Light tetraquark bound-states

Walter Heupel, Gernot Eichmann, Christian Fischer

JLU Giessen

(arXiv:1206.5129)

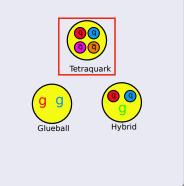
Confinement XI, Saint Petersburg

QCD boundstates

Guiding principles

- Strong coupling
 - Non-perturbative
- Confining theory
 - Single quarks cannot be observed
- Colorless observables
 - "Classical" objects

"Classical" singlet states



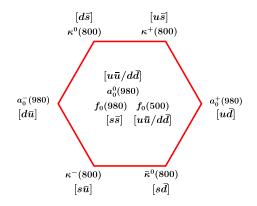
QCD boundstates

Guiding principles

- Strong coupling
 - Non-perturbative
- Confining theory
 - Single quarks cannot be observed
- Colorless observables
 - "Exotic" objects

"Exotic" singlet states

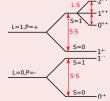
Tetraquarks


Reasons to investigate tetraquarks in general

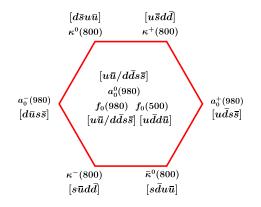
- There is no reason from QCD why they should not exist.
- Increasing evidence from experiments eg. Z_c(3900, 4020, ...), X(3872)
- They are part of the spectrum in a variety of theoretical frameworks. Lattice, sum rules, constituent models...

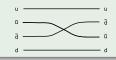
Reasons to investigate light scalar tetraquarks

- From a simple quark model point of view, the "better" candidate for the lightest scalar nonet. Jaffe(1965)
- The $1/N_c$ behavior in unitarized ChPT hints to a significant non- $q\bar{q}$ component for σ, κ, a_0 . Pelaez (2004)
- Linear σ -model favors $qq\bar{q}\bar{q}$ for light scalars. Rischke et. al (2012)

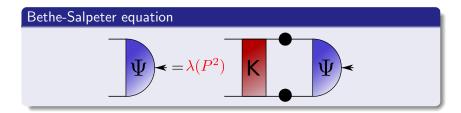

Scalars and tetraquarks - a simple quark picture argument

Meson nonet


• Wrong mass order in the nonet.


- Decay channels.
- Width of f_0 vs. OZI-rule.

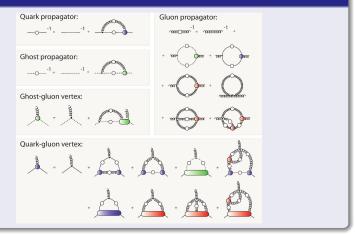
Scalars and tetraquarks - a simple quark picture argument



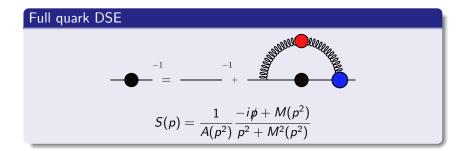
Tetraquark nonet

- Right mass ordering.
- 0⁺⁺ : S-wave.
- Decay channels.
- Width of f₀ originates from the "gluon-less" decay.

Bound-state equations in QFT

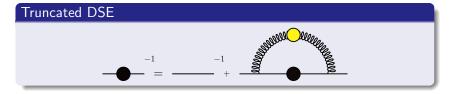


Features and ingredients


- Selfconsistent eigenvalue problem.
- Requires dressed propagators and suitable interaction.
- Determines mass and wavefunction.
- Fully covariant formulation.

The model

DSE tower


The model

Kernel

$$K(p,q) = rac{\delta \Sigma(p)}{\delta S(q)}$$

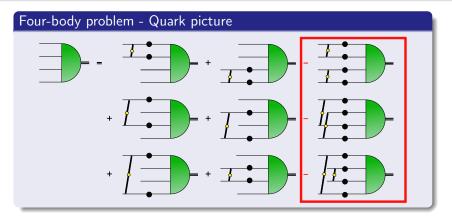
The model

Truncation scheme

- Effective gluon. Maris-Tandy(1997)
- Fixed to $f_{\pi} = 131$ MeV and $m_{\pi} = 138$ MeV.

