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Motivation

QCD boundstates

“Classical “ singlet states

Guiding principles

@ Strong coupling

o Non-perturbative @

@ Confining theory Meson Baryon

o Single quarks cannot be
observed

@ Colorless observables
o “Classical” objects
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Motivation

Tetraquarks

Reasons to investigate tetraquarks in general
@ There is no reason from QCD why they should not exist.

@ Increasing evidence from experiments e z.(3900, 4020, ...), X(3872) . . ..

@ They are part of the spectrum in a variety of theoretical
fra meWOka. lattice, sum rules, constituent models. . .

Reasons to investigate light scalar tetraquarks

@ From a simple quark model point of view, the “better”
candidate for the lightest scalar nonet. affe(1965)

@ The 1/N. behavior in unitarized ChPT hints to a significant
non-qgg component for o, K, ag. Pelaez (2004)
@ Linear o-model favors qqqqg for light scalars. rischke et. al (2012)




Motivation

Scalars and tetraquarks - a simple quark picture argument
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Meson nonet

@ Wrong mass order in the
nonet.

e 0tF : P-Wave. .
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@ Decay channels.
o Width of fy vs. OZl-rule.
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Scalars and tetraquarks - a simple quark picture argument
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Theoretical framework

Bound-state equations in QFT

Bethe-Salpeter equation

Features and ingredients

@ Selfconsistent eigenvalue problem.
@ Requires dressed propagators and suitable interaction.
@ Determines mass and wavefunction.

@ Fully covariant formulation.




Theoretical framework

The model

Quark propagator:
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Quark-gluon vertex:
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Gluon propagator:




Theoretical framework

The model

Full quark DSE

Kernel

K(p.) = 550




Theoretical framework

The model

Truncated DSE

<

Truncation scheme

o Effective gluon. MarisTandy(1007)
@ Fixed to 7, = 131 MeV and m, = 138 MeV.
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Theoretical framework

Rainbow ladder - Motivation

Successfully applied to:

@ Light meson spectrum. Fischer et. al (2014), . ..

Charmonium and Bottomonium spectrum. Biank, Krassnigg (2011), . ..
Baryon octet and decuplet masses. sanchis Alepuz, Fischer (2014), . ..
EM formfactors of mesons and baryons.

EM transition form factors. Maris, Tandy (2002)

Hadronic LbL-scattering. wiliams, Goecke, Fischer (2012)

Hadronic decays. Mader et. al (2011)

Nucleon compton scattering. Eichmann, Fischer (2013)

Investigate tetraquarks in the same framework.




Theoretical framework

Faddeev-Yakubowski equation

Four-body problem - Quark picture

o Neglect (for now) three- and four-body interactions.
@ Keep pair interaction. Treat overcounting properly.
@ 512 wave functions, depend on 9 variables.




Theoretical framework

Reduction to a two-body equation

Seperable ansatz and scattering equation:

Ansatz for the two-body T-matrix:

« lC ~EDC
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Use a seperable ansatz for the four-body T-Matrix.

Utilize scattering equation to reformulate interaction via the
T-matrix.

Employ a pole dominance approximation for the T-matrices.

Use an offshell ansatz for the factorized T-matrices.



Theoretical framework

Boundstate equation in the two-body approach

Two-body problem - Meson/Meson-Diquark /Antidiquark picture

@ Interaction via quark-exchange.

@ 2 amplitudes, depend on 2 variables.




Theoretical framework

Four-body equation vs. two-body equation

Structure of the tetraquark in the two-body approach:

@ Structures of the meson-meson amplitude:
{fr@mpRp,...}
@ Structures of the diquark-antidiquark amplitude:
{Ds ® Ds, Day ® Dav, ...}

@ Numerically easier to tackle.

@ Physical interpretation of amplitudes.




Theoretical framework

Four-body equation vs. two-body equation

Structure of the tetraquark in the two-body approach:

@ Structures of the meson-meson amplitude:
{remp®p,...}
@ Structures of the diquark-antidiquark amplitude:

{D5® Ds’DAV® DAV,---}

Disadvantages

@ Technical /numerical restrictions.

@ Not all color singlet structures possible.

@ Depends on pole approximation and offshell ansatz for the
boundstates.

o Difficult to include three/four-body interactions.
D




Theoretical framework

Four-body equation vs. two-body equation

Structure of the tetraquark in the four-body approach:

@ Structures of the in meson-meson basis:
{1587, 11, ¥ @+", %7 @17 ... {1 ® 15,8 ® 85}
@ Structures in diquark-antidiquark basis:
{Crs7CT,CT1R1CT, Cy* @~+*CT,...}{3® 35,6 ® b5}

@ Basis are complete. Different basis connected via Fierz
transformations.

@ Consistent equation within the used framework.

@ Room for improvements (three/four-body interactions).




Theoretical framework

Four-body equation vs. two-body equation

Structure of the tetraquark in the four-body approach:

@ Structures of the in meson-meson basis:

{5®7%, 101, @9 ,%7" @ 7" ... {1 ® 15,8 ® 85}

@ Structures in diquark-antidiquark basis:

{Crs®vCT,CT1®1CT, Cy* @~+*CT,...}{3® 35,6 ® 65}

Disadvantages

@ Numerically more demanding.

@ Physical meaning of amplitudes not as clear as in the
two-body approach.




Results

Results - Two-body equation
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What can be learned from the two-body equation

@ Bound 07 tetraquark state at ~ 400 MeV.
@ The Pion-Pion wavefunction is dominant.
@ Tetraquark inherits quarkmass dependence of the pion.

@ Possible narrow cccc state at 5.3 GeV??




Results

Results - Four-body equation |
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What can be learned from the four-body equation -

@ Bound 07 tetraquark state at ~ 400 MeV.

@ Overall agreement between both approaches.




Results

Results - Four-body equation I

] Particle \ Mass [MeV] \ Mass [MeV] ‘
f(500) 400 400 — 550
K 601 682 + 29
20/(980) 785 980 + 20

What can be learned from the four-body equation -

@ Tetraquark states are in the right ballpark.

@ Tendency to undershoot the mass. Missing three- and
four-body interactions/mixing effects?




Results

Conclusion and outlook

Conclusion

@ The 0T tetraquark boundstate equation was derived and
solved in the two-body and in the four-body approach.
@ Both approaches give a mass of ~ 400 MeV for the f,(500).

The masses of ag, x agree qualitatively with values found in
the literature.

@ The f,(500) is dominated by the pion-pion contribution.




Results

Conclusion and outlook

Conclusion

@ The 0T tetraquark boundstate equation was derived and
solved in the two-body and in the four-body approach.
@ Both approaches give a mass of ~ 400 MeV for the f,(500).

The masses of ag, x agree qualitatively with values found in
the literature.

@ The f,(500) is dominated by the pion-pion contribution.

@ Solve for other quantum numbers.

@ Solve the four-body equation with better numerics and the
full structure.

@ Include three-body interactions.




The end

Thank you for your attention!
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