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Muon g-2

Schwinger 1948

Electron & muon anomalous magnetic moments 
among the most precisely measured & theoretically calculated quantities:
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A. Fermion-photon vertex

We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity

Qµ Γµ(k,Q) = S−1(k+) − S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) + B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k,Q) = iγµ ΣA + 2kµ(i/k∆A + ∆B), (72)

where the functions

ΣA(k,Q) :=
A(k2+) + A(k2−)

2
,

∆A(k,Q) :=
A(k2+) −A(k2−)

k2+ − k2−
,

∆B(k,Q) :=
B(k2+) −B(k2−)

k2+ − k2−

(73)

are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k,Q) = Γµ
BC(k,Q) + Γµ

T(k,Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as

(+) γµ

(−) [γµ, /k]

(+) [γµ, /Q]

(+) [γµ, /k, /Q]

(+) kµ

(+) kµ/k

(−) kµ /Q

(+) kµ[/k, /Q]

(−) Qµ

(−) Qµ/k

(+) Qµ /Q

(−) Qµ[/k, /Q].

(75)

To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A,B,C] := [A,B]C + [B,C]A + [C,A]B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k ·Q, the full vertex satisfies

Γµ(k,Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k ·Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ

µ
T + g2 k ·Q i

2 [γµ
T , /k]

+ g3
i
2 [γµ, /Q] + g4

1
6 [γµ, /k, /Q]

+ kµT
(
ig5 + g6 /k + g7 k ·Q /Q + g8

i
2 [/k, /Q]

)
,

(79)

where

γµ
T = Tµν

Q γν , kµT = Tµν
Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k ·Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

−iΓµ
T = f1 Q

2 γµ
T + f2 k ·QQ2 i

2 [γµ
T , /k]

+ f3
i
2 [γµ, /Q] + f4

1
6 [γµ, /k, /Q]

+ if5 Q
2 kµT + f6 Q

2 kµT /k

+ f7 k ·Q (k ·Qγµ − kµ /Q)

+ f8
i
2 [k ·Qγµ − kµ /Q, /k].

(82)

It satisfies the requirements of Eq. (81) since

f1 Q
2 = g1 + (k ·Q)2g7 ,

f2 Q
2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q
2 = g5 ,

f6 Q
2 = g6 ,

−f7 = g7 ,

f8 = g8 .

(83)
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Apart from global factors k ·Q, the four tensor structures
corresponding to f3,4,7,8 are linear and the remaining four
are quadratic in the photon momentum.

The question remains whether Eq. (82) can be ob-
tained from a systematic construction principle. To this
end we define the quantities

tµνab := a · b δµν − bµaν ,

εµνab := γ5 ε
µναβaαbβ ,

(84)

with aµ, bµ ∈ {kµ, Qµ}. They are both regular in the
limits a → 0 or b → 0. tµνab is transverse to aµ and bν ,

aµ tµνab = 0 , tµνab bν = 0 , (85)

whereas εµνab is transverse to a and b in both Lorentz in-
dices. The usual transverse projectors can thus be writ-

ten as Tµν
Q = tµνQQ/Q

2 and Tµν
Q′ = tµνQ′Q′/Q′2.

With the help of these definitions one can generate the
basis (82) as follows. Take the four tensor structures that
are independent of the photon momentum:

γν , [γν , /k] , kν , kν/k . (86)

Contract them with tµνQQ, tµνQk and εµνQk to generate eight
transverse basis elements that are kinematically indepen-
dent and linear or quadratic in the four-momentum Qµ:

tµνQQ





γν

[γν , /k]

kν

kν/k





= Q2





γµ
T

[γµ
T , /k]

kµT
kµT /k





,

tµνQk

{
γν

[γν , /k]

}
=

{
k ·Qγµ − kµ /Q

[k ·Qγµ − kµ /Q, /k]

}
,

εµνQk

{
γν

[γν , /k]

}
=

{
1
6 [γµ, /k, /Q]

tµνQk [γν , /k] − k2 [γµ, /Q]

}
.

(87)

Instead of using tµνQk and εµνQk, one could contract the four

elements in Eq. (86) also with tµνQγ = /Q δµν − γµQν and
use commutators where necessary. However, this does
not generate any new elements:

1
2

[
tµνQγ , γ

ν
]

= − [γµ, /Q] ,

1
2

[
tµνQγ , γ

ν , /k
]

= [γµ, /k, /Q] ,

tµνQγ k
ν = −4 tµνQk γ

ν ,
[
tµνQγ k

ν , /k
]

= −tµνQk [γν , /k] .

