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Tetraquarks

Reasons to investigate tetraquarks in general

There is no reason from QCD why they should not exist.

Increasing evidence from experiments eg. Zc (3900, 4020, . . . ), X (3872) . . . .
They are part of the spectrum in a variety of theoretical
frameworks. lattice, sum rules, constituent models. . .

Reasons to investigate light scalar tetraquarks

From a simple quark model point of view, the “better”
candidate for the lightest scalar nonet. Jaffe(1965)

The 1/Nc behavior in unitarized ChPT hints to a significant
non-qq̄ component for σ, κ, a0. Pelaez (2004)

Linear σ-model favors qqq̄q̄ for light scalars. Rischke et. al (2012)
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Scalars and tetraquarks - a simple quark picture argument

Meson nonet

Wrong mass order in the
nonet.

0++ : P-Wave.
2++

1++

0++

1+-

1- -

0-+

L=1,P=+

L=0,P=-

S=1

S=0

S=1

S=0

L S.

S S.

S S.

Decay channels.

Width of f0 vs. OZI-rule.
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Scalars and tetraquarks - a simple quark picture argument

Tetraquark nonet

Right mass ordering.

0++ : S-wave.

Decay channels.

Width of f0 originates
from the “gluon-less”
decay.
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Bound-state equations in QFT

Bethe-Salpeter equation

K

Features and ingredients

Selfconsistent eigenvalue problem.

Requires dressed propagators and suitable interaction.

Determines mass and wavefunction.

Fully covariant formulation.
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The model

DSE tower



Motivation
Theoretical framework

Results

The model

Full quark DSE

S(p) =
1

A(p2)

−i/p + M(p2)

p2 + M2(p2)

Kernel

K (p, q) =
δΣ(p)

δS(q)
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The model

Truncated DSE

Truncation scheme

Effective gluon. Maris-Tandy(1997)

Fixed to fπ = 131 MeV and mπ = 138 MeV.
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Rainbow ladder - Motivation

Successfully applied to:

Light meson spectrum. Fischer et. al (2014), . . .

Charmonium and Bottomonium spectrum. Blank, Krassnigg (2011), . . .

Baryon octet and decuplet masses. Sanchis-Alepuz, Fischer (2014), . . .

EM formfactors of mesons and baryons.

EM transition form factors. Maris, Tandy (2002)

Hadronic LbL-scattering. Williams, Goecke, Fischer (2012)

Hadronic decays. Mader et. al (2011)

Nucleon compton scattering. Eichmann, Fischer (2013)

. . .

Justifies

Investigate tetraquarks in the same framework.
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Faddeev-Yakubowski equation

Four-body problem - Quark picture

Neglect (for now) three- and four-body interactions.

Keep pair interaction. Treat overcounting properly.

512 wave functions, depend on 9 variables.
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Reduction to a two-body equation

Seperable ansatz and scattering equation:

TT T

TT

TT

T

Ansatz for the two-body T-matrix:

TT

Use a seperable ansatz for the four-body T-Matrix.

Utilize scattering equation to reformulate interaction via the
T-matrix.

Employ a pole dominance approximation for the T-matrices.

Use an offshell ansatz for the factorized T-matrices.
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Boundstate equation in the two-body approach

Two-body problem - Meson/Meson-Diquark/Antidiquark picture

Interaction via quark-exchange.

2 amplitudes, depend on 2 variables.
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Four-body equation vs. two-body equation

Structure of the tetraquark in the two-body approach:

Structures of the meson-meson amplitude:

{π ⊗ π, ρ⊗ ρ, . . . }

Structures of the diquark-antidiquark amplitude:

{Ds ⊗ D̄s ,DAV ⊗ D̄AV , . . . }

Advantages

Numerically easier to tackle.

Physical interpretation of amplitudes.
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Four-body equation vs. two-body equation

Structure of the tetraquark in the two-body approach:

Structures of the meson-meson amplitude:

{π ⊗ π, ρ⊗ ρ, . . . }

Structures of the diquark-antidiquark amplitude:

{Ds ⊗ D̄s ,DAV ⊗ D̄AV , . . . }

Disadvantages

Technical/numerical restrictions.

Not all color singlet structures possible.

Depends on pole approximation and offshell ansatz for the
boundstates.

Difficult to include three/four-body interactions.
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Four-body equation vs. two-body equation

Structure of the tetraquark in the four-body approach:

Structures of the in meson-meson basis:

{γ5 ⊗ γ5, 1⊗ 1, γµ ⊗ γµ , γ5γ
µ ⊗ γ5γ

µ . . . }{1⊗ 1S , 8⊗ 8S}

Structures in diquark-antidiquark basis:

{Cγ5 ⊗ γ5CT , CT1⊗ 1CT , Cγµ ⊗ γµCT , . . . }{3⊗ 3̄S , 6⊗ 6̄S}

Advantages

Basis are complete. Different basis connected via Fierz
transformations.

Consistent equation within the used framework.

Room for improvements (three/four-body interactions).
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Four-body equation vs. two-body equation

Structure of the tetraquark in the four-body approach:

Structures of the in meson-meson basis:

{γ5 ⊗ γ5, 1⊗ 1, γµ ⊗ γµ , γ5γ
µ ⊗ γ5γ

µ . . . }{1⊗ 1S , 8⊗ 8S}

Structures in diquark-antidiquark basis:

{Cγ5 ⊗ γ5CT , CT1⊗ 1CT , Cγµ ⊗ γµCT , . . . }{3⊗ 3̄S , 6⊗ 6̄S}

Disadvantages

Numerically more demanding.

