The muon g-2: DSE status on light-by-light

Gernot Eichmann
University of Giessen, Germany

Quark Confinement and the Hadron Spectrum XI
St. Petersburg, Russia
Sep 9, 2014

Muon g-2

- Magnetic moment of a fermion due to its spin:

$$
\vec{\mu}=g \frac{e}{2 m} \vec{S} \quad \text { Pointlike fermion: } g=2
$$

Fermion with structure has anomalous magnetic moment: $\quad a=\frac{g-2}{2}$

- Electron \& muon anomalous magnetic moments among the most precisely measured \& theoretically calculated quantities:

- measured with precision 10^{-12} for electron and 10^{-10} for muon

Muon g-2

- QED corrections: overwhelming part, calculated up to $\mathrm{O}\left(\alpha^{5}\right)$:

- Electroweak and QCD corrections very small: 10^{-12} for electron, 10^{-8} for muon
- Electroweak corrections up to 2-loop:

- QCD:

Hadronic vacuum polarization

Hadronic light-by-light scattering
$a_{\mu}\left[10^{-10}\right]$
Jegerlehner, Nyffeler,

Exp:	11659208.9	(6.3)
QED:	11658471.9	(0.0)
EW:	15.3	(0.2)

Hadronic:

• VP (LO+HO)	685.1	(4.3)
•LBL	10.5	(2.6)
SM:	11659182.8	(4.9)
Diff:	26.1	(8.0)

- Total SM prediction deviates from measured a_{μ} by $\sim 3 \sigma$: new physics?
- Theory uncertainty dominated by QCD! Is QCD contribution under control?

Light-by-light scattering

Light-by-light scattering

 $+$

$+$

π, K loop

$$
\begin{equation*}
-2 \tag{-10}
\end{equation*}
$$

Model results:
ENJL \& MD models
Bijnens 1995
Hakayawa 1995,
Knecht 2002,
Melnikov 2004,
Prades 2009,
Jegerlehner 2009,
Pauk 2014

Quark loop

- Constituent quark loop known analytically: 6 ... 8

- ENJL: VM poles by summing up quark bubbles Bijnens 1995
$\gamma^{\mu}-\gamma_{T}^{\mu} \frac{Q^{2}}{Q^{2}+m_{V}^{2}}$
Large reduction: 2
How to improve on this?

Quark loop

- Quark mass is not a constant: dressed quark propagator has nonperturbatively enhanced quark mass function (DSE, Lattice, ...)

$$
S_{0}(p)=\frac{-i \not p+m}{p^{2}+m^{2}} \rightarrow S(p)=\frac{1}{A\left(p^{2}\right)} \frac{-i \not p+M\left(p^{2}\right)}{p^{2}+M^{2}\left(p^{2}\right)}
$$

- Quark-photon vertex is not bare!

$$
\begin{array}{ll}
\Gamma^{\mu}(k, Q)=\left[i \gamma^{\mu} \Sigma_{A}+2 k^{\mu}\left(i k \Delta_{A}+\Delta_{B}\right)\right]
\end{array}+\left[i \sum_{j=1}^{8} f_{j} \tau_{j}^{\mu}(k, Q)\right]
$$

Quark loop

- Quark mass is not a constant:
dressed quark propagator has nonperturbatively enhanced quark mass function (DSE, Lattice, ...)

$$
S_{0}(p)=\frac{-i \not p+m}{p^{2}+m^{2}} \rightarrow S(p)=\frac{1}{A\left(p^{2}\right)} \frac{-i \not p+M\left(p^{2}\right)}{p^{2}+M^{2}\left(p^{2}\right)}
$$

- Quark-photon vertex is not bare!

$$
\Gamma^{\mu}(k, Q)=\left[i \gamma^{\mu} \Sigma_{A}+2 k^{\mu}\left(i k_{k} \Delta_{A}+\Delta_{B}\right)\right]+\left[i \sum_{j=1}^{8} f_{j} \tau_{j}^{\mu}(k, Q)\right]
$$

