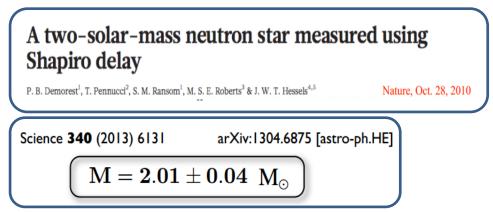

Strangeness in the nuclear medium: experimental studies with the KLOE Drift Chamber.

Oton Vázquez Doce Excellence Cluster Universe, TU-Munich

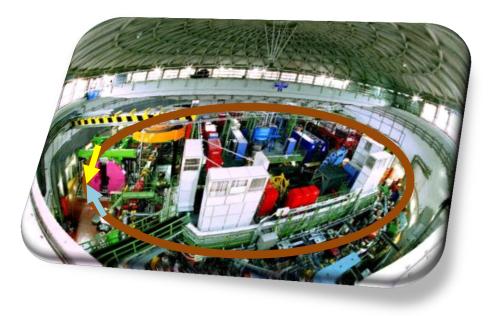
Quark Confinement and the Hadron Spectrum XI St. Petersburg, Monday 8 September, 2014

- **ChPT** is not aplicable for systems with strangeness S=-1 (KN, $\pi\Sigma$, ...)
 - the resonance $\Lambda(1405)$ lies just below the K⁻p threshold
 - Non-perturbative techniques, <u>requiring an indeterminated number of free</u>
 <u>parameters</u>, must be used.

- <u>Strong modifications of the (anti)kaon properties</u> in dense hadronic enviroments.
 - A **repulsive** KN potential of few MeV for **K+** is expected
 - For K- is attractive up to 100 MeV depending on the model. Kaonic atom data and K- yield in heavy ion collisions favour an attractive K- nucleus interaction.


- <u>Strong modifications of the (anti)kaon properties</u> in dense hadronic enviroments.
 - A **repulsive** KN potential of few MeV for **K+** is expected
 - For K- is attractive up to 100 MeV depending on the model. Kaonic atom data and K- yield in heavy ion collisions favour an attractive K- nucleus interaction.

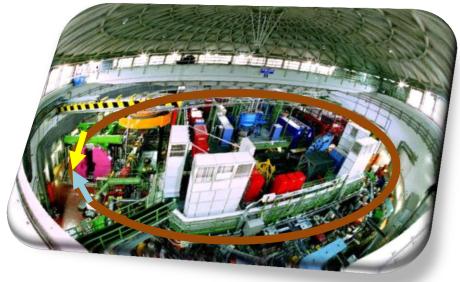
Kaon condensate in the core of neutron stars?


- <u>Strong modifications of the (anti)kaon properties</u> in dense hadronic enviroments.
 - A repulsive KN potential of few MeV for K+ is expected
 - For K- is attractive up to 100 MeV depending on the model. Kaonic atom data and K- yield in heavy ion collisions favour an attractive K- nucleus interaction.

—> Kaon condensate in the core of neutron stars?

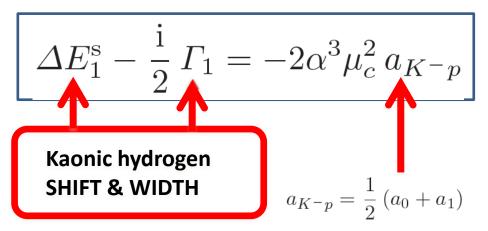
- Recent measurements of the mass of two neutron stars <u>M ~ 2 x solar mass</u> impose strict constraints on the strange matter contribution.
- The EoS has to be rather stiff but with a strong repulsion in YN interaction would allow 2 solar mass NS.




The DA Φ NE collider

The DA Φ NE collider

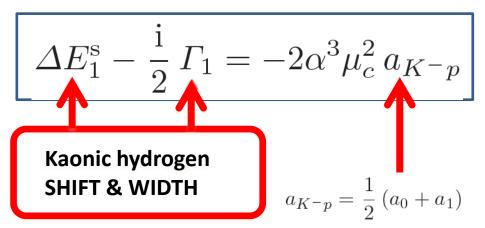
- e+ e- beams at ~ 500 MeV/c
- $\Phi \rightarrow$ K+ K- (49.1%)
- Almost monochromatic low-energy K⁻ (~127 MeV/c)
- Low hadronic background due to beam characteristics (compared with hadron beam lines)


Top luminosity reached during SIDDHARTA run: 4x10³² pb-1 s-1

$DA\Phi NE$ timeline

past	KLOE	
	FINUDA hypernuclei / kaonic clusters	
present	SIDDHARTA kaonic hydrogen	
	KLOE2	
future	SIDDHARTA-2 kaonic deuterium	
	AMADEUS kaonic clusters	

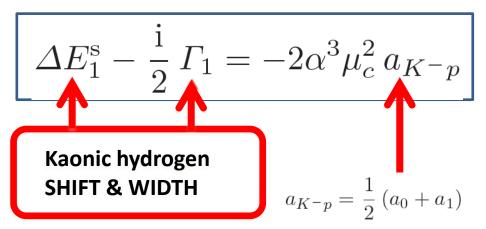
SIDDHARTA: kaonic atoms


Deser-Truman Formula

S-wave scattering length "a_{K-p}" expressed with isospin dependent scattering lengths a_0 (I=0), a_1 (I=1)

SIDDHARTA: kaonic atoms

Deser-Truman Formula



S-wave scattering length "a_{K-p}" expressed with isospin dependent scattering lengths a_0 (I=0), a_1 (I=1)

