Discriminating between two reformulations of SU(3) Yang-Mills theory on a lattice: Abelian monopole or non-Abelian monopole responsible for confinement

Akihiro Shibata (computing research center, KEK)

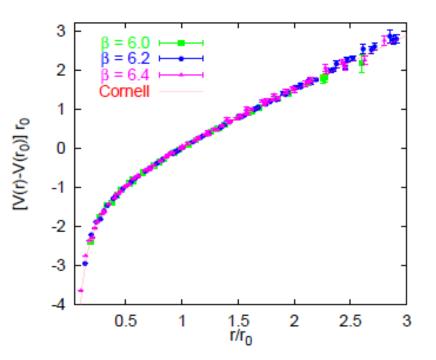
Work in collaboration with

- Kei-Ichi Kondo (Chiba Univ., Japan)
- Seikou Kato (Fukui Natl of Tech. Japan)
- Toru Shinohara(Chiba Univ., Japan)

Based on arXiv:1409.1599 and work in progress

Introduction

- Quark confinement follows from the area law of the Wilson loop average [Wilson,1974]
- What is the mechanism of the quark confinement?
- → dual super conductivity
 Is the promising mechanism
 Cf. center vortex in maximal center gauge. [Greensite]



G.S. Bali, [hep-ph/0001312], Phys. Rept. **343**, **1–136 (2001)**

Non-Abelian Wilson loop
$$\left\langle \operatorname{tr} \left[\mathscr{P} \exp \left\{ ig \oint_C dx^{\mu} \mathscr{A}_{\mu}(x) \right\} \right] \right\rangle_{\mathrm{YM}}^{\mathrm{no} \ \mathrm{GF}} \sim e^{-\sigma_{NA}|S|},$$

dual superconductivity

Dual superconductivity is a promising mechanism for quark confinement. [Y.Nambu (1974). G.'t Hooft, (1975). S.Mandelstam, (1976) A.M. Polyakov (1975)]

superconductor

- Condensation of electric charges (Cooper pairs)
- Meissner effect: Abrikosov string (magnetic flux tube) connecting monopole and anti-monopole
- Linear potential between monopoles

dual superconductor

- Condensation of magnetic monopoles
- Dual Meissner effect: formation of a hadron string (chromo-electric flux tube) connecting quark and antiquark
- Linear potential between quarks

Evidences for the dual superconductivity::SU(2)

tring tension (Linear potential)

- □ Abelian dominance in the string tension [Suzuki & Yotsuyanagi, 1990]
- Abelian magnetic monopole dominance in the string tension [Stack, Neiman and Wensley,1994][Shiba & Suzuki, 1994]

Chromo-flux tube (dual Meissner effect)

- Measurement of (Abelian) dual Meissner effect
- Observation of chromo-electric flux tubes and Magnetic current due to chromo-electric flux
- Type the super conductor is of order between Type I and Type II
 [Y.Matsubara, et.al. 1994]

✓ only obtained in the case of special gauge such as MA gauge
 ✓ gauge fixing breaks the gauge symmetry as well as color symmetry

Evidences for the dual superconductivity::SU(2)

Gauge decomposition method (a new lattice formulation)

- Extracting the relevant mode V for quark confinement by solving the defining equation in the gauge independent way (gauge-invariant way)
- For SU(2) case, the decomposition is a lattice compact representation of the Cho-Duan-Ge-Faddeev-Niemi-Shabanov (CDGFNS) decomposition.

→ we have showed in the series of lattice conferences that

- V-field dominance, magnetic monopole dominance in string tension
- chromo-electric flux tube and dual Meissner effect.

Dual Superconductivity for SU(3) case

Abelian projection

- Abelian projection :: $SU(3) \rightarrow U(1)xU(1)$ (Maximal torus)

In the MA gauge [Suganuma et.al.]

- The problem remains as the same as SU(2) case.
- Decomposition method (A new formulation of the lattice YM theory → see the next slide)
 - Extension of SU(2) case
- → we have showed in the series of lattice conferences that
- V-field dominance, magnetic monopole dominance in string tension,
- chromo-flux tube and dual Meissner effect.
- The first observation on quark confinement/deconfinement phase transition in terms of dual Meissner effect at finite temperature

A new formulation of Yang-Mills theory (on a lattice)

Decomposition of SU(N) gauge links

- For SU(N) YM gauge link, there are several possible options of decomposition *discriminated by its stability groups*:
- \square SU(2) Yang-Mills link variables: unique U(1) \subset SU(2)
- □ SU(3) Yang-Mills link variables: <u>Two options</u> <u>maximal option :</u> U(1) × U(1) ⊂ SU(3)
 - ✓ Maximal case is a gauge invariant version of Abelian projection in the maximal Abelian (MA) gauge. (the maximal torus group)

<u>minimal option</u> : $U(2) \cong SU(2) \times U(1) \subseteq SU(3)$

 Minimal case is derived for the Wilson loop, defined for quark in the fundamental representation, which follows from the non-Abelian Stokes' theorem

The decomposition of SU(3) link variable: minimal option

$$W_{C}[U] := \operatorname{Tr} \left[P \prod_{\langle x,x+\mu \rangle \in C} U_{x,\mu} \right] / \operatorname{Tr}(1)$$

$$U_{x,\mu} = X_{x,\mu} V_{x,\mu}$$

$$U_{x,\mu} \to U'_{x,\mu} = \Omega_{x} U_{x,\mu} \Omega_{x+\mu}^{\dagger}$$

$$V_{x,\mu} \to V'_{x,\mu} = \Omega_{x} V_{x,\mu} \Omega_{x+\mu}^{\dagger}$$

$$X_{x,\mu} \to X'_{x,\mu} = \Omega_{x} X_{x,\mu} \Omega_{x}^{\dagger}$$

$$\Omega_{x} \in G = SU(N)$$

$$W_{C}[V] := \operatorname{Tr} \left[P \prod_{\langle x,x+\mu \rangle \in C} V_{x,\mu} \right] / \operatorname{Tr}(1)$$

$$W_{C}[U] = \operatorname{const.} W_{C}[V] := 1$$

Defining equation for the decomposition

Phys.Lett.B691:91-98,2010 ; arXiv:0911.5294 (hep-lat)

Introducing a color field $\mathbf{h}_x = \xi(\lambda^8/2)\xi^{\dagger} \in SU(3)/U(2)$ with $\xi \in SU(3)$, a set of the defining equation of decomposition $U_{x,\mu} = X_{x,\mu}V_{x,\mu}$ is given by

$$D_{\mu}^{\epsilon}[V]\mathbf{h}_{x} = \frac{1}{\epsilon}(V_{x,\mu}\mathbf{h}_{x+\mu} - \mathbf{h}_{x}V_{x,\mu}) = 0,$$

$$g_{x} = e^{-2\pi q_{x}/N}\exp(-a_{x}^{(0)}\mathbf{h}_{x} - i\sum_{i=1}^{3}a_{x}^{(i)}u_{x}^{(i)}) = 1,$$

which correspond to the continuum version of the decomposition, $\mathcal{A}_{\mu}(x) = \mathcal{V}_{\mu}(x) + \mathcal{X}_{\mu}(x)$,

$$D_{\mu}[\mathcal{V}_{\mu}(x)]\mathbf{h}(x) = 0, \quad \operatorname{tr}(\mathcal{X}_{\mu}(x)\mathbf{h}(x)) = 0.$$