Ball-Chiu vertex, depends only on quark propagator Ball, Chiu, PRD 22 (1980)
necessary for electromagnetic gauge invariance!

$$
Q^{\mu} \Gamma^{\mu}(k, Q)=S^{-1}\left(k+\begin{array}{c}
Q \\
2
\end{array}\right)-S^{-1}\left(k-\begin{array}{c}
Q \\
2
\end{array}\right)
$$

$A\left(p^{2}\right)$	$M\left(p^{2}\right)$	γ^{μ}	Γ_{T}^{μ}	$a_{\mu}\left[10^{-10}\right]$
1	0.2 GeV	1	0	10
1	$M\left(p^{2}\right)$	1	0	10
$A\left(p^{2}\right)$	$M\left(p^{2}\right)$	1	0	5
$A\left(p^{2}\right)$	$M\left(p^{2}\right)$	Σ_{A}	0	10
$A\left(p^{2}\right)$	$M\left(p^{2}\right)$	Σ_{A}	$k=0$	4
$A\left(p^{2}\right)$	$M\left(p^{2}\right)$	Σ_{A}	Full	10

- DSE result for quark loop (including strange \& charm):

$$
a_{\mu}=10.7 \times 10^{-10}
$$

- full Ball-Chiu vertex problematic

Quark-photon vertex

- Quark-photon vertex: (vector current: $J^{\mu}=\bar{\psi} \gamma^{\mu} \psi$)
$\langle 0| \mathrm{T} J^{\mu}(x) \psi\left(x_{1}\right) \bar{\psi}\left(x_{2}\right)|0\rangle$

Quark-photon vertex has ρ-meson poles: 'vector-meson dominance'

- Hadronic vacuum polarization = vector current correlator
$\langle 0| \mathbf{T} J^{\mu}(x) J^{\nu}(y)|0\rangle$

- BSE for quark four-point function \& quark photon vertex:

determine vertex dynamically from a given $q \bar{q}$ kernel, e.g. rainbow-ladder (= gluon exchange)

Maris \& Tandy, PRC 61 (2000)

Context matters

Hadron physics from QCD's Dyson-Schwinger \& bound-state equations

- Mesons from Bethe-Salpeter equation: meson spectra, form factors, PDFs, GPDs, ... Chang et al., Commun. Theor. Phys. 58 (2012), ...
- Baryons from covariant Faddeev equation: octet \& decuplet masses, nucleon \& Δ form factors GE, Alkofer, Krassnigg, Nicmorus, PRL 104 (2010), GE, PRD 84 (2011), Sanchis-Alepuz, Fischer, 1408.5577, ...

Compton scattering, pion electroproduction, ... GE, Fischer, PRD 85 (2012), PRD 87 (2013)

- Tetraquarks:
see talk by Walter Heupel
Friday,
- Beyond rainbow-ladder:
see talk by Richard Williams

Quark-photon vertex

Structure of quark-photon vertex is reflected in hadron form factors GE, PRD 84(2011)
Experimentally (sketch):

Calculated:
(Sketch)

- Deriving hadronic currents: Kvinikhidze, Blankleider, PRC 60 (1999)
- Ball-Chiu part is dominant (em. gauge invariance): charge, magnetic moments
- Transverse part changes slope and charge radii. No pion cloud in RL \Rightarrow timelike ρ-meson poles

Quark-photon vertex

Structure of quark-photon vertex is reflected in hadron form factors GE, PRD 84(2011)
Experimentally (sketch):

Calculated:
(Sketch)

- Deriving hadronic currents: Kvinikhidze, Blankleider, PRC 60 (1999)
- Ball-Chiu part is dominant (em. gauge invariance): charge, magnetic moments
- Transverse part changes slope and charge radii. No pion cloud in RL \Rightarrow timelike ρ-meson poles

Pion form factor

Spacelike and timelike region:
A. Krassnigg (Schladming 2010) extension of Maris \& Tandy, Nucl. Phys. Proc. Suppl. 161 (2006)