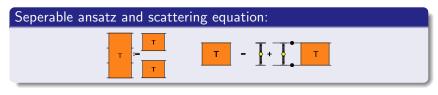
Rainbow ladder - Motivation

Successfully applied to:


- Light meson spectrum. Fischer et. al (2014), ...
- Charmonium and Bottomonium spectrum. Blank, Krassnigg (2011), ...
- Baryon octet and decuplet masses. Sanchis-Alepuz, Fischer (2014), ...
- EM formfactors of mesons and baryons.
- EM transition form factors. Maris, Tandy (2002)
- Hadronic LbL-scattering. Williams, Goecke, Fischer (2012)
- Hadronic decays. Mader et. al (2011)
- Nucleon compton scattering. Eichmann, Fischer (2013)

• . . .

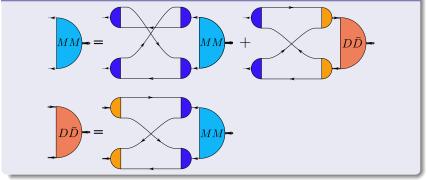
Justifies


Investigate tetraquarks in the same framework.

Faddeev-Yakubowski equation

- Neglect (for now) three- and four-body interactions.
- Keep pair interaction. Treat overcounting properly.
- 512 wave functions, depend on 9 variables.

Reduction to a two-body equation



- Use a seperable ansatz for the four-body T-Matrix.
- Utilize scattering equation to reformulate interaction via the T-matrix.
- Employ a pole dominance approximation for the T-matrices.
- Use an offshell ansatz for the factorized T-matrices.

Boundstate equation in the two-body approach

- Interaction via quark-exchange.
- 2 amplitudes, depend on 2 variables.

Four-body equation vs. two-body equation

Structure of the tetraquark in the two-body approach:

• Structures of the meson-meson amplitude:

 $\{\pi\otimes\pi,\rho\otimes\rho,\dots\}$

• Structures of the diquark-antidiquark amplitude:

 $\{D_s\otimes \overline{D}_s, D_{AV}\otimes \overline{D}_{AV}, \dots\}$

Advantages

- Numerically easier to tackle.
- Physical interpretation of amplitudes.

Four-body equation vs. two-body equation

Structure of the tetraquark in the two-body approach:

• Structures of the meson-meson amplitude:

$$\{\pi\otimes\pi,\rho\otimes\rho,\ldots\}$$

• Structures of the diquark-antidiquark amplitude:

$$\{D_s\otimes \bar{D}_s, D_{AV}\otimes \bar{D}_{AV}, \dots\}$$

Disadvantages

- Technical/numerical restrictions.
- Not all color singlet structures possible.
- Depends on pole approximation and offshell ansatz for the boundstates.
- Difficult to include three/four-body interactions.

Four-body equation vs. two-body equation

Structure of the tetraquark in the four-body approach:

• Structures of the in meson-meson basis:

 $\{\gamma_5 \otimes \gamma_5, \ \mathbb{1} \otimes \mathbb{1}, \ \gamma^{\mu} \otimes \gamma^{\mu}, \gamma_5 \gamma^{\mu} \otimes \gamma_5 \gamma^{\mu} \dots \} \{\mathbb{1} \otimes \mathbb{1}_{\mathsf{S}}, \mathbb{8} \otimes \mathbb{8}_{\mathsf{S}} \}$

• Structures in diquark-antidiquark basis:

 $\{\mathcal{C}\gamma_{5}\otimes\gamma_{5}\mathcal{C}^{\mathsf{T}},\,\mathcal{C}^{\mathsf{T}}\mathbbm{1}\otimes\mathbbm{1}\mathcal{C}^{\mathsf{T}},\,\mathcal{C}\gamma^{\mu}\otimes\gamma^{\mu}\mathcal{C}^{\mathsf{T}},\dots\}\{\overline{\mathbf{3}}\otimes\overline{\mathbf{3}}_{\mathcal{S}},\mathbf{6}\otimes\overline{\mathbf{6}}_{\mathcal{S}}\}$