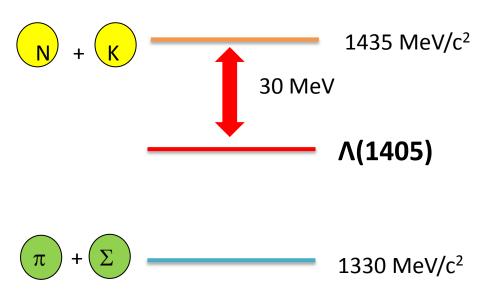
 ϵ_{1s} = -283 ± 36(stat) ± 6(syst) eV $\Gamma_{1s} = 541 \pm 89(\text{stat}) \text{ eV} \pm 22(\text{syst})\text{eV}$ Counts / 50 [eV] x 0 1.2 2.1 0 0 1.5 0 1.5 0 hiaher 0.5 10 5 6 7 8 9 Energy [keV]

SIDDHARTA: kaonic atoms

Deser-Truman Formula

S-wave scattering length "a_{K-p}" expressed with isospin dependent scattering lengths a_0 (I=0), a_1 (I=1)

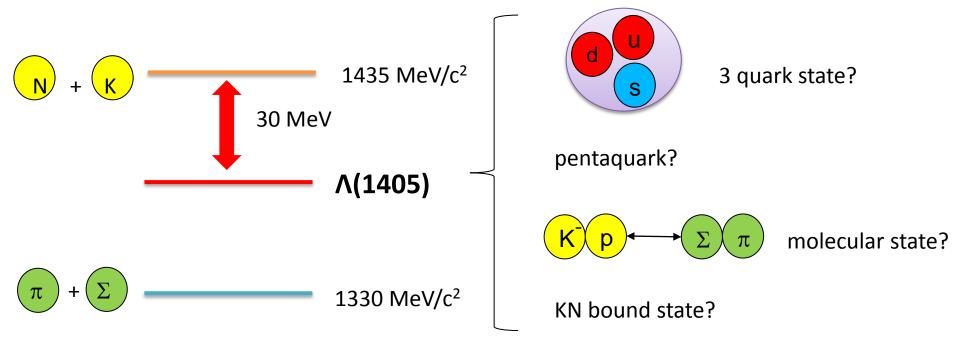
Together with shift & width of <u>K-d atom</u>, a_0 and a_1 can be disentangled


 $\epsilon_{1s} = -283 \pm 36(stat) \pm 6(syst) eV$ $\Gamma_{1s} = 541 \pm 89(stat) eV \pm 22(syst)eV$ x10² (eV) x10² 1.5 (eV) x10² 1.5 hiaher 0.5 5 6 8 9 10 Energy [keV

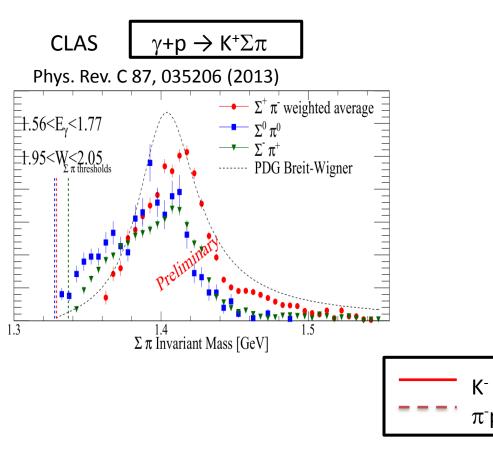
SIDDHARTA-2 in preparation

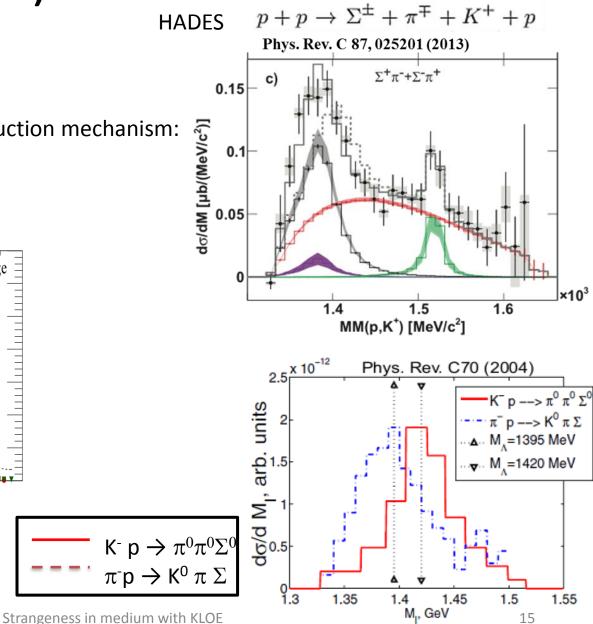
 $(M, \Gamma) = (1405.1^{+1.3}_{-1.0}, 50 \pm 2) \text{ MeV}, I = 0, S = -1, J^p = 1/2^-, \text{ Status: ****, strong decay into } \Sigma \pi$

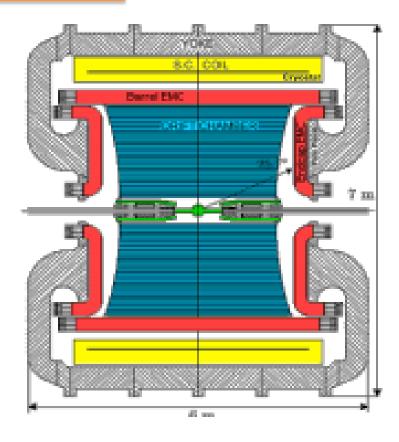
 $(M, \Gamma) = (1405.1^{+1.3}, 50 \pm 2) \text{ MeV}, I = 0, S = -1, J^p = 1/2^-, \text{ Status: ****, strong decay into } \Sigma \pi$


Understanding its nature will give us a key to the meson-baryon interaction

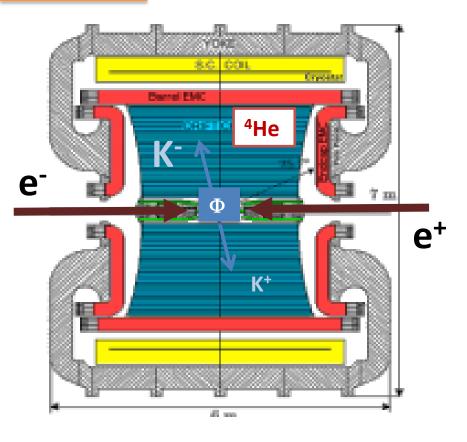
- The shape of the resonance and the **pole(s) position** is calculated with different models **extrapolating** the K⁻ p scattering amplitudes and K⁻p scattering lengths at threshold.