Include pion cloud:
Kubrak et al., in preparation

Structure of the $\gamma Y Y \gamma$ amplitude

3 independent momenta:

$$
\begin{aligned}
p & =p_{2}+p_{3} \\
q & =p_{3}+p_{1} \\
k & =p_{1}+p_{2}
\end{aligned}
$$

6 Lorentz invariants:

$$
p^{2}, \quad q^{2}, \quad k^{2}, \quad p \cdot q, \quad p \cdot k, \quad q \cdot k
$$

Bose symmetry:

$$
\begin{aligned}
& \Gamma^{\mu \nu \rho \sigma}(p, q, k)=\sum_{i=1}^{136} f_{i}(\ldots) \tau_{i}^{\mu \nu \rho \sigma}(p, q, k) \\
& \stackrel{!}{=} \text { symmetric } \\
& \text { S4 multiplets }
\end{aligned}
$$

Structure of the $\gamma Y Y \gamma$ amplitude

3 independent momenta:

$$
\begin{aligned}
p & =p_{2}+p_{3} \\
q & =p_{3}+p_{1} \\
k & =p_{1}+p_{2}
\end{aligned}
$$

6 Lorentz invariants:

$$
p^{2}, \quad q^{2}, \quad k^{2}, \quad p \cdot q, \quad p \cdot k, \quad q \cdot k
$$

Bose symmetry:

$$
\begin{aligned}
\Gamma^{\mu \nu \rho \sigma}(p, q, k) & =\sum_{i=1}^{136} f_{i}(\ldots) \tau_{i}^{\mu \nu \rho \sigma}(p, q, k) \\
& \stackrel{!}{=} \text { symmetric }
\end{aligned}
$$

- Arrange the 24 permutations of ψ_{1234} into multiplets:

Singlet	Triplets	Doublets	Antitriplets	Antisinglet
\mathcal{S}	$\mathcal{T}_{i}^{+}=\left[\begin{array}{l}\bullet \\ \bullet \\ \bullet\end{array}\right]$	$\mathcal{D}_{j}=\left[\begin{array}{l}\bullet \\ \bullet\end{array}\right]$	$\mathcal{T}_{i}^{-}=\left[\begin{array}{l}\bullet \\ \bullet \\ \bullet\end{array}\right]$	\mathcal{A}

Structure of the $\gamma Y Y \gamma$ amplitude

3 independent momenta:

$$
\begin{aligned}
p & =p_{2}+p_{3} \\
q & =p_{3}+p_{1} \\
k & =p_{1}+p_{2}
\end{aligned}
$$

6 Lorentz invariants:

$$
p^{2}, \quad q^{2}, \quad k^{2}, \quad p \cdot q, \quad p \cdot k, \quad q \cdot k
$$

Bose symmetry:

$$
\begin{aligned}
\Gamma^{\mu \nu \rho \sigma}(p, q, k) & =\sum_{i=1}^{136} f_{i}(\ldots) \tau_{i}^{\mu \nu \rho \sigma}(p, q, k) \\
& \stackrel{!}{=} \text { symmetric }
\end{aligned}
$$

- Arrange the 24 permutations of ψ_{1234} into multiplets:

- 6 Lorentz invariants form singlet \mathcal{S}_{0}, doublet \mathcal{D}, triplet \mathcal{T}^{+}

Phase space

- Singlet: symmetric variable, carries overall scale:
$\mathcal{S}_{0}=\frac{p^{2}+q^{2}+k^{2}}{4}=\frac{p_{1}^{2}+p_{2}^{2}+p_{3}^{2}+p_{4}^{2}}{4}$
- Doublet: $\mathcal{D}=\left[\begin{array}{l}a \\ s\end{array}\right]$

Mandelstam triangle,
2-photon poles (pion, scalar, axialvector, ...)