Exact solution (N=3)

$$X_{x,\mu} = \hat{L}_{x,\mu}^{\dagger} (\det \hat{L}_{x,\mu})^{1/N} g_x^{-1} \quad V_{x,\mu} = X_{x,\mu}^{\dagger} U_x, = g_x \hat{L}_{x,\mu} U_x, (\det \hat{L}_{x,\mu})^{-1/N}$$

$$\hat{L}_{x,\mu} = \left(\sqrt{L_{x,\mu}} L_{x,\mu}^{\dagger}\right)^{-1} L_{x,\mu}$$

$$L_{x,\mu} = \frac{N^2 - 2N + 2}{N} \mathbf{1} + (N - 2) \sqrt{\frac{2(N - 2)}{N}} (\mathbf{h}_x + U_{x,\mu} \mathbf{h}_{x+\mu} U_{x,\mu}^{-1})$$

$$+ 4(N - 1) \mathbf{h}_x U_{x,\mu} \mathbf{h}_{x+\mu} U_{x,\mu}^{-1}$$

continuum version by continuum Jimith 2014.

V

$$\mathbf{V}_{\mu}(x) = \mathbf{A}_{\mu}(x) - \frac{2(N-1)}{N} [\mathbf{h}(x), [\mathbf{h}(x), \mathbf{A}_{\mu}(x)]] - ig^{-1} \frac{2(N-1)}{N} [\partial_{\mu} \mathbf{h}(x), \mathbf{h}(x)],$$

$$\mathbf{X}_{\mu}(x) = \frac{2(N-1)}{N} [\mathbf{h}(x), [\mathbf{h}(x), \mathbf{A}_{\mu}(x)]] + ig^{-1} \frac{2(N-1)}{N} [\partial_{\mu} \mathbf{h}(x), \mathbf{h}(x)].$$

The defining equation and the Wilson loop for the fundamental representation

By inserting the complete set of the coherent state $|\xi_x, \Lambda\rangle$ at every site on the Wislon loop $C, 1 = \int |\xi_x, \Lambda\rangle d\mu(\xi_x) \langle \Lambda, \xi_x|$ we obtain

$$W_{C}[U] = \operatorname{tr}\left(\prod_{\langle x\rangle\in C} U_{x,\mu}\right) = \prod_{\langle x,x+\mu\rangle\in C} \int d\mu(\xi_{x})\langle\Lambda,\xi_{x}|U_{x,\mu}|\xi_{x+\mu},\Lambda\rangle$$
$$= \prod_{\langle x,x+\mu\rangle\in C} \int d\mu(\xi_{x})\langle\Lambda,|(\xi_{x}^{\dagger}X_{x,\mu}\xi_{x})(\xi_{x}^{\dagger}V_{x,\mu}\xi_{x+\mu})|,\Lambda\rangle$$

where we have used $\xi_x \xi_x^{\dagger} = 1$.

For the stability group of $ilde{H}$, the 1st defining equation

$$\xi V_{x,\mu} \xi^{\dagger} \in \tilde{H} \iff [\xi_x^{\dagger} V_{x,\mu} \xi_{x+\mu}, \tilde{H}] \iff \mathbf{h}_x V_{x,\mu} - V_{x,\mu} \mathbf{h}_{x+\mu} = 0$$

implies that $|\Lambda\rangle$ is eigenstate of $\xi_x^{\dagger} V_{x,\mu} \xi_{x+\mu}$:

$$\langle \xi_x^{\dagger} V_{x,\mu} \xi_{x+\mu} \rangle | \Lambda \rangle = | \Lambda \rangle e^{i\phi}, \quad e^{i\phi} := \langle \Lambda | \xi_x^{\dagger} V_{x,\mu} \xi_{x+\mu} | \Lambda \rangle = \langle \Lambda, \xi_x | V_{x,\mu} | \xi_{x+\mu}, \Lambda \rangle.$$

Then we have

$$W_{C}[U] = \int d\mu(\xi_{x})\rho[X;\xi] \prod_{\langle x,x+\mu\rangle\in C} \langle \Lambda,\xi_{x}|V_{x,\mu}|\xi_{x+\mu},\Lambda\rangle$$

confinement X

$$\rho[X;\xi] := \prod_{\langle x \rangle \in C} \langle \Lambda, \xi_x | X_{x,\mu} | \xi_{x+\mu}, \Lambda \rangle$$

Sep. 8th 2014.

The defining equation and the Wilson loop for the fundamental representation (2)

By using the expansion of $X_{x,\mu}$: the 2nd defining equaiton, $\operatorname{tr}(\mathcal{X}_{\mu}(x)\mathbf{h}(x)) = 0$, derives $\langle \Lambda, \xi_x | X_{x,\mu} | \xi_{x+\mu}, \Lambda \rangle = \operatorname{tr}(X_{x,\mu})/\operatorname{tr}(\mathbf{1}) + 2\operatorname{tr}(X_{x,\mu}\mathbf{h}_x)$ $= 1 + 2ig\epsilon tr(\mathcal{X}_{\mu}(x)\mathbf{h}(x)) + O(\epsilon^2).$ Then we have $\rho[X;\xi] = 1 + O(\epsilon^2).$ Therefore, we obtain $W_c[U] = \int d\mu(\xi_x) \prod \langle \Lambda, \xi_x | V_{x,\mu} | \xi_{x+\mu}, \Lambda \rangle = W_c[V]$

 $< x, x + \mu > \in C$

Reduction Condition

- The decomposition is uniquely determined for a given set of link variables $U_{x,\mu}$ describing the original Yang-Mills theory and color fields.
- The reduction condition is introduced such that the theory in terms of new variables is equipollent to the original Yang-Mills theory
- The configuration of the color fields h_x can be determined by the reduction condition such that the reduction functional is minimized for given U_{x,µ} to obtain equipollent theory to the original Yang-Mills theory SU(3)_ω × [SU(3)/U(2)]_θ → SU(3)_{ω=θ}

Determining \mathbf{h}_x to minimize the reduction function for given $U_{x,\mu}$

$$F_{\text{red}}[\mathbf{h}_x, U_{x,\mu}] = \sum_{x,\mu} \operatorname{tr} \left\{ \left(D_{\mu}^{\epsilon} [U_{x,\mu}] \mathbf{h}_x \right)^{\dagger} \left(D_{\mu}^{\epsilon} [U_{x,\mu}] \mathbf{h}_x \right) \right\}$$

- This is invariant under the gauge transformation $\theta = \omega$
- The extended gauge symmetry is reduced to the same symmetry as the original YM theory.
- We choose a reduction condition of the same type as the SU(2) case Sep. 8th 2014. confinement XI