 $(M, \Gamma) = (1405.1^{+1.3}_{-1.0}, 50 \pm 2) \text{ MeV}, I = 0, S = -1, J^p = 1/2^-, \text{ Status: ****, strong decay into } \Sigma \pi$


Understanding its nature will give us a key to the meson-baryon interaction


Experimental studies

Line shape influenced by the production mechanism:



The KLOE detector

The KLOE detector

•0.1 % of K⁻ stop in the ⁴He •x10 times in the ¹²C

2004/2005 data: ~2.2 fb⁻¹ (95% analized)

Almost full acceptancy 4π:

* DRIFT CHAMBER

- 90% ⁴He, 10% isobutane
- entrance wall in carbon fiber (12C)
- momentum resolution ~ 0.4%

* ELECTROMANETIC CALORIMETER

 $-\sigma_{\rm E}/{\rm E}=5.7\%/{\rm VE}~({\rm GeV})$

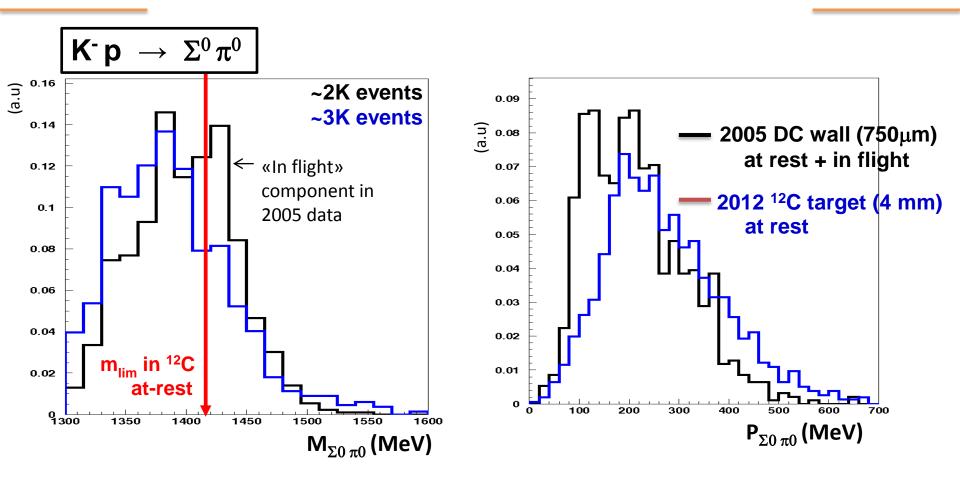
Active detector:

THE GOOD:

- + Excellence acceptance
- + Excellence resolution
- + Charged+neutrals

THE BAD

- low statistics
- interacting nuclei difficult to identify


Analysis of events in the ¹²C entrance wall of the DC

Analysis of events in the ¹²C entrance wall of the DC 1135244 ltyp= spn= LOn= qmult= 0 1 0 (u200 (u200 2 引 7 117 245 $K^{-}_{\text{stopped}} + {}^{12}C \rightarrow \Sigma^{+}\pi^{-}X$ 150 р in-flight abs. $\rightarrow p\pi^0$ 122 100 π^{-} 132 $\gamma\gamma$ 50 24 0 **4**9 $ightarrow \Sigma^0\pi^0~X$ -50 K+ -100 - 90 → Λγ -150 **172** $p\pi^{-}$ -200 200 -200 -100 -50 50 100 150 -150 0 X (cm)

Analysis of events in the ¹²C entrance wall of the DC 1135244 ltyp= spn= LOn= qmult= 10 (C) 200 2 245 $K^{-}_{\text{stopped}} + {}^{12}C \rightarrow \Sigma^{+}\pi^{-}X$ 150 р in-flight abs. $\rightarrow p\pi^0$ 122 100 π^{-} 132 50 24 0 - 49 $ightarrow \Sigma^0\pi^0~X$ -50 K+ -100 90 -150 **172** $p\pi^{-}$ -200 I=0, free from Σ^* background 200 $\frac{d\sigma(\Sigma^0\pi^0)}{_{JM}}\propto \frac{1}{3}\left|T^0\right|^2$ -200 50 100 150 -150 -100 -50 0 X (cm)

Oton Vazquez Doce

Strangeness in medium with KLOE

$$\textbf{M}_{\textbf{m} \boldsymbol{\Sigma}} \textbf{resolution} ~ \sigma_{m} \approx 32 ~ MeV/c^2$$

- The in-flight component opens a new kinematical region, that favors resonant events.

 $\mathbf{p}_{\pi\Sigma}$ resolution: $\sigma_{p} \approx 20$ MeV/c.