(88)

Finally, attach appropriate factors k ·Q to ensure charge-
conjugation invariance of the dressing functions.

We will henceforth use Eq. (82) as our reference basis
for the transverse part of the fermion-photon vertex. We
write it in a compact way:

τµ1 = tµνQQ γν ,

τµ2 = tµνQQ k ·Q i
2 [γν , /k] ,

τµ3 = i
2 [γµ, /Q] ,

τµ4 = 1
6 [γµ, /k, /Q] ,

τµ5 = tµνQQ ikν ,

τµ6 = tµνQQ kν/k ,

τµ7 = tµνQk k ·Qγν ,

τµ8 = tµνQk
i
2 [γν , /k] .

(89)

The full vertex is thus given by Eq. (74), with the trans-
verse part

− iΓµ
T (k,Q) =

8∑

i=1

fi(k
2, k ·Q,Q2) τµi (k,Q) . (90)

The dimensionful dressing functions fi(k
2, k ·Q, Q2) are

again even in k ·Q. They are kinematically independent
and can remain constant at vanishing photon momen-
tum. The basis (89) is essentially identical to Eq. (A.8)
in Ref. [53] and Eq. (A2) in Ref. [55]. The relations be-
tween our τµi and the transverse tensor structures Tµ

i in
those papers are

τ1 = −T3 ,

τ2 = − 1
2 k ·QT4 ,

τ3 = T5 ,

τ4 = T8 ,

τ5 = T1 ,

τ6 = 1
2 T2 ,

τ7 = − 1
2 k ·QT6 ,

τ8 = 1
2 T7 .

(91)

The dressing functions associated with τ3 and τ4 con-
tribute to the onshell anomalous magnetic moment,
cf. Ref. [48] and Eq. (96) below, and τ7 constitutes the
transverse part of the Curtis-Pennington vertex [56].

Finally, to obtain a connection with the nucleon’s on-
shell current, we investigate the limit where the incoming
and outgoing fermion lines are taken on the mass shell,
i.e., k2± = −m2 or

k2 = −m2 −Q2/4 , k ·Q = 0 . (92)

The onshell vertex

Jµ(k,Q) = Λf
+ Γµ(k,Q) Λi

+

∣∣∣
Eq. (92)

(93)

is sandwiched between Dirac spinors that are eigenvec-
tors of the positive-energy projectors

Λf
+ = Λ+(k+),

Λi
+ = Λ+(k−),

Λ+(p) =
1+ /̂p

2
. (94)

By virtue of the projectors, only two of the basis elements
in Eq. (89) remain independent, and the vertex can be
written in the standard form

Jµ(k,Q) = iΛf
+

(
F1 γ

µ +
iF2

4m
[γµ, /Q]

)
Λi
+ , (95)

where F1, F2 are dimensionless functions of Q2 only. Via
Eq. (74) they consist of Ball-Chiu parts and transverse
components which are related to the functions ΣA, ∆A,
∆B and fj in the onshell limit:

F1(Q
2) = A(−m2) + 2m

[
B′(−m2) −mA′(−m2)

]

+ Q2

[
f1 −m (f5 + mf6) −

f4 −mf8
2

] ∣∣∣∣∣
Eq. (92)

,

F2(Q
2)

2m
= f3 −mf4 −

[
B′(−m2) −mA′(−m2)

]

+
Q2

2

[
f5 + mf6 −

f8
2

] ∣∣∣∣∣
Eq. (92)

.

(96)
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Γµ(k,Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k ·Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ

µ
T + g2 k ·Q i

2 [γµ
T , /k]

+ g3
i
2 [γµ, /Q] + g4
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where
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We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
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g1 + (k ·Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
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Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.
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truly kinematically independent is given by [53–55]
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We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity

Qµ Γµ(k,Q) = S−1(k+) − S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) + B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k,Q) = iγµ ΣA + 2kµ(i/k∆A + ∆B), (72)

where the functions

ΣA(k,Q) :=
A(k2+) + A(k2−)

2
,

∆A(k,Q) :=
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k2+ − k2−
,
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are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
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Γµ(k,Q) = Γµ
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T(k,Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.
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A. Fermion-photon vertex

