breaking distance.
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Radial wave functions and and Schrödinger equation
The hybrid masses are obtained by solving the Schrödinger equation with Hkin + EnΛσ

η

◮ Let us define Hybrid state as:

|N; j ,m, s, l ; n, η; ǫ〉 =
∑

Λ

∫

dr |j ,m, s, l ; n,Λ, η; ǫ〉
ψΛ
N
(r)

r
.

◮ Hkin = −
∂2
r

2µ
+

L2
QQ

2µr2
acts in principle on both the gluonic and heavy quark parts.

◮ The radial derivative acting on the gluonic state can be ignored.

Angular derivative

In spherical coordinates K = Kθθ̂ + Kφφ̂+ Knn̂, and the rising and lowering operators
K± = Kθ ± iKφ.

L2
QQ

= (L− K)2 = L2 − 2L · K+ K2

= L2 − 2K2
n + K2 − L−K+ − L+K− ,

• Acting on our JPC eigenstates the first two terms give l(l + 1) and −2Λ2.

• K2 − L−K+ − L+K− is not directly determined since we do not have the gluonic
wave functions.

• L−K+ + L+K− mixes different channels.
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To determine the last two terms we use:

1. L2
QQ
/2µr2 is most important in the short range.

2. The static symmetry group D∞h is extended to O(3)× C in the limit r → 0.

⇒ approximate K2 − L−K+ − L+K− for its short range behavior.

K2

• 〈K2〉 = k(k + 1) with k from the KPC multiplet corresponding to nΛσ
η in the

r → 0 limit.

• For the three the lowest static energies, Σ+
g , Πu and Σ−

u , pNRQCD tells us these

are 0++, 1+− and 1+− respectively.

L−K+ + L+K−

• If we ignore the mixing terms, for Λ > 0, there are two degenerate states with
opposite parity. If we include them the degeneracy is lifted and we obtain an
effect called Λ-doubling.

• The mixing involves gluonic static energies with λ and λ± 1.

• We will only consider mixing between static energies that are nearly degenerate.

• We have considered the mixing through coupled Schrödinger equations.
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Gluonic static energies in pNRQCD

EFT of QCD for Quarkonium

◮ Quarkonium systems are non–relativistic bound states.

◮ Multiscale system: m ≫ pQ ≫ Eb, and ΛQCD . m is the heavy–quark mass.

◮ We can exploit the scale hierarchies by building an Effective Field Theory (EFT).

pNRQCD for Hybrid static energies

◮ The short range pQ ∼ 1/r ≫ ΛQCD behavior of the static energies can be studied
in weakly-coupled pNRQCD.

◮ In this region pNRQCD is obtained integrating out pQ (perturbative) and ΛQCD

nonperturbative.
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◮ The Gluelumps are the adjoint sources in the presence of a gluonic field

H (R, r, t) = Ha (R, t)Oa† (R, r, t) ,

Gluonic excitation operators up to dim 3

Λσ
η KPC Ha

Σ−
u 1+− r · B , r · (D× E)

Πu 1+− r × B , r × (D× E)
Σ+ ′

g 1−− r · E , r · (D× B)
Πg 1−− r × E , r × (D× B)

Σ−
g 2−− (r ·D)(r · B)

Π′
g 2−− r × ((r ·D)B+D(r · B))

∆g 2−− (r ×D)i (r × B)j + (r ×D)j (r × B)i

Σ+
u 2+− (r ·D)(r · E)

Π′
u 2+− r × ((r ·D)E+D(r · E))

∆u 2+− (r ×D)i (r × E)j + (r ×D)j (r × E)i

◮ We can see that in the short distance limit the Πu − Σ−
u , Πg − Σ+′

g ,

∆g − Σ−
g − Π′

g and ∆u − Π′
u − Σ+

u multiplets must be degenerate.
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Hybrid Static energies

◮ The hybrid static energy spectrum reads

EH = 2m + VH ,

with

VH = lim
T→∞

i

T
log

〈

Ha(T/2)Oa(T/2)Hb(−T/2)Ob(−T/2)
〉

.

◮ Up to next–to–leading order in the multipole expansion.