Oton Vazquez Doce

Strangeness in medium with KLOE

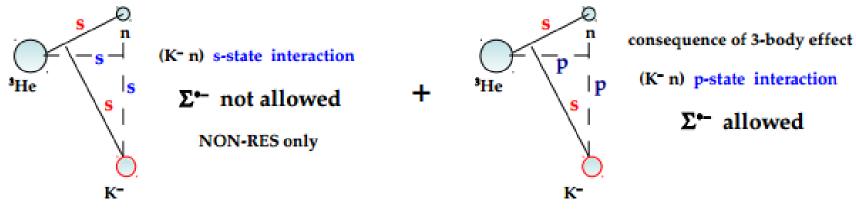
Negligible ($\Lambda \pi^0$ + internal conversion) background =(3±1)%

Yπ: Resonant VS Non-Resonant

• Another unsolved question ...

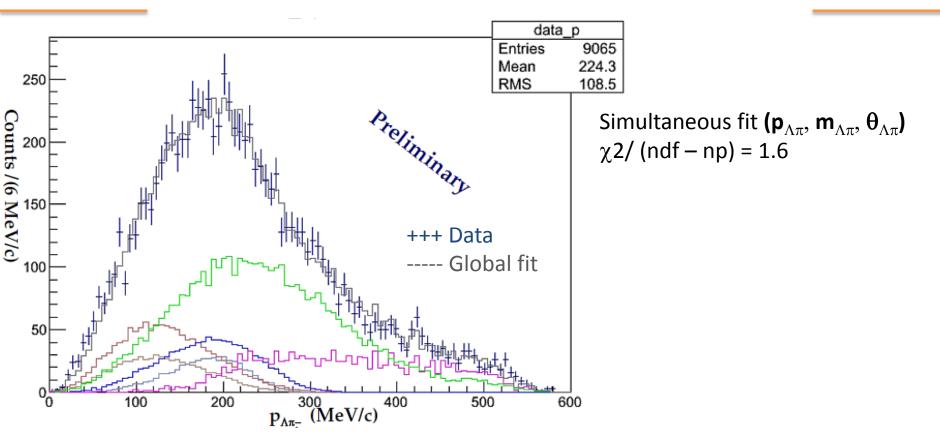
 $KN \rightarrow (Y^*?) \rightarrow Y\pi$ how much comes from resonance ?

Yπ: Resonant VS Non-Resonant

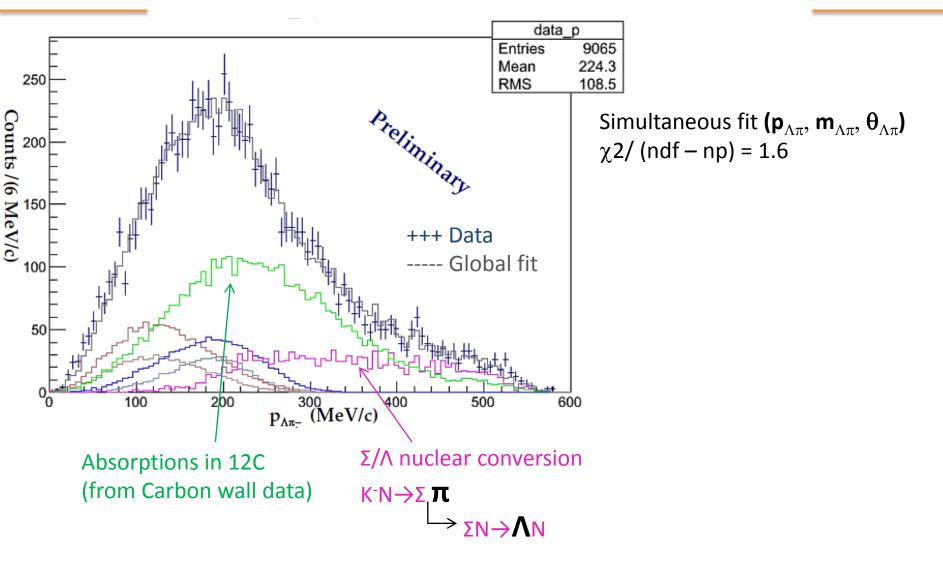

• Another unsolved question ...

 $KN \rightarrow (Y^*?) \rightarrow Y\pi$ how much comes from resonance ?

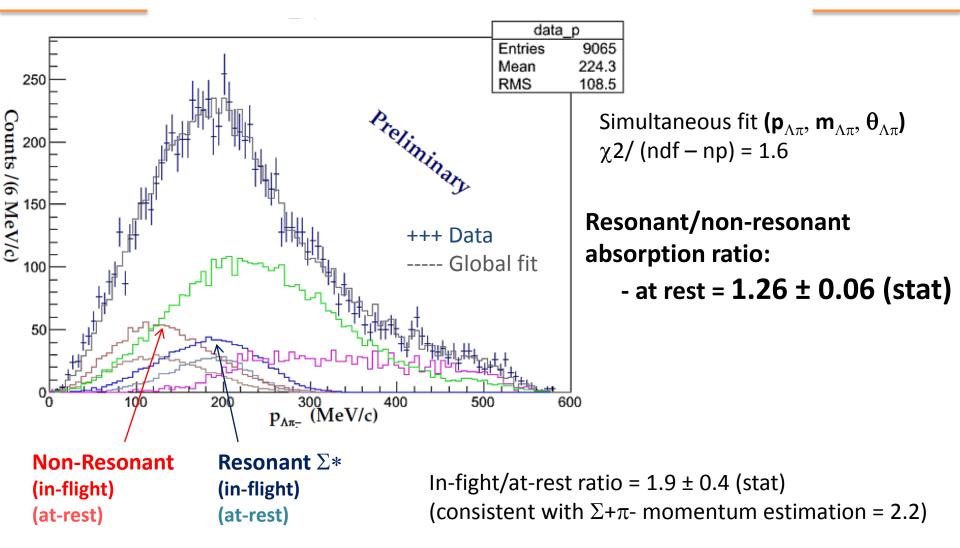
• Investigated using:


K⁻_{stopped/in flight} + ⁴**He** → Λπ ³**He** -
$$\begin{cases} - S-wave non-resonant \\ - P-wave resonant Σ(1385) \end{cases}$$

Atomic s-state capture assumed:

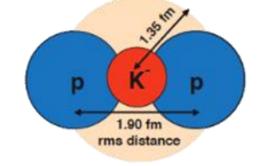


In collaboration with Prof. S. Wycech


Λπ: Resonant VS Non-Resonant

Λπ: Resonant VS Non-Resonant

Λπ: Resonant VS Non-Resonant



How deeply is bound a kaon in a nucleus?