- Triplet: $\mathcal{T}=\left[\begin{array}{l}u \\ v \\ w\end{array}\right]$
tetrahedron bounded by $p_{i}^{2}=0$, vector-meson poles

Phase space

- fixed doublet variables \Rightarrow complicated geometric object inside tetrahedron:

$r=0$

$r=1$
$\varphi=0$

$r=0.9$
$\varphi=\pi$

relevant for g-2

Tensor basis I

- construct all possible multiplets from generic seed elements:
138 elements, but only 136 independent
- removing the "wrong ones" leads to kinematic singularities!
- Dressing functions form multiplets too \Rightarrow expand them into singlets:

$$
\left[\begin{array}{l}
f_{1}\left(\mathcal{S}_{0}, \mathcal{D}_{0}, \mathcal{T}_{0}\right) \\
f_{2}\left(\mathcal{S}_{0}, \mathcal{D}_{0}, \mathcal{T}_{0}\right)
\end{array}\right]=c_{1}\left(\mathcal{S}_{0}\right)[\bullet]_{1}+c_{2}\left(\mathcal{S}_{0}\right)[\bullet]_{2}+\ldots
$$

Singlets depend (almost) only on \mathcal{S}_{0}, dependence on ∇, Δ absorbed in basis

This works extremely well!

n	Seed	$\#$	Multiplet type
0	$\delta^{\mu \nu} \delta^{\rho \sigma}$	3	$\mathcal{S}, \mathcal{D}_{1}$
2	$\delta^{\mu \nu} k^{\rho} k^{\sigma}$	6	$\mathcal{S}, \mathcal{D}_{1}, \mathcal{T}_{1}^{+}$
	$\delta^{\mu \nu} p^{\rho} p^{\sigma}$	12	$\mathcal{S}, \mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{T}_{1}^{ \pm}, \mathcal{A}$
	$\delta^{\mu \nu} p^{\rho} q^{\sigma}$	12	$\mathcal{S}, \mathcal{D}_{1}, \mathcal{T}_{1}^{+}, \mathcal{T}_{2}^{ \pm}$
	$\delta^{\mu \nu} p^{\rho} k^{\sigma}$	24	$\mathcal{S}, \mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{T}_{1}^{ \pm}, \mathcal{T}_{2}^{ \pm}, \mathcal{T}_{3}^{ \pm}, \mathcal{A}$
4	$p^{\mu} p^{\nu} p^{\rho} p^{\sigma}$	3	$\mathcal{S}, \mathcal{D}_{1}$
	$p^{\mu} p^{\nu} q^{\rho} q^{\sigma}$	6	$\mathcal{S}, \mathcal{D}_{1}, \mathcal{T}_{1}^{-}$
	$p^{\mu} p^{\nu} k^{\rho} k^{\sigma}$	10	$\mathcal{S},\left(\mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{T}_{1}^{ \pm}, \mathcal{A}\right.$
	$p^{\mu} q^{\nu} k^{\rho} k^{\sigma}$	12	$\mathcal{S}, \mathcal{D}_{1}, \mathcal{T}_{1}^{+}, \mathcal{T}_{2}^{ \pm}$
	$p^{\mu} p^{\nu} p^{\rho} k^{\sigma}$	24	$\mathcal{S}, \mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{T}_{1}^{ \pm}, \mathcal{T}_{2}^{ \pm}, \mathcal{T}_{3}^{ \pm}, \mathcal{A}$
	$p^{\mu} p^{\nu} q^{\rho} k^{\sigma}$	24	$\mathcal{S}, \mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{T}_{1}^{ \pm}, \mathcal{T}_{2}^{ \pm}, \mathcal{T}_{3}^{ \pm}, \mathcal{A}$

Tensor basis I

- construct all possible multiplets from generic seed elements:
138 elements, but only 136 independent
- removing the "wrong ones" leads to kinematic singularities!
- Dressing functions form multiplets too \Rightarrow expand them into singlets:

$$
\left[\begin{array}{l}
f_{1}\left(\mathcal{S}_{0}, \mathcal{D}_{0}, \mathcal{T}_{0}\right) \\
f_{2}\left(\mathcal{S}_{0}, \mathcal{D}_{0}, \mathcal{T}_{0}\right)
\end{array}\right]=c_{1}\left(\mathcal{S}_{0}\right)[\bullet]_{1}+c_{2}\left(\mathcal{S}_{0}\right)\left[\begin{array}{l}
\bullet \\
\bullet
\end{array}\right]_{2}+\ldots
$$

Singlets depend (almost) only on \mathcal{S}_{0}, dependence on ∇, Δ absorbed in basis

This works extremely well!
\rightarrow YYYY amplitude calculated in full kinematics!