Physical meaning of amplitudes not as clear as in the
two-body approach.
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Results - Two-body equation
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FIG. 2: Mass of the up/ down 0++ tetraquark state as a function of the pseudoscalar-meson mass (left panel) and the quark
mass (right panel).

seen from the comparison with the linear f t included
in the plot. The reason for this behavior is even more
clear from the right panel of Fig. 2, where we plot the
tetraquark massasafunctionof thequark mass. Theline
representsa f t to thedata includinga constant, a square
root and a linear term. Apart from the constant term
this is the typical behavior of a Goldstone boson. The
tetraquark thus grossly inherits the mass behavior of its
dominating pion-molecule constituents, with deviations
generated from their interactions via quark exchange.

Oneof themain resultsof our present work isthevalue
for theup/ down tetraquark at thephysical point, i.e. the
left-most points in thecurvesof Fig. 2, wheremP S = mπ .
We obtain:

mu/ d
Tetraquark(0++) = 403MeV , (19)

with an estimated numerical error of ten percent. This
value is only somewhat lower than the real part of the
massof theσ/ f 0(600), mσ ≈ 450+i280MeV determined
recently fromexperiment usingRoy equations[1, 4]. Our
value for the mass of the scalar tetraquark should also
be compared with the corresponding one for an ordi-
nary quark-antiquark scalar bound statewhich may mix
with the tetraquark components. In our rainbow-ladder
approximation such a state has a mass of mqq̄(0++) =
665MeV. It is well known that corrections beyond
rainbow-ladder increase this value into the 1 GeV range
[20, 21], whereas the pion mass is protected. Since our
tetraquark is dominated by its meson-molecule nature,
we therefore expect it to be stable against corrections
beyond rainbow-ladder, whileat thesametimethemass
splittingbetween thetetraquark and thequark-antiquark
scalar will increase. Consequently, our results suggest to
identify thephysical lowest-lyingscalar stateto bedomi-
nated by astrongtetraquark component, which is in turn
dominated by pion molecule contributions. Our result
provides a ready and natural explanation for the large
decay width of theσ/ f 0(600).

In thestrangequark region at about mQuark = 80MeV
wealso observean all-strangetetraquark bound stateat
roughlyms

Tetraquark(0++) = 1.2GeV. Certainly thisstate
will mix with itspuress̄ counterpart aswell as thelowest
lying scalar glueball state making an identif cation with
e.g. the f 0(1500) or the f 0(1710) not possible without
further studies.

It is furthermore interesting to speculate about the
existence of an all-charm tetraquark state. Because of
its f avor-structure in our meson-diquark picture, such
a state would be a mixture between a meson and an
axialvector-diquark component. Sincealready thescalar-
diquark contribution is very small, we expect the axi-
alvector component to be completely suppressed due to
its larger mass. This leaves only the dominant meson-
molecule part. In Fig. 2 the largest pseudoscalar-meson
mass corresponds to a quark mass in the charm region.
We therefore read of the mass of an all-charm scalar
tetraquark state to be at

mc
Tetraquark(0++) = 5.3± (0.5) GeV , (20)

where the error is a guess based on our numerical and
systematicuncertainties. Thismass isconsiderably lower
than the 6.2 GeV obtained in simple model calculations
[23, 24]. It is also much lower than the ηc threshold.
Potential decay channels into D mesons and pairs of
light mesons necessarily involve internal gluon lines.
Theresultingdecay width may thereforeberather small.
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What can be learned from the two-body equation

Bound 0+ tetraquark state at ≈ 400 MeV.

The Pion-Pion wavefunction is dominant.

Tetraquark inherits quarkmass dependence of the pion.

Possible narrow ccc̄ c̄ state at 5.3 GeV??
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Results - Four-body equation I
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What can be learned from the four-body equation - Preliminary

Bound 0+ tetraquark state at ≈ 400 MeV.

Overall agreement between both approaches.
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Results - Four-body equation II

Particle Mass [MeV] Mass [MeV]

f0(500) 400 400− 550

κ 601 682± 29

a0/f0(980) 785 980± 20

What can be learned from the four-body equation - Preliminary

Tetraquark states are in the right ballpark.

Tendency to undershoot the mass. Missing three- and
four-body interactions/mixing effects?
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Conclusion and outlook

Conclusion

The 0+ tetraquark boundstate equation was derived and
solved in the two-body and in the four-body approach.

Both approaches give a mass of ≈ 400 MeV for the f0(500).
The masses of a0, κ agree qualitatively with values found in
the literature.

The f0(500) is dominated by the pion-pion contribution.

Outlook

Solve for other quantum numbers.

Solve the four-body equation with better numerics and the
full structure.

Include three-body interactions.
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Conclusion

The 0+ tetraquark boundstate equation was derived and
solved in the two-body and in the four-body approach.

Both approaches give a mass of ≈ 400 MeV for the f0(500).
The masses of a0, κ agree qualitatively with values found in
the literature.

The f0(500) is dominated by the pion-pion contribution.

Outlook

Solve for other quantum numbers.

Solve the four-body equation with better numerics and the
full structure.

Include three-body interactions.



Motivation
Theoretical framework

Results

The end

Thank you for your attention!
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