How deeply is bound a kaon in a nucleus?

Strong attractive I=0 KN interaction favors discrete nuclear states **high B** and **small Γ**.

- -Few-body calculations solving Faddeev equations
- -Variational calculations with phenomenological KN potential
- -KN effective interactions based on Chiral SU(3) dynamics

Experimental studies for the K-pp the Λp decay channel K-ppn Λd

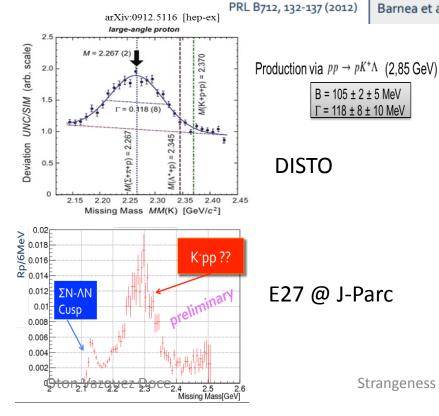
Theoretical work K⁻pp ...it does exsist

... a K⁻pp puzzle

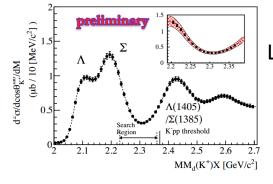
	Theoretical prediction	B.E (MeV)	Г (MeV)
PRC76, 045201 (2002)	T. Yamazaki and Y. Akaishi	48	61
arXiv:0512037v2[nucl-th]	A. N. Ivanov, P. Kienle, J. Marton, E. Widman	118	58
PRC76, 044004 (2007)	N. V. Shevchenko, A. Gal, J. Mares, J. Revai	50~70	~100
PRC76, 035203 (2007)	Y. Ikeda and T. Sato	60~95	45~80
NPA804, 197 (2008)	A. Dote, T. Hyodo, W. Weise	20±3	40~70
PRC80, 045207 (2009)	S. Wycech and A. M. Green	56.5~78	39~60
PRL B712, 132-137 (2012)	Barnea et al.	15.7	41.2

B = 105 ± 2 ± 5 MeV

 $\Gamma = 118 \pm 8 \pm 10 \text{ MeV}$


DISTO

E27 @ J-Parc


Theoretical work K-**pp** ...**i**t does exsist

... a K⁻pp puzzle

Experiments:

-		
Theoretical prediction	B.E (MeV)	Г (МеV)
T. Yamazaki and Y. Akaishi	48	61
A. N. Ivanov, P. Kienle, J. Marton, E. Widman	118	58
N. V. Shevchenko, A. Gal, J. Mares, J. Revai	50~70	~100
Y. Ikeda and T. Sato	60~95	45~80
A. Dote, T. Hyodo, W. Weise	20±3	40~70
S. Wycech and A. M. Green	56.5~78	39~60
Barnea et al.	15.7	41.2
	T. Yamazaki and Y. Akaishi A. N. Ivanov, P. Kienle, J. Marton, E. Widman N. V. Shevchenko, A. Gal, J. Mares, J. Revai Y. Ikeda and T. Sato A. Dote, T. Hyodo, W. Weise S. Wycech and A. M. Green	T. Yamazaki and Y. Akaishi48A. N. Ivanov, P. Kienle, J. Marton, E. Widman118N. V. Shevchenko, A. Gal, J. Mares, J. Revai50~70Y. Ikeda and T. Sato60~95A. Dote, T. Hyodo, W. Weise20±3S. Wycech and A. M. Green56.5~78

300

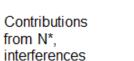
100

2000

2200

2400

IM_n [MeV/c²]

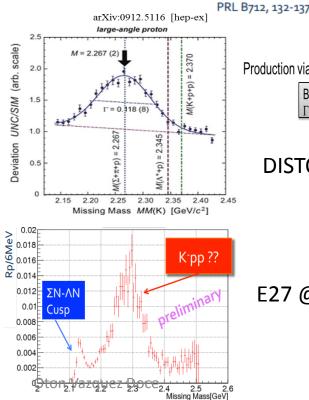

2600

counts 200

Strangeness in medium

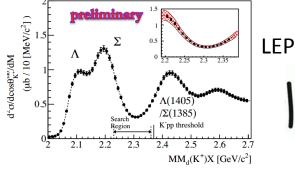
LEPS-Spring8

HADES


using PWA

Theoretical work K⁻pp ...it does exsist

... a K⁻pp puzzle


Experiments:

	Theoretical prediction	B.E (MeV)	Г (MeV)
PRC76, 045201 (2002)	T. Yamazaki and Y. Akaishi	48	61
arXiv:0512037v2[nucl-th]	A. N. Ivanov, P. Kienle, J. Marton, E. Widman	118	58
PRC76, 044004 (2007)	N. V. Shevchenko, A. Gal, J. Mares, J. Revai	50~70	~100
PRC76, 035203 (2007)	Y. Ikeda and T. Sato	60~95	45~80
NPA804, 197 (2008)	A. Dote, T. Hyodo, W. Weise	20±3	40~70
PRC80, 045207 (2009)	S. Wycech and A. M. Green	56.5~78	39~60
PRL B712, 132-137 (2012)	Barnea et al.	15.7	41.2