Advantages

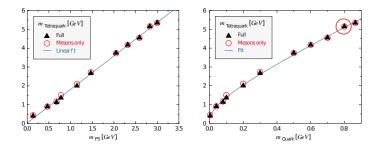
- Basis are complete. Different basis connected via Fierz transformations.
- Consistent equation within the used framework.
- Room for improvements (three/four-body interactions).

Four-body equation vs. two-body equation

Structure of the tetraquark in the four-body approach:

• Structures of the in meson-meson basis:

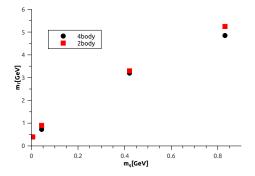
 $\{\gamma_5 \otimes \gamma_5, \ \mathbb{1} \otimes \mathbb{1}, \ \gamma^{\mu} \otimes \gamma^{\mu}, \gamma_5 \gamma^{\mu} \otimes \gamma_5 \gamma^{\mu} \dots \} \{\mathbb{1} \otimes \mathbb{1}_{\mathsf{S}}, \mathbb{8} \otimes \mathbb{8}_{\mathsf{S}} \}$


• Structures in diquark-antidiquark basis:

 $\{\mathcal{C}\gamma_5\otimes\gamma_5\mathcal{C}^{\mathsf{T}},\,\mathcal{C}^{\mathsf{T}}\mathbbm{1}\otimes\mathbbm{1}\mathcal{C}^{\mathsf{T}},\,\mathcal{C}\gamma^\mu\otimes\gamma^\mu\mathcal{C}^{\mathsf{T}},\dots\}\{\overline{\mathbf{3}}\otimes\overline{\mathbf{3}}_{\mathsf{S}},\mathbf{6}\otimes\overline{\mathbf{6}}_{\mathsf{S}}\}$

Disadvantages

- Numerically more demanding.
- Physical meaning of amplitudes not as clear as in the two-body approach.


Results - Two-body equation

What can be learned from the two-body equation

- Bound 0⁺ tetraquark state at \approx 400 MeV.
- The Pion-Pion wavefunction is dominant.
- Tetraquark inherits quarkmass dependence of the pion.
- Possible narrow cccc state at 5.3 GeV??

Results - Four-body equation I

What can be learned from the four-body equation - Preliminary

- Bound 0⁺ tetraquark state at \approx 400 MeV.
- Overall agreement between both approaches.

Results - Four-body equation II

Particle	Mass [MeV]	Mass [MeV]
$f_0(500)$	400	400 - 550
κ	601	682 ± 29
$a_0/f_0(980)$	785	980 ± 20

What can be learned from the four-body equation - Preliminary

- Tetraquark states are in the right ballpark.
- Tendency to undershoot the mass. Missing three- and four-body interactions/mixing effects?

Conclusion and outlook

Conclusion

- The 0⁺ tetraquark boundstate equation was derived and solved in the two-body and in the four-body approach.
- **Both** approaches give a mass of \approx 400 MeV for the $f_0(500)$. The masses of a_0, κ agree qualitatively with values found in the literature.
- The $f_0(500)$ is dominated by the pion-pion contribution.

Conclusion and outlook

Conclusion

- The 0⁺ tetraquark boundstate equation was derived and solved in the two-body and in the four-body approach.
- Both approaches give a mass of \approx 400 MeV for the $f_0(500)$. The masses of a_0, κ agree qualitatively with values found in the literature.
- The $f_0(500)$ is dominated by the pion-pion contribution.

Outlook

- Solve for other quantum numbers.
- Solve the four-body equation with better numerics and the full structure.
- Include three-body interactions.

Thank you for your attention!