Non-Abelian magnetic monopole From the non-Abelian Stokes theorem and the Hodge decomposition, the magnetic monopole is derived without using the Abelian projection

$$W_{C}[\mathcal{A}] = \int [d\mu(\xi)]_{\Sigma} \exp\left(-ig \int_{S:C=\partial\Sigma} dS^{\mu\nu} \sqrt{\frac{N-1}{2N}} \operatorname{tr}(2\mathbf{h}(x)\mathcal{F}_{\mu\nu}[\mathcal{V}](x))\right)$$
$$= \int [d\mu(\xi)]_{\Sigma} \exp\left(ig \sqrt{\frac{N-1}{2N}} (k, \Xi_{\Sigma}) + ig \sqrt{\frac{N-1}{2N}} (j, N_{\Sigma})\right)$$
magnetic current $k := \delta^{*}F = {}^{*}dF, \quad \Xi_{\Sigma} := \delta^{*}\Theta_{\Sigma}\Delta^{-1}$ electric current $j := \delta F, \qquad N_{\Sigma} := \delta\Theta_{\Sigma}\Delta^{-1}$
$$\Delta = d\delta + \delta d, \qquad \Theta_{\Sigma} := \int_{\Sigma} d^{2}S^{\mu\nu}(\sigma(x))\delta^{D}(x - x(\sigma))$$
 k and j are gauge invariant and conserved currents; $\delta k = \delta j = 0.$

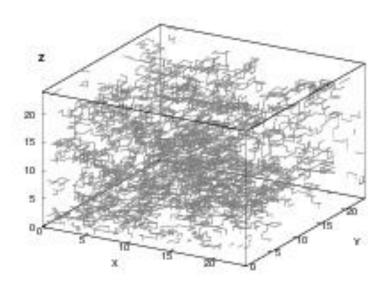
K.-I. Kondo PRD77 085929(2008)

The lattice version is defined by using plaquette:

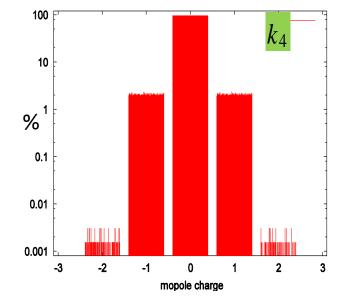
$$\Theta_{\mu\nu}^{8} := -\arg \operatorname{Tr}\left[\left(\frac{1}{3}\mathbf{1} - \frac{2}{\sqrt{3}}\mathbf{h}_{x}\right)V_{x,\mu}V_{x+\mu,\mu}V_{x+\nu,\mu}^{\dagger}V_{x,\nu}^{\dagger}\right],$$

$$k_{\mu} = 2\pi n_{\mu} := \frac{1}{2}\epsilon_{\mu\nu\alpha\beta}\partial_{\nu}\Theta_{\alpha\beta}^{8},$$

non-Abelian monopoles in vacuum



$$\begin{split} \Theta_{\mu\nu}^{8} &:= -\arg \operatorname{Tr}\left[\left(\frac{1}{3}\mathbf{1} - \frac{2}{\sqrt{3}}\mathbf{h}_{x}\right)V_{x,\mu}V_{x+\mu,\mu}V_{x+\nu,\mu}^{\dagger}V_{x,\nu}^{\dagger}\right], \\ k_{\mu} &= 2\pi n_{\mu} := \frac{1}{2}\epsilon_{\mu\nu\alpha\beta}\partial_{\nu}\Theta_{\alpha\beta}^{8}, \end{split}$$

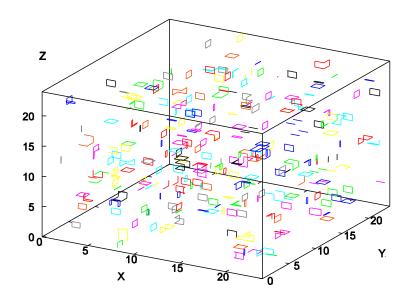


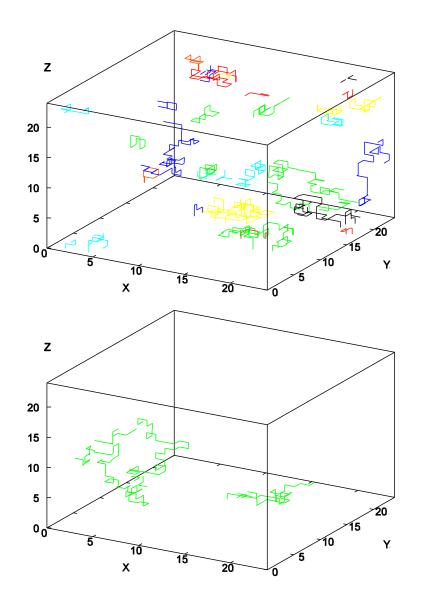
•The distribution of the monopole charges for 16^4 lattice $\beta=5.7$ 400 configurations. The distribution of each configuration is shown by thin bar chart. Non-Abelian magnetic monopole loops: 24³ x8 lattice b=6.0 (T≠0)

Projected view $(x,y,z,t) \rightarrow (x,y,z)$

```
(left lower) loop length 1-10
(right upper) loop length 10 -- 100
(right lower) loop length 100 -- 1000
```

Monopole loop is winding to T direction.





- SU(3) Yang-Mills theory
- In confinement of fundamental quarks, a restricted non-Abelian variable V, and the extracted non-Abelian magnetic monopoles play the dominant role (dominance in the string tension), in marked contrast to the Abelian projection.

gauge independent "Abelian" dominance

$$\frac{\sigma_V}{\sigma_U} = 0.92$$
$$\frac{\sigma_V}{\sigma_{U^*}} = 0.78 - 0.82$$

Gauge independent non-Abalian monople dominance

$$\frac{\sigma_M}{\sigma_U} = 0.85$$
$$\frac{\sigma_M}{\sigma_{U^*}} = 0.72 - 0.76$$

U^{*} is from the table in R. G. Edwards, U. M. Heller, and T. R. Klassen, Nucl. Phys. B517, 377 (1998).

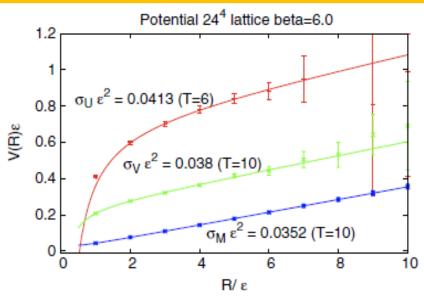


FIG. 1 (color online). SU(3) quark-antiquark potentials as functions of the quark-antiquark distance R: (from tob to bottom) (i) full potential $V_f(R)$ (red curve), (ii) restricted part $V_r(R)$ (green curve), and (iii) ma;gnetic-monopole part $V_m(R)$ (blue curve), measured at $\beta = 6.0$ on 24⁴ using 500 configurations where ϵ is the lattice spacing.