E27 @ J-Parc

300

100

2000

2200

2400

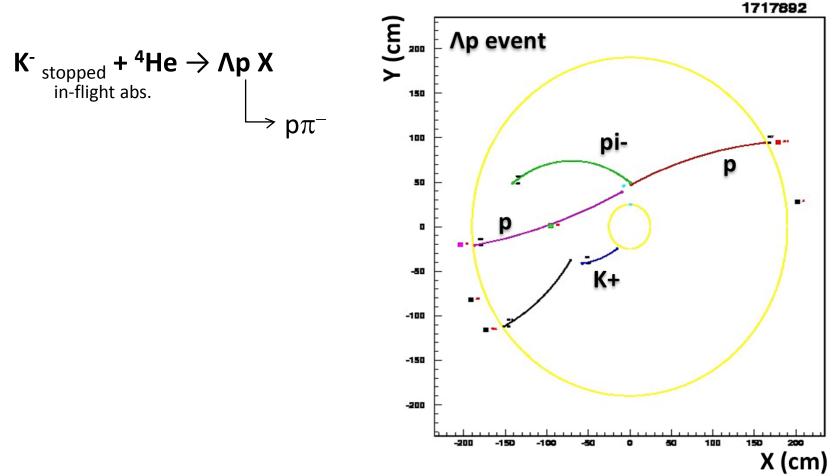
IM_{o.} [MeV/c²]