- reproduces previous DSE results for g-2, but complete Ball-Chiu vertex still erratic...?

Tensor basis II

To make gauge invariance explicit, split YYyץ amplitude into
$\Gamma=\Gamma_{\text {Gauge }}+\Gamma_{\text {Transverse }}$

- Transverse part: 41 tensors, at least quartic in photon momenta, dominant tensors \sim pion + scalar exchange

- 'Gauge part': 95 tensors, must vanish if pYYץ amplitude gauge invariant!
... but is it?

Results: quark loop with $m_{q}=$ const

Photon four-point function: S_{o} dependence for fixed doublet \& triplet variables

Results: quark loop from DSE

Photon four-point function: S_{0} dependence for fixed doublet \& triplet variables

goal:

- find transverse basis w/o kin. singularities
- isolate dominant tensor structures

Gauge invariance

Full $\mathrm{Y} Y Y \gamma$ amplitude at quark level, derived from gauge invariance:
GE, Fischer, PRD 85 (2012), Goecke, Fischer, Williams, PRD 87 (2013)

Quark loop + all 2-photon poles from T-matrix (pion, scalar, axialvector, ...)

- no double-counting!
- gauge artifacts in quark loop must be cancelled by offshell structure of T-matrix!

Gauge invariance

Full $\mathrm{Y} Y Y \gamma$ amplitude at quark level, derived from gauge invariance:
GE, Fischer, PRD 85 (2012), Goecke, Fischer, Williams, PRD 87 (2013)

Quark loop + all 2-photon poles from T-matrix (pion, scalar, axialvector, ...)

- no double-counting!
- gauge artifacts in quark loop must be cancelled by offshell structure of T-matrix!
- Quark Compton vertex already determined from nucleon Compton scattering:

GE, Fischer, PRD 87 (2013),
PoS Conf. X (2012)

Summary

Muon g-2: theory uncertainty dominated by QCD

LBL: need to get QCD contribution under control!

- yypy amplitude = quark loop + T-matrix, no double counting, gauge invariant!
- need to understand structure of $\mathrm{p} \gamma \mathrm{Y} \mathrm{p}$ amplitude
- dressed quarks \& vertices have impact, QCD prediction for LBL may change!

Exp:	11659208.9	(6.3)
QED:	11658471.9	(0.0)
EW:	15.3	(0.2)

Hadronic:

- VP (LO+HO) 685.1
- LBL 10.5 (2.6) ?
SM
11659182.8 (4.9)
Diff:
26.1 (8.0)

Electron vs. muon g-2

Exp:	11596521.81	
QED:	$\begin{array}{r} 11596521.71 \\ .81 \end{array}$	$\begin{aligned} & (0.09) \\ & (0.08) \end{aligned}$
EW:	0.00	
Hadronic:	c: 0.02	
SM:	11596521.73 .83	$\begin{aligned} & (0.09) \\ & (0.08) \end{aligned}$

$$
a_{\mu}\left[10^{-10}\right]
$$

Exp:	11659208.9	(6.3)
QED:	11658471.9	(0.0)
EW:	15.3	(0.2)
Hadronic:		
•VP (LO+HO)	685.1	(4.3)
•LBL	10.5	(2.6)
SM:	11659182.8	(4.9)
Diff:	26.1	(8.0)

Bijnens, Prades, Mod. Phys. Lett. A22 (2007) Jegerlehner, Nyffeler, Phys. Rept. 477 (2009) Hagiwara et al., J. Phys. G 38 (2011)