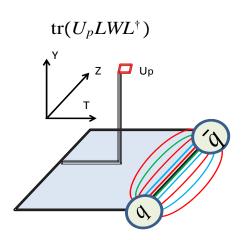
PRD 83, 114016 (2011)

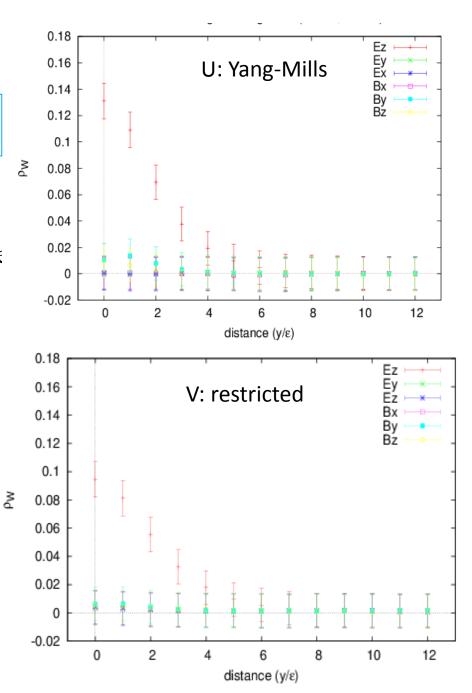
Chromo flux

$ ho_W =$	$\langle { m tr}(W\!LU_pL^\dagger) angle$	1	$\langle \operatorname{tr}(W)\operatorname{tr}(U_p) \rangle$
	$\langle \operatorname{tr}(W) \rangle$	\overline{N}	$\langle \operatorname{tr}(W) \rangle$

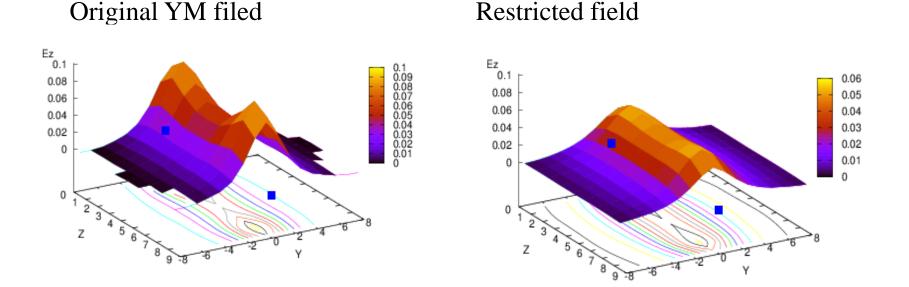
Gauge invariant correlation

function: This is settled by Wilson loop (W) as quark and antiquark source and plaquette (Up) connected by Wilson lines (L). N is the number of color (N=3) [Adriano Di Giacomo et.al. PLB236:199,1990 NPBB347:441-460,199C





Chromo-electric (color flux) Flux Tube



A pair of quark-antiquark is placed on z axis as the 9x9 Wilson loop in Z-T plane. Distribution of the chromo-electronic flux field created by a pair of quark-antiquark is measured in the Y-Z plane, and the magnitude is plotted both 3-dimensional and the contour in the Y-Z plane.

Flux tube is observed for V-field case. :: dual Meissner effect

Magnetic current induced by quark and antiquark pair

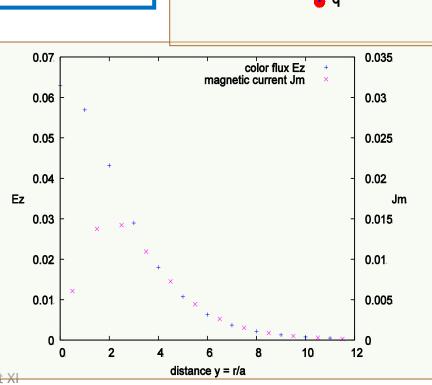
Yang-Mills equation (Maxell equation) fo rrestricted field V_{μ} , the magnetic current (monopole) can be calculated as

$$k = \delta^* F[V] = * dF[V],$$

where F[V] is the field strength of V, d exterior derivative, * the Hodge dual and δ the coderivative $\delta := *d^*$, respectively.

 $\mathbf{k} \neq 0 \Rightarrow$ signal of monopole condensation. Since field strengthe is given by $F[\mathbf{V}] = d\mathbf{V}$, and $\mathbf{k} = *dF[\mathbf{V}] = *ddF[\mathbf{V}] = 0$ (Bianchi identity)

Figure: (upper) positional relationship of chromo-electric flux and magnetic current. (lower) combination plot of chromo-electric flux (left scale) and magnetic current(right scale).



F

COMPARISON WITH MAXIMAL OPTION

The decomposition of SU(3) link variable: maximal option

$$U_{x,\mu} = X_{x,\mu}V_{x,\mu}$$

$$U_{x,\mu} \rightarrow U'_{x,\mu} = \Omega_x U_{x,\mu} \Omega^{\dagger}_{x+\mu}$$

$$V_{x,\mu} \rightarrow V'_{x,\mu} = \Omega_x V_{x,\mu} \Omega^{\dagger}_{x+\mu}$$

$$X_{x,\mu} \rightarrow X'_{x,\mu} = \Omega_x X_{x,\mu} \Omega^{\dagger}_{x}$$

$$\Omega_x \in G = SU(N)$$

$$\mathbf{n}_x^{(j)} \rightarrow \mathbf{n}_x^{(j)'} = \Theta_x \mathbf{n}_x^{(j)} \Theta^{\dagger}_{x} \quad j = 3, 8$$

$$SU(3) \cup U_x,\mu$$

$$SU(3) \cup U_x$$

$$SU(3) \cup U$$

Gauge invariant version of the Abelian projection to maximal torus group U(1) x U(1) in MA gauge.

Defining equation for the decomposition:: maximal option

Phys.Lett.B691:91-98,2010 ; arXiv:0911.5294 (hep-lat)

By introducing the color field $\mathbf{n}_3 = \xi(\lambda^3/2)\xi^{\dagger}$, $\mathbf{n}_8 = \xi(\lambda^8/2)\xi^{\dagger} \in SU(3)_{\omega} \times [SU(3)/(U(1) \times U(1))]_{\theta}$ the set of the defineing equation for the decomposition $U_{x,\mu} = X_{x,\mu}V_{x,\mu}$:

$$D_{\mu}^{\epsilon}[V] := \frac{1}{\epsilon} \left(U_{x,\mu} \mathbf{n}_{x+\mu}^{(j)} - \mathbf{n}_{x}^{(j)} U_{x,\mu} \right) = 0, \quad (j = 3, 8)$$
$$g_{x} := \exp(2\pi i n/N) \exp\left\{ i \sum_{j=3,8} \alpha^{(j)} \mathbf{n}_{x}^{(j)} \right\} = \mathbf{1}$$

with corresponding to the continuum version of decomposition $\mathcal{A}_{\mu}(x) = \mathcal{V}_{\mu}(x) + \mathcal{X}_{\mu}(x)$

$$D_{\mu}[\mathcal{V}]\mathbf{n}_{x}^{(j)} = 0, \quad \operatorname{tr}(\mathbf{n}_{x}^{(j)}\mathcal{X}_{\mu}(x)) = 0, \quad j = 3, 8$$

$$X_{x,\mu} = \hat{K}_{x,\mu}^{\dagger} \det(K_{x,\mu})^{1/3} g_x^{-1}, \quad V_{x,\mu} = g_x \hat{K}_{x,\mu} \det(K_{x,\mu})^{-1/3}$$

where

$$\hat{K}_{x,\mu} := \left(\sqrt{K_{x,\mu}K_{x,\mu}^{\dagger}}\right)^{-1} K_{x,\mu}, \quad \hat{K}_{x,\mu}^{\dagger} := K_{x,\mu}^{\dagger} \left(\sqrt{K_{x,\mu}K_{x,\mu}^{\dagger}}\right)^{-1} K_{x,\mu}$$
$$K_{x,\mu} = \mathbf{1} + 6(\mathbf{n}_{x}^{(3)} U_{x,\mu}\mathbf{n}_{x}^{(3)} + \mathbf{n}_{x}^{(8)} U_{x,\mu}\mathbf{n}_{x}^{(8)})$$