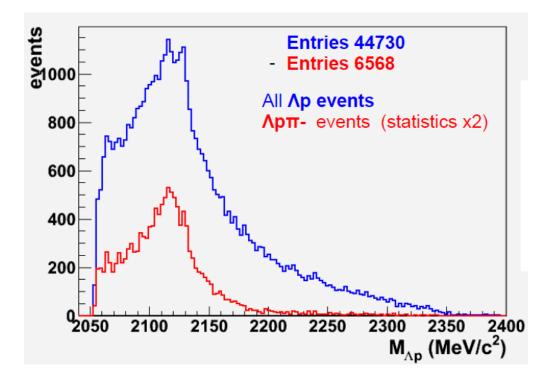
2600

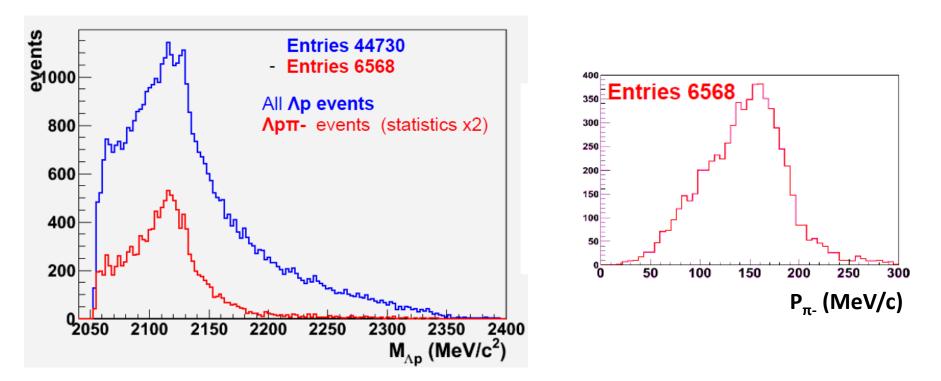
200 counts

ess in medium

LEPS-Spring8

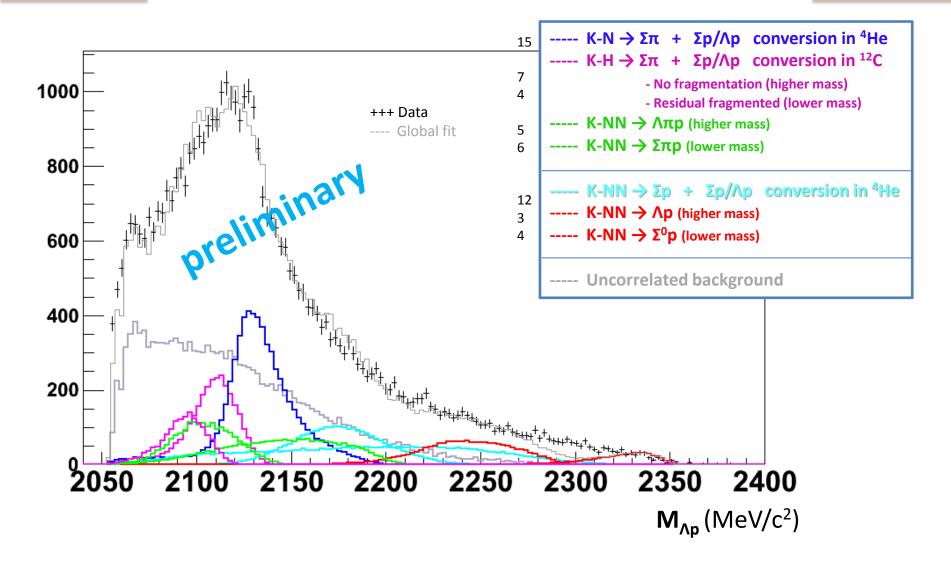



HADES

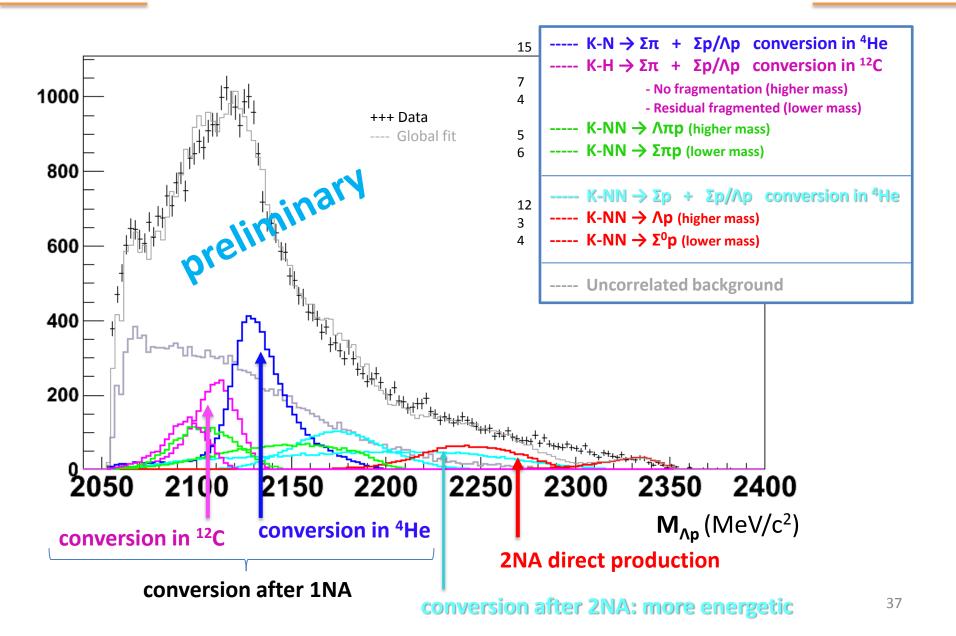


Analysis of events in the DC gas volume

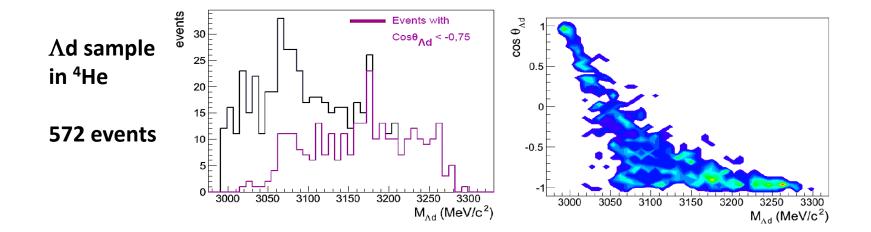
Analysis of events in the DC gas volume

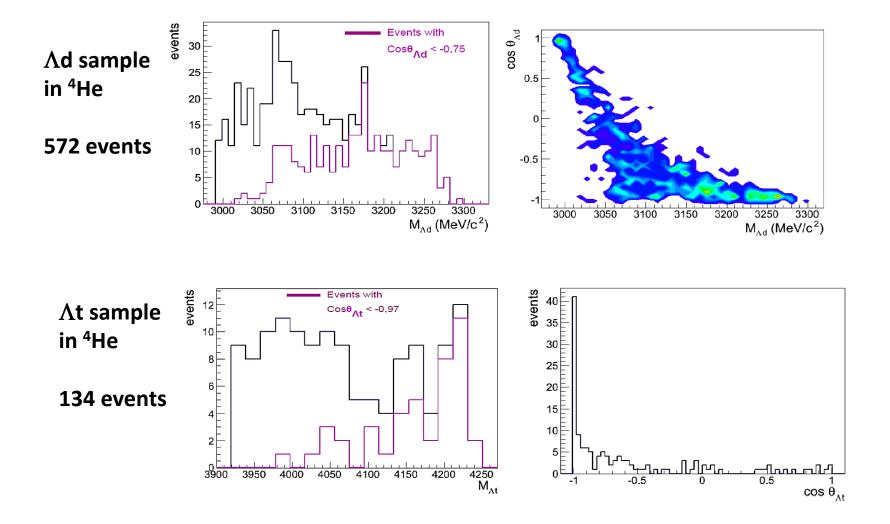


- <u>Low</u> invariant mass: 1 Nucleon absorption followed by Σ/Λ nuclear conversion


- <u>High</u> invariant mass: **2NA**: K⁻NN→∧N (pionless?)

1


Λp preliminary fit


Λp preliminary fit

KLOE data: Λd , Λt events

KLOE data: Λd , Λt events

Conclusions (I)

Ap analysis

- The extraction of the signal of a bound state in processes involving more than 1 nucleon is very **difficult** unless it is very **narrow** and with **high** formation rate.
- ΣN/ΛN conversion process dominates both low and high invariant mass regions. This process can be described quantitatively and qualitatively exploring the YN interaction.

Λd / Λt analyses

- 3- and 4-nucleon absorption processes clearly seen.
- Additional structures must be investigated.: Σ⁰ contamination?
 Bound state?

Conclusions (II)