VH = Vo + ΛH + bH r
2 ,

◮ Vo(r) is the octet potential, which can be computed in perturbation theory.

◮ ΛH corresponds to the gluelump mass.

ΛH = lim
T→∞

i

T
log

〈

Ha(T/2)φadj
ab

(T/2,−T/2)Hb(−T/2)
〉

,

where φadj (T/2,−T/2) is a Wilson line.

◮ We work in the Renormalon Subtracted scheme which improves the convergence
of the octet potential.
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ΛH

◮ It is a non-perturbative quantity.

◮ It depends on the particular operator Ha, however it is the same for operators
corresponding to different projections of the same gluonic operators.

◮ The gluelump masses have been determined in the lattice. Foster et all 1999; Bali, Pineda

2004; Marsh Lewis 2014

◮ At the subtraction scale νf = 1 GeV: ΛRS
1+−

= 0.87(15) GeV.

bH

◮ It is a non-perturbative quantity.

◮ Proportional to r2 due to rotational invariance and the multipole expansion.

◮ We are going to fix it through a fit to the static energies lattice data.

◮ Breaks the degeneracy of the potentials.

11 / 18



Static Hybrid potentials
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Lattice data:Bali, Pineda 2004; Juge, Kuti, Morningstar 2003, dashed line V (0.5), solid line V (0.25)

V (0.5)

Lattice data fitted for the r = 0 − 0.5 fm range, b
(0.5)
Σ

= 1.112GeV/fm2, b
(0.5)
Π

= 0.110GeV/fm2.

cBP = 0.105GeV, cKJM = −0.471GeV ,

V (0.25)

◮ r ≤ 0.25 fm: pNRQCD potential, b
(0.25)
Σ

= 1.246GeV/fm2, b
(0.25)
Π

= 0.000GeV/fm2 .

◮ r > 0.25 fm: phenomenological potential, V′(r) =
a1
r

+
√

a2r
2 + a3 + a4.
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Hybrid state masses from V
(0.5)

Solving the coupled Schrödinger equations we obtain
GeV cc̄ bc̄ bb̄

mH 〈1/r〉 Ekin PΠ mH 〈1/r〉 Ekin PΠ mH 〈1/r〉 Ekin PΠ

H1 4.05 0.29 0.11 0.94 7.40 0.31 0.08 0.94 10.73 0.36 0.06 0.95
H′
1 4.23 0.27 0.20 0.91 7.54 0.30 0.16 0.91 10.83 0.36 0.11 0.92

H2 4.09 0.21 0.13 1.00 7.43 0.23 0.10 1.00 10.75 0.27 0.07 1.00
H′
2 4.30 0.19 0.24 1.00 7.60 0.21 0.19 1.00 10.87 0.25 0.13 1.00

H3 4.69 0.37 0.42 0.00 7.92 0.42 0.34 0.00 11.09 0.50 0.23 0.00
H4 4.17 0.19 0.17 0.97 7.49 0.25 0.14 0.97 10.79 0.29 0.09 0.98
H5 4.20 0.17 0.18 1.00 7.51 0.19 0.15 1.00 10.80 0.22 0.10 1.00

Consistency test:

1. The potentials describe the lattice
data well up to r . 0.55− 0.65 fm
which corresponds
〈1/r〉 & 0.36− 0.30 GeV.

2. The multipole expansion requires
〈1/r〉 > Ekin.

◮ Spin symmetry multiplets

H1 {1−−, (0, 1, 2)−+} Σ−
u , Πu

H2 {1++, (0, 1, 2)+−} Πu

H3 {0++, 1+−} Σ−
u

H4 {2++, (1, 2, 3)+−} Σ−
u , Πu

H5 {2−−, (1, 2, 3)−+} Πu
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Hybrid state masses from V
(0.25)

Solving the coupled Schrödinger equations we obtain
GeV cc̄ bc̄ bb̄

mH 〈1/r〉 Ekin PΠ mH 〈1/r〉 Ekin PΠ mH 〈1/r〉 Ekin PΠ

H1 4.15 0.42 0.16 0.82 7.48 0.46 0.13 0.83 10.79 0.53 0.09 0.86
H′
1 4.51 0.34 0.34 0.87 7.76 0.38 0.27 0.87 10.98 0.47 0.19 0.87