We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity

Qµ Γµ(k,Q) = S−1(k+) − S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) + B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k,Q) = iγµ ΣA + 2kµ(i/k∆A + ∆B), (72)

where the functions

ΣA(k,Q) :=
A(k2+) + A(k2−)

2
,

∆A(k,Q) :=
A(k2+) −A(k2−)

k2+ − k2−
,

∆B(k,Q) :=
B(k2+) −B(k2−)

k2+ − k2−

(73)

are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k,Q) = Γµ
BC(k,Q) + Γµ

T(k,Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as

(+) γµ

(−) [γµ, /k]

(+) [γµ, /Q]

(+) [γµ, /k, /Q]

(+) kµ

(+) kµ/k

(−) kµ /Q

(+) kµ[/k, /Q]

(−) Qµ

(−) Qµ/k

(+) Qµ /Q

(−) Qµ[/k, /Q].

(75)

To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A,B,C] := [A,B]C + [B,C]A + [C,A]B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k ·Q, the full vertex satisfies

Γµ(k,Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k ·Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ

µ
T + g2 k ·Q i

2 [γµ
T , /k]

+ g3
i
2 [γµ, /Q] + g4

1
6 [γµ, /k, /Q]

+ kµT
(
ig5 + g6 /k + g7 k ·Q /Q + g8
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)
,

(79)

where

γµ
T = Tµν

Q γν , kµT = Tµν
Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k ·Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]
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+ f8
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(82)

It satisfies the requirements of Eq. (81) since

f1 Q
2 = g1 + (k ·Q)2g7 ,

f2 Q
2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q
2 = g5 ,

f6 Q
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are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.
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and a transverse piece that is not constrained by the
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photon momentum. Since the construction of the two-
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cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination
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for three γ matrices. If the odd basis tensors are multi-
plied with a factor k ·Q, the full vertex satisfies
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functions gi(k
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dressing functions are kinematically dependent: the four
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Q which has
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Apart from global factors k ·Q, the four tensor structures
corresponding to f3,4,7,8 are linear and the remaining four
are quadratic in the photon momentum.

The question remains whether Eq. (82) can be ob-
tained from a systematic construction principle. To this
end we define the quantities

tµνab := a · b δµν − bµaν ,

εµνab := γ5 ε
µναβaαbβ ,

(84)

with aµ, bµ ∈ {kµ, Qµ}. They are both regular in the
limits a → 0 or b → 0. tµνab is transverse to aµ and bν ,

aµ tµνab = 0 , tµνab bν = 0 , (85)

whereas εµνab is transverse to a and b in both Lorentz in-
dices. The usual transverse projectors can thus be writ-

ten as Tµν
Q = tµνQQ/Q

2 and Tµν
Q′ = tµνQ′Q′/Q′2.

With the help of these definitions one can generate the
basis (82) as follows. Take the four tensor structures that
are independent of the photon momentum:

γν , [γν , /k] , kν , kν/k . (86)

Contract them with tµνQQ, tµνQk and εµνQk to generate eight
transverse basis elements that are kinematically indepen-
dent and linear or quadratic in the four-momentum Qµ:

tµνQQ





γν

[γν , /k]

kν

kν/k





= Q2





γµ
T

[γµ
T , /k]

kµT
kµT /k





,

tµνQk

{
γν

[γν , /k]

}
=

{
k ·Qγµ − kµ /Q

[k ·Qγµ − kµ /Q, /k]

}
,

εµνQk

{
γν

[γν , /k]

}
=

{
1
6 [γµ, /k, /Q]

tµνQk [γν , /k] − k2 [γµ, /Q]

}
.

(87)

Instead of using tµνQk and εµνQk, one could contract the four

elements in Eq. (86) also with tµνQγ = /Q δµν − γµQν and
use commutators where necessary. However, this does
not generate any new elements:

1
2

[
tµνQγ , γ

ν
]

= − [γµ, /Q] ,

1
2

[
tµνQγ , γ

ν , /k
]

= [γµ, /k, /Q] ,

tµνQγ k
ν = −4 tµνQk γ

ν ,
[
tµνQγ k

ν , /k
]

= −tµνQk [γν , /k] .

(88)

Finally, attach appropriate factors k ·Q to ensure charge-
conjugation invariance of the dressing functions.