Reduction Condition

- The decomposition is uniquely determined for a given set of link variables $U_{x,\mu}$ describing the original Yang-Mills theory and color fields.
- The reduction condition is introduced such that the theory in terms of new variables is equipollent to the original Yang-Mills theory
- The configuration of the color fields $\mathbf{n}^{(j)}_{x}$ can be determined by the reduction condition such that the reduction functional is minimized for given $U_{x,\mu} U_{x,\mu}$ to obtain equipollent theory to the original Yang-Mills theory $SU(3)_{\omega} \times [SU(3)/(U(1) \times U(1))]_{\theta} \rightarrow SU(3)_{\omega=\theta}$

$$F_{\text{red}}[\mathbf{n}_{x}^{(3)},\mathbf{n}_{x}^{(8)},V] = \sum_{x,\mu} \left(D_{\mu}[U]\mathbf{n}_{x}^{(3)} \right)^{\dagger} \left(D_{\mu}[U]\mathbf{n}_{x}^{(3)} \right) + \sum_{x,\mu} \left(D_{\mu}[U]\mathbf{n}_{x}^{(8)} \right)^{\dagger} \left(D$$

- This is invariant under the gauge transformation $\theta = \omega$
- The extended gauge symmetry is reduced to the same symmetry as the original YM theory.

By using the gauge transformation, Θ (= Ω),

$$\mathbf{n}_{x}^{(3)} \rightarrow T_{3} = \boldsymbol{\lambda}^{3}/2, \quad \mathbf{n}_{x}^{(8)} \rightarrow \boldsymbol{\Theta}_{x}T_{8}\boldsymbol{\Theta}_{x}^{\dagger} = T_{8} = \boldsymbol{\lambda}^{8}/2$$
$$U_{x,\mu} \rightarrow U_{x,\mu}^{\Omega} := \boldsymbol{\Theta}_{x}U_{x,\mu}\boldsymbol{\Theta}_{x}^{\dagger}$$

we obtain the functional for MA gauge fixing.

Magnetic monopole charge in the maximal option

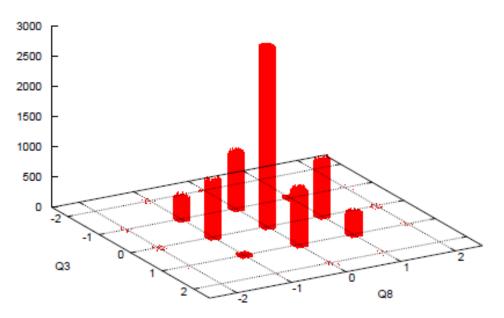
$$Tr(V_{x,\mu}V_{x+\mu,\nu}V_{x+\mu,\nu}^{\dagger}V_{x,\nu}^{\dagger}) = \exp(i\mathcal{F}_{\mu\nu}^{(3)}n + i\mathcal{F}_{\mu\nu}^{(8)}m)$$

$$\Theta_{\mu\nu}^{(3)} = Tr\left(\left(\frac{1}{3} + n + \frac{1}{\sqrt{3}}m\right)V_{x,\mu}V_{x+\mu,\nu}V_{x+\mu,\nu}^{\dagger}V_{x,\nu}^{\dagger}\right)$$

$$\Theta_{\mu\nu}^{(8)} = Tr\left(\left(\frac{1}{3} - \frac{2}{\sqrt{3}}m\right)V_{x,\mu}V_{x+\mu,\nu}V_{x+\mu,\nu}^{\dagger}V_{x,\nu}^{\dagger}\right)$$

$$\kappa_{\mu}^{(k)} = \frac{1}{2} \epsilon^{\mu \nu \alpha \beta} \partial_{\nu} \Theta_{\alpha \beta}^{(k)}$$

What relation between the Wilson loop and the magnetic monopole in the maximal option?



Sep. 8th 2014.

confinement XI

Comparison of the Abelian dominance between minimal option and maximal option in a lattice data

- Wilson action with β =6.0 on the 24⁴ lattice
- 1. 500 configurations by using pseudo heat bath.
- Determine the color fields {h(x)} for the minimal option, {n⁽³⁾(x) n⁽⁸⁾(x)} for maximal option by minimizing the reduction condition: F[h; U], F[n⁽³⁾, n⁽⁸⁾; U], respectively.
- 3. The decomposition U=XV is obtained by using the formula by the defining equation for the decomposition.

Preliminary result

Static potential

• Wilson loop by the decomposed variable V

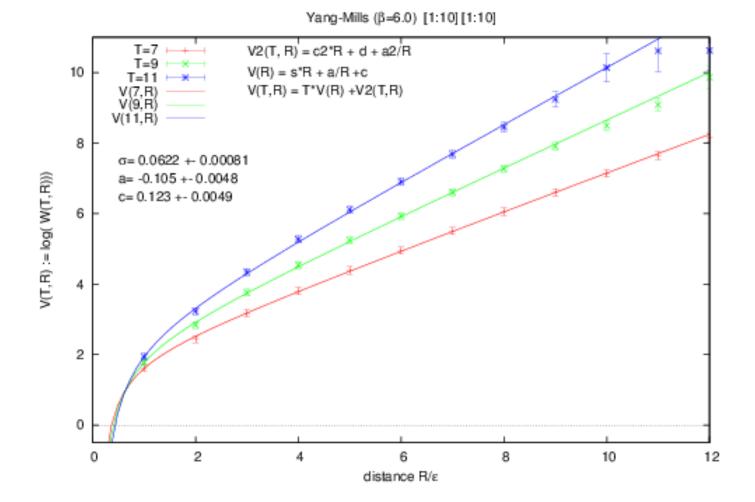
$$V(R) = -\lim_{T \to \infty} \frac{1}{T} \log \langle W_{(R,T)}[V] \rangle$$

• To get the static potential we fit the Wilson loop $W_c[V]$ by the function V(R,T)

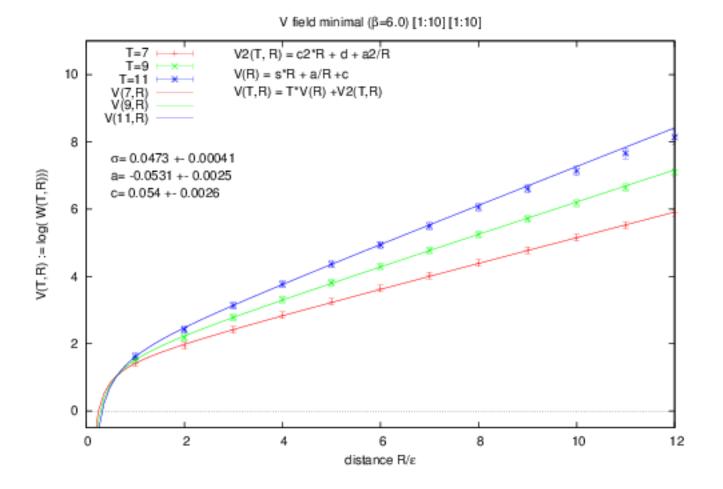
$$V(T,R) = -\log(\langle W[T,R] \rangle)$$