H2 4.28 0.28 0.24 1.00 7.58 0.31 0.19 1.00 10.84 0.37 0.13 1.00
H′
2 4.67 0.25 0.42 1.00 7.89 0.28 0.34 1.00 11.06 0.34 0.23 1.00

H3 4.59 0.32 0.32 0.00 7.85 0.37 0.27 0.00 11.06 0.46 0.19 0.00
H4 4.37 0.28 0.27 0.83 7.65 0.31 0.22 0.84 10.90 0.37 0.15 0.87
H5 4.48 0.23 0.33 1.00 7.73 0.25 0.27 1.00 10.95 0.30 0.18 1.00
H6 4.57 0.22 0.37 0.85 7.82 0.25 0.30 0.87 11.01 0.30 0.20 0.89
H7 4.67 0.19 0.43 1.00 7.89 0.22 0.35 1.00 11.05 0.26 0.24 1.00

Consistency test:

1. The multipole expansion requires
〈1/r〉 > Ekin.

Conclusion:

◮ V (0.25) yields more consistent results.

◮ As expected the Born–Oppenheimer
program works better in bottomonium
than charmonium

◮ Spin symmetry multiplets

H1 {1−−, (0, 1, 2)−+} Σ−
u , Πu

H2 {1++, (0, 1, 2)+−} Πu

H3 {0++, 1+−} Σ−
u

H4 {2++, (1, 2, 3)+−} Σ−
u , Πu

H5 {2−−, (1, 2, 3)−+} Πu

H6 {3−−, (2, 3, 4)−+} Σ−
u , Πu

H7 {3++, (2, 3, 4)+−} Πu
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Λ–doubling effect

◮ In Braaten et al 2014 a similar procedure was followed to obtain the hybrid
masses.

◮ No Λ–doubling effect mixing terms where included, and phenomenological
potentials fitting the lattice data.

◮ We can compare the results to estimate the size of the Λ–doubling effect.

Charmonium sector

DD Threshold

DsDs Threshold

H1 H2 H3 H4 H5 H1' H2'

3.5

4.0

4.5

5.0
MassHGeVL

Braaten et al 2014 results plotted in dashed lines.

◮ The mixing lower the mass o f the H1(H4) multiplet with respect to H2(H4).
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Identification with experimental states

Most of the candidates have 1−− or 0++/2++ since the main observation channels
are production by e+e− or γγ annihilation respectively.

◮ Charmonium states (Belle, CDF, BESIII, Babar):

H1

H4
H2

H1'

DD Threshold

DsDs Threshold

YH4008L@1--D YH4220L@1--D YH4260L@1--D YH4140L@??+D XH4160L@??+D XH4350L@0�2++D XH4360L@1--D XH4630L@1--D YH4660L@1--D
3.2

3.4

3.6

3.8

4.0

4.2

4.4

4.6

MassHGeVL

◮ Bottomonium states: Yb(10890)[1
−−], m = 10.8884± 3.0 (Belle). Possible H1

candidate, mH1
= 10.79± 0.15.

However, except for Y (4220), all other candidates observed decay modes violate
Heavy Quark Spin Symmetry.
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Comparison with direct lattice computations
Charmonium sector

◮ Calculations done by the Hadron Spectrum Collaboration using unquenched
lattice QCD with a pion mass of 400 MeV. Liu et all 2012

◮ They worked in the constituent gluon picture, which consider the multiplets H2,
H3, H4 as part of the same multiplet.

◮ Their results are given with the ηc mass subtracted.

H1

H2

H3

H4

DD Threshold

DsDs Threshold

1-- 0-+ 1-+ 2-+ 1++ 0+- 1+- 2+- 0++ 1+- 2++ 1+- 2+- 3+-

3.8

4.0

4.2

4.4

4.6
MassHGeVL

Error bands take into account the uncertainty on the gluelump mass ±0.15 GeV

Split (GeV) Liu V (0.25)

δmH2−H1
0.10 0.13

δmH4−H1
0.24 0.22

δmH4−H2
0.13 0.09

δmH3−H1
0.20 0.44

δmH3−H2
0.09 0.31

◮ Our masses are 0.1− 0.14 GeV lower
except the for the H3 multiplet, which
is the only one dominated by Σ−

u .