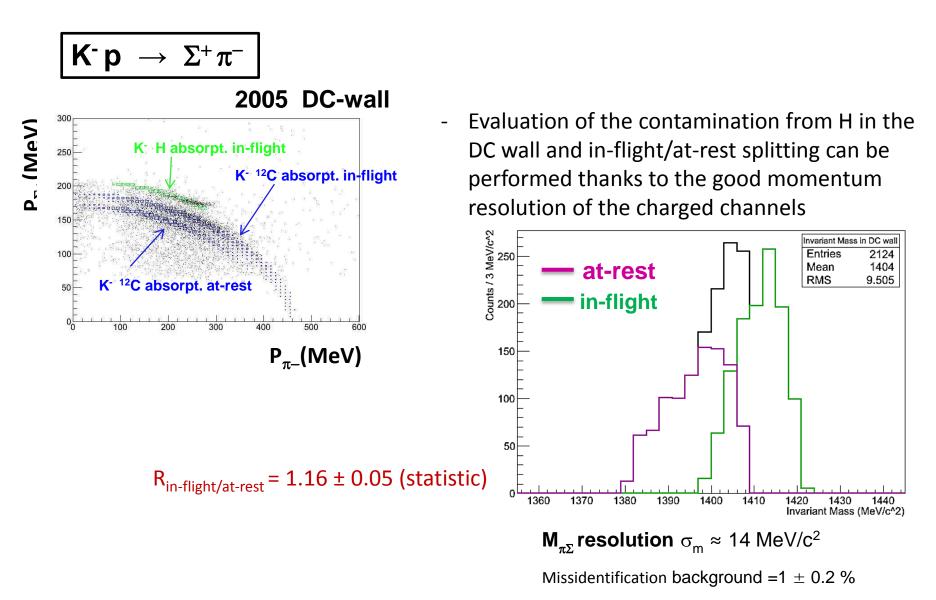
$\Sigma\pi$ analysis

- The spectra $M_{\Sigma\pi}$ show a **high invariant mass** component associated to in-flight K⁻ capture.
- The «higher pole» region is accessible thanks to the in-flight events.

$\Lambda\pi$ analysis

- Detailed calculation of the absorption process and $\Lambda\pi$ resonant and non-resonant formation have been performed
- $\Lambda \pi$ first measurement of **resonant/non-resonant ratio** in nuclear K⁻ absorption
- The method will be used for the $\Sigma\pi$ channels

Conclusions (II)


$\Sigma\pi$ analysis

- The spectra $M_{\Sigma\pi}$ show a **high invariant mass** component associated to in-flight K⁻ capture.
- The «higher pole» region is accessible thanks to the in-flight events.

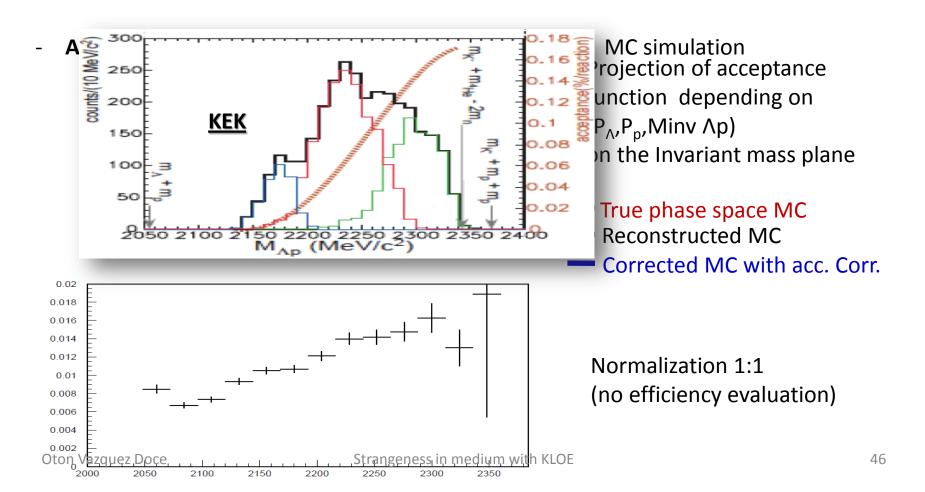
$\Lambda\pi$ analysis

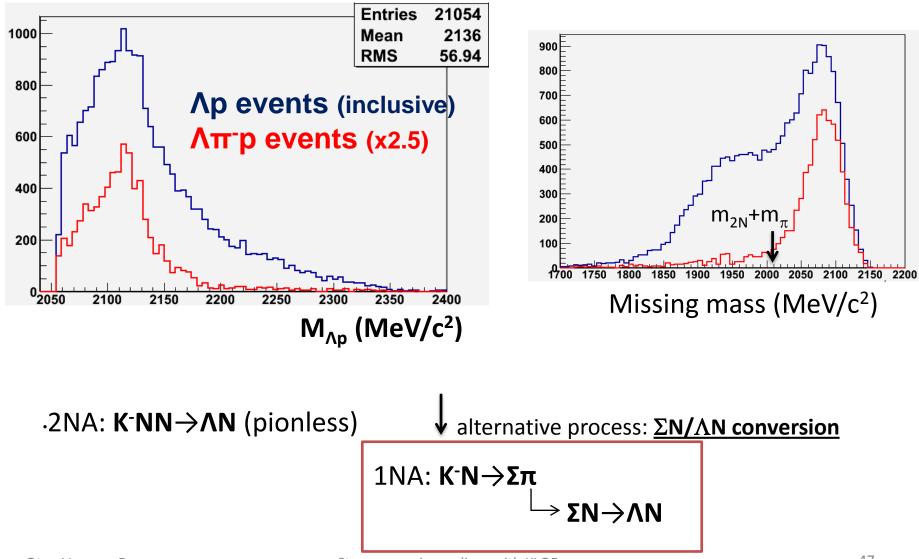
- Detailed calculation of the absorption process and $\Lambda\pi$ resonant and non-resonant formation have been performed
- $\Lambda \pi$ first measurement of **resonant/non-resonant ratio** in nuclear K⁻ absorption
- The method will be used for the $\Sigma\pi$ channels

SPARE

⁴Oton Vazquez Doce

Strangeness in medium with KLOE


Use of the calorimeter: Photon detection


KLOE data: Ap analysis

- Resolution study with MC simulation and charged kaons decays:

p_{Λ}	$0.49\pm0.01~MeV/c$
p_p	$2.63\pm0.07~MeV/c$
$M_{\Lambda p}$	$1.10 \pm 0.03~MeV/c^2$
r_{vertex}	$0.12\pm0.01~cm$

KLOE data: Ap analysis