$$V(T,R) = sRT + cT + aT/R + c_2R + d + a_2R/T$$

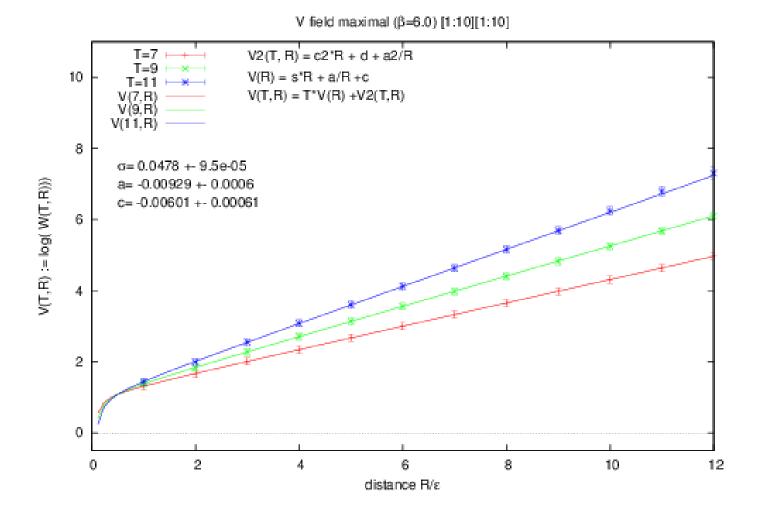
Yang-Mills field



Restricted field V: minimal option



Restricted field V :: maximal option

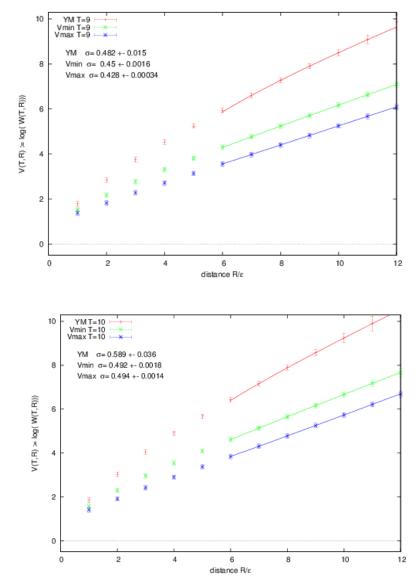


Minial vs Maximal in the Wilson loop

We obtain the **"Abelian dominance" in the string tension** for both the minimal option and the maximal option

- Comparison of Wilson loop values for T=9 and T=10 : -log <W[T,R]> vs R
- Each curve shows the result of fitting by using Chonel potential for the range R ~ [6,12]
- The Wilson loop average for the restricted field <Vmin> < <Vmax>
- However, the string tension is almost same for the both options.

➔ Further study by using higher statistics, off-axis measurement , etc.



Measurement of color flux

$$\rho_W = \frac{\langle \operatorname{tr}(WLU_pL^{\dagger})\rangle}{\langle \operatorname{tr}(W)\rangle} - \frac{1}{N} \frac{\langle \operatorname{tr}(W)\operatorname{tr}(U_p)\rangle}{\langle \operatorname{tr}(W)\rangle}$$

The field strength by quark and anti quark can be defined as

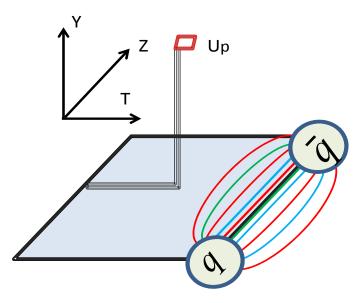
 $F_{\mu\nu}(x) = \sqrt{\frac{\beta}{2N}} \rho_W(x)$

To know the difference between the decomposition, we measure the three types of probes and compare them.

$$O^{[YM]} = L[U]U_pL[U]^{-1}$$
 :: original YM
 $O^{[\min]} = L[V^{[\min]}]V_p^{[\min]}L[V^{[\min]}]^{-1}$:: V field in minimal option
 $O^{[\max]} = L[V^{[\max]}]V_p^{[\max]}L[V^{[\max]}]^{-1}$:: V field in maximal option

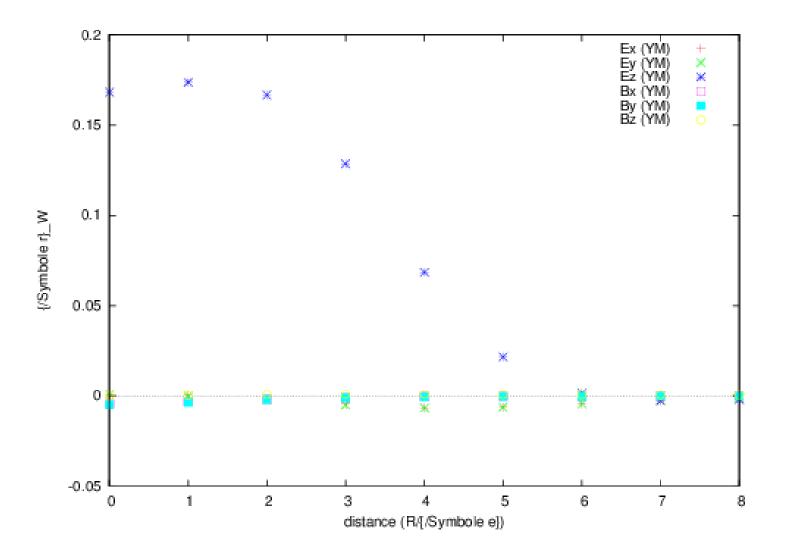
Proposed by Adriano Di Giacomo et.al. [Phys.Lett.B236:199,1990] [Nucl.Phys.B347:441-460,1990]