◮ Good agreement with the mass gaps
between multiplets, in particular the
Λ-doubling effect (δmH2−H1

).

17 / 18



Conclusions

◮ We have computed the heavy hybrid masses using a QCD analog of the
Born-Oppenheimer approximation including the Λ–doubling terms by using
coupled Schröringer equations.

◮ The static energies have been obtained combining pNRQCD for short distances
and lattice data for long distances.

◮ A large set of masses for spin symmetry multiplets for cc̄, bc̄ and bb̄ has been
obtained.

◮ Λ–doubling effect lowers the mass of the multiplets generated by a mix of static
energies, the same pattern is observed in direct lattice calculations and QCD sum
rules.

◮ Mass gaps between multiplets in good agreement with direct lattice
computations, but the absolute values are shifted.

◮ Several experimental candidates for Charmonium hybrids belonging to the H1,
H2, H4 and H′

1 multiplets.

◮ One experimental candidate to the bottomonium H1 multiplet.
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Thank you for your attention
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Λ–doubling effect

Bottomonium sector

BB Threshold

BsBs Thrshold

H1 H2 H3 H4 H5 H1' H2'
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Braaten et al 2014 results plotted in dashed lines.

◮ The mixing lowers the mass of the H1(H4) multiplet with respect to H2(H4).
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Comparison with direct lattice computations
Bottomonium sector

◮ Calculations done by Juge, Kuti, Morningstar 1999 and Liao, Manke 2002 using
quenched lattice QCD.

◮ Juge, Kuti, Morningstar 1999 included no spin or relativistic effects.
◮ Liao, Manke 2002 calculations are fully relativistic.

BB Threshold

BsBs Threshold

1+-

0+-

2+-

LM

JKM

H1 H2 H3 H1
'

10.5

11.0

11.5

12.0

12.5
MassHGeVL

Error bands take into account the uncertainty on the gluelump mass ±0.15 GeV

Split (GeV) JKM V (0.25)

δmH2−H1
0.04 0.05

δmH3−H1
0.33 0.27

δmH3−H2
0.30 0.22

δmH′

1−H1
0.42 0.19

◮ Our masses are 0.15− 0.25 GeV lower
except the for the H′

1 multiplet, which
is larger by 0.36 GeV.

◮ Good agreement with the mass gaps
between multiplets, in particular the
Λ-doubling effect (δmH2−H1

).
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Comparison with QCD sum rules

◮ A recent analysis of QCD sum rules for hybrid operators has been performed by
Chen et al 2013, 2014 for bb̄ and cc̄ hybrids, and bc̄ hybrids respectively.

◮ Correlation functions and spectral functions were computed up to dimension six
condensates which stabilized the mass predictions compared to previous
calculations which ony included up to dimension 4 condensates.

Charmonium sector Chen et al 2013

H1

H2

H3

H4

DD Threshold

DsDs Threshold

1-- 0-+ 1-+ 2-+ 0+- 1+- 1++ 0++ 2++

3.5

4.0

4.5

5.0

5.5
MassHGeVL

Error bands take into account the uncertainty on the gluelump mass ±0.15 GeV

◮ The spin average of the H1 multiplet is 0.4 GeV lower than our mass.

◮ H2, H3 and H4 multiplets are incomplete.

◮ Large uncertainties compared to direct lattice calculations.
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Comparison with QCD sum rules

Bottomonium sector Chen et al 2013

H1
H2

H3
H4

BB Threshold

BsBs Thr.

1-- 0-+ 1-+ 2-+ 0+- 1+- 1++ 0++ 2++
9.5
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Error bands take into account the uncertainty on the gluelump mass ±0.15 GeV

◮ The spin average of the H1 multiplet is 0.98 GeV lower than our mass.

◮ H2, H3 and H4 multiplets are incomplete.

◮ Large uncertainties compared to direct lattice calculations.
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