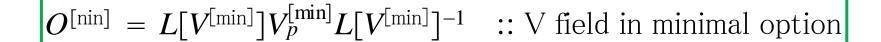
 $tr(U_p LWL^{\dagger})$

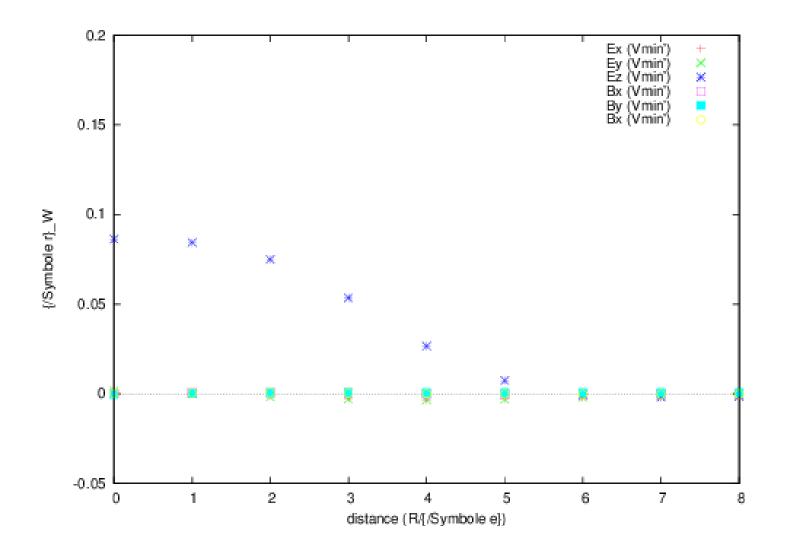


 $O^{[YM]} = L[U]U_pL[U]^{-1}$

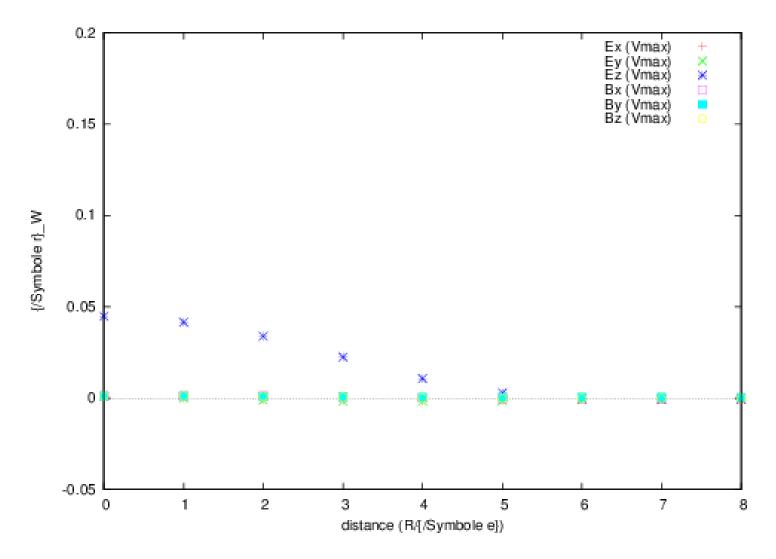
:: original YM





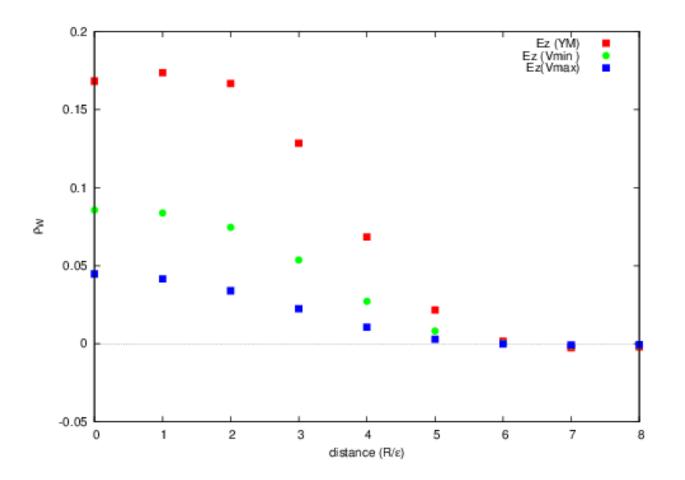


$$O^{[\max]} = L[V^{[\max]}]V_p^{[\max]}L[V^{[\max]}]^{-1}$$
 :: V field in maximal option



confinement XI

Minimal v.s. Maxial



summary

- We have investigate dual superconductivity picture by using the new formulation of lattice Yang-Mills theory.
- We proposed the none-Abelian dual super conductivity, based on the minimal option of the new formulation, and have shown the numerical evidences:
- We have further investigated "Abelian" dual superconductivity by using the maximal option, in which we can study the picture conventional Abelian projection in MA gauge .(preliminary result)
 - We have found, "Abalian" dominance in the string tension as well as the in the minimal option.
 - We also have found the chromo-electric flux tube and dual Meissner effects.
 - → We do not find the qualitative differences between the maximal and minimal options.

Outlook

We need further investigate that

- The measurement with heigher statistics, and comparison with fine lattice with large physical volume.
- Distribution of chromo-flux and magnetic monopole (curents) in 2D (3D) space
- The measurement of the correlation between the magnetic monopole operator and Wilson loop

➔To investigate the what kind of the magnetic monopole play the dominant role in confinement.

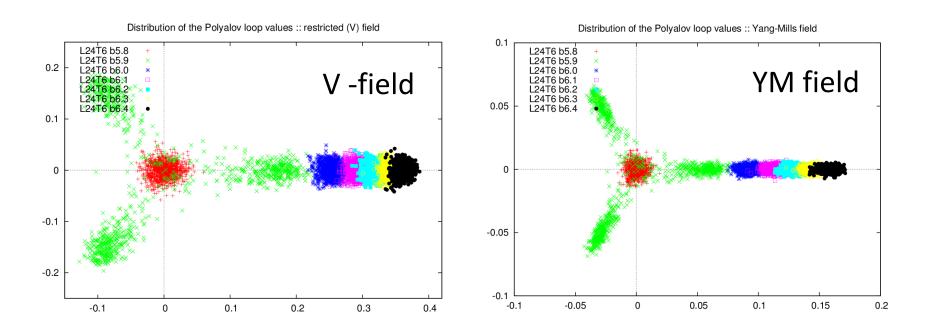
The measurement chromo flux tube and dual Meissner effect for the barion source.

THANK YOU FOR YOUR ATTENTION

BACKUP

Distribution of Polyakov loop

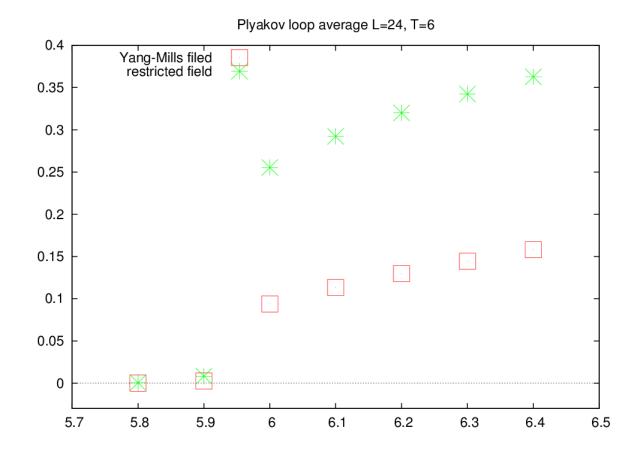
$$P_U(x) = \operatorname{tr}\left(\prod_{t=1}^{Nt} U_{(x,t),4}\right) \text{ for original Yang-Mills filed}$$
$$P_V(x) = \operatorname{tr}\left(\prod_{t=1}^{Nt} V_{(x,t),4}\right) \text{ for restricted field}$$



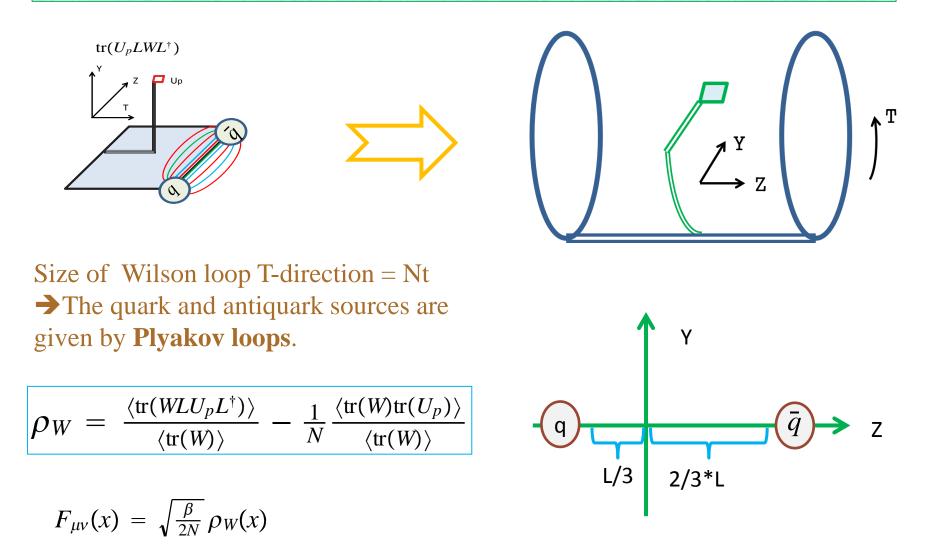
Sep. 8th 2014.

confinement XI

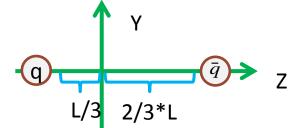
Polyakov loop average YM-field v.s. V - field

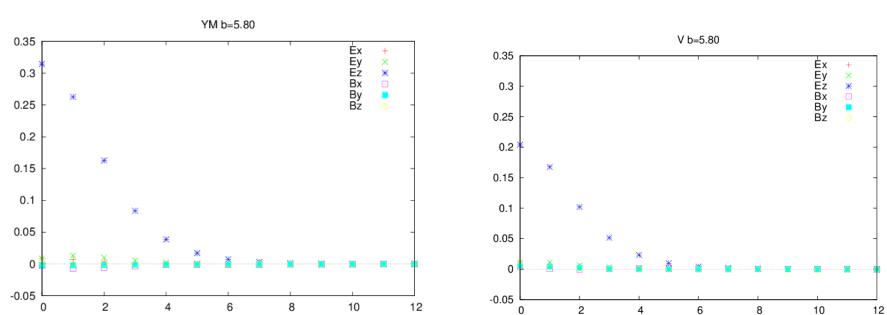


Chromo-electric flux at finite temperature



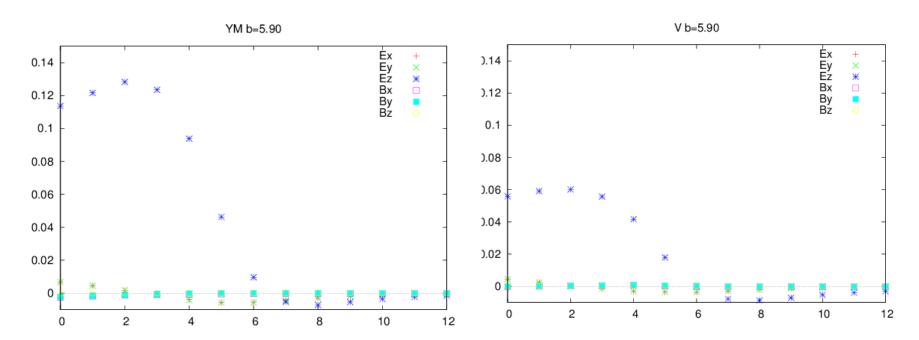
Chromo-flux β =5.8



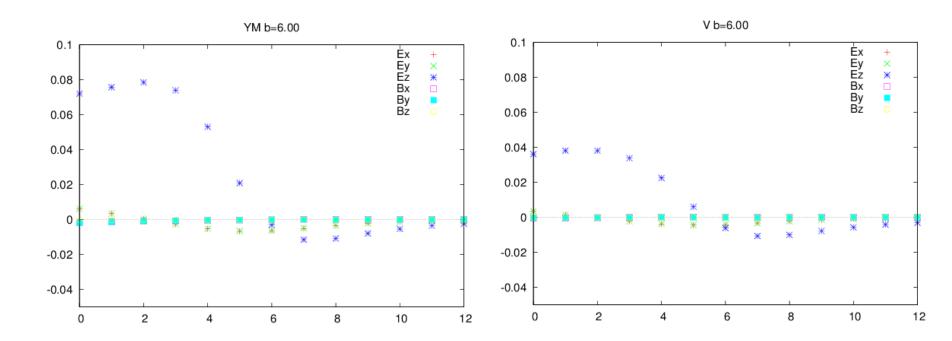


V field

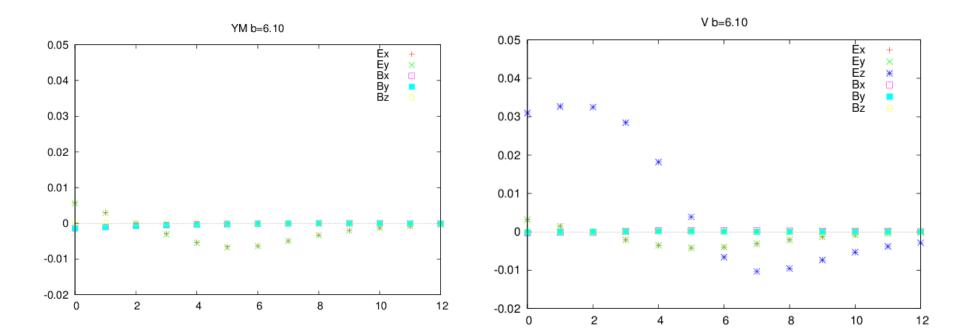
Chromo-flux β =5.9



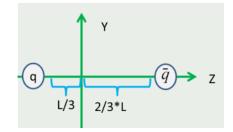
Chromo-flux β =6.0



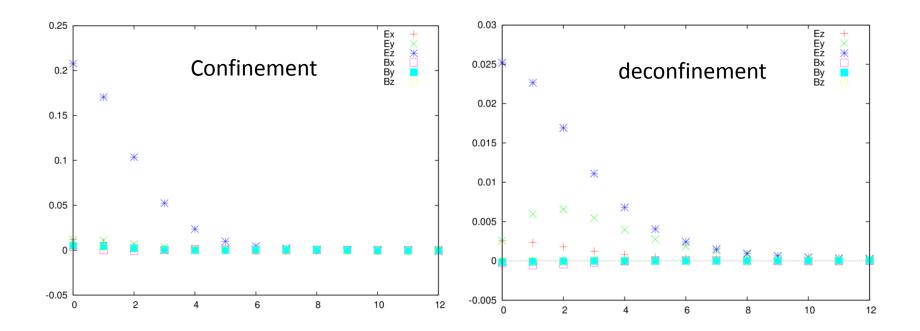
Chromo-flux β =6.1



Chromo-electric flux in deconfinement phase



• $E_y \neq 0$ for deconfinemnte phase i.e., No sharp chromo-flux tube → Disappearance of dual superconductivity.



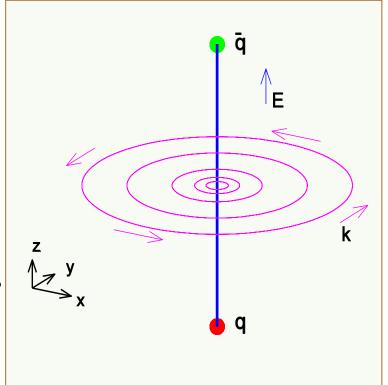
Sep. 8th 2014.

Chromo-magnetic current (monopole current)

 To know relation to the monopole condensation, we further need the measurement of magnetic current in Maxell equation for V field.

$$k = \delta^* F[V] = *dF[V]$$

 $\mathbf{k} \neq 0 \Rightarrow$ signal of monopole condensation. Since field strengthe is given by $F[\mathbf{V}] = d\mathbf{V}$, and $\mathbf{k} = *dF[\mathbf{V}] = *ddF[\mathbf{V}] = 0$ (Bianchi identity)



Chromo-magnetic current k_x :: (conbied plot)