We will henceforth use Eq. (82) as our reference basis
for the transverse part of the fermion-photon vertex. We
write it in a compact way:

τµ1 = tµνQQ γν ,

τµ2 = tµνQQ k ·Q i
2 [γν , /k] ,

τµ3 = i
2 [γµ, /Q] ,

τµ4 = 1
6 [γµ, /k, /Q] ,

τµ5 = tµνQQ ikν ,

τµ6 = tµνQQ kν/k ,

τµ7 = tµνQk k ·Qγν ,

τµ8 = tµνQk
i
2 [γν , /k] .

(89)

The full vertex is thus given by Eq. (74), with the trans-
verse part

− iΓµ
T (k,Q) =

8∑

i=1

fi(k
2, k ·Q,Q2) τµi (k,Q) . (90)

The dimensionful dressing functions fi(k
2, k ·Q, Q2) are

again even in k ·Q. They are kinematically independent
and can remain constant at vanishing photon momen-
tum. The basis (89) is essentially identical to Eq. (A.8)
in Ref. [53] and Eq. (A2) in Ref. [55]. The relations be-
tween our τµi and the transverse tensor structures Tµ

i in
those papers are

τ1 = −T3 ,

τ2 = − 1
2 k ·QT4 ,

τ3 = T5 ,

τ4 = T8 ,

τ5 = T1 ,

τ6 = 1
2 T2 ,

τ7 = − 1
2 k ·QT6 ,

τ8 = 1
2 T7 .

(91)

The dressing functions associated with τ3 and τ4 con-
tribute to the onshell anomalous magnetic moment,
cf. Ref. [48] and Eq. (96) below, and τ7 constitutes the
transverse part of the Curtis-Pennington vertex [56].

Finally, to obtain a connection with the nucleon’s on-
shell current, we investigate the limit where the incoming
and outgoing fermion lines are taken on the mass shell,
i.e., k2± = −m2 or

k2 = −m2 −Q2/4 , k ·Q = 0 . (92)

The onshell vertex

Jµ(k,Q) = Λf
+ Γµ(k,Q) Λi

+

∣∣∣
Eq. (92)

(93)

is sandwiched between Dirac spinors that are eigenvec-
tors of the positive-energy projectors

Λf
+ = Λ+(k+),

Λi
+ = Λ+(k−),

Λ+(p) =
1+ /̂p

2
. (94)

By virtue of the projectors, only two of the basis elements
in Eq. (89) remain independent, and the vertex can be
written in the standard form

Jµ(k,Q) = iΛf
+

(
F1 γ

µ +
iF2

4m
[γµ, /Q]

)
Λi
+ , (95)

where F1, F2 are dimensionless functions of Q2 only. Via
Eq. (74) they consist of Ball-Chiu parts and transverse
components which are related to the functions ΣA, ∆A,
∆B and fj in the onshell limit:

F1(Q
2) = A(−m2) + 2m

[
B′(−m2) −mA′(−m2)

]

+ Q2

[
f1 −m (f5 + mf6) −

f4 −mf8
2

] ∣∣∣∣∣
Eq. (92)

,

F2(Q
2)

2m
= f3 −mf4 −

[
B′(−m2) −mA′(−m2)

]

+
Q2

2

[
f5 + mf6 −

f8
2

] ∣∣∣∣∣
Eq. (92)

.

(96)
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A. Fermion-photon vertex

We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity

Qµ Γµ(k,Q) = S−1(k+) − S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) + B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k,Q) = iγµ ΣA + 2kµ(i/k∆A + ∆B), (72)

where the functions

ΣA(k,Q) :=
A(k2+) + A(k2−)

2
,

∆A(k,Q) :=
A(k2+) −A(k2−)

k2+ − k2−
,

∆B(k,Q) :=
B(k2+) −B(k2−)

k2+ − k2−

(73)

are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k,Q) = Γµ
BC(k,Q) + Γµ

T(k,Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as

(+) γµ

(−) [γµ, /k]

(+) [γµ, /Q]

(+) [γµ, /k, /Q]

(+) kµ

(+) kµ/k

(−) kµ /Q

(+) kµ[/k, /Q]

(−) Qµ

(−) Qµ/k

(+) Qµ /Q

(−) Qµ[/k, /Q].

(75)

To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A,B,C] := [A,B]C + [B,C]A + [C,A]B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k ·Q, the full vertex satisfies

Γµ(k,Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k ·Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ

µ
T + g2 k ·Q i

2 [γµ
T , /k]

+ g3
i
2 [γµ, /Q] + g4

1
6 [γµ, /k, /Q]

+ kµT
(
ig5 + g6 /k + g7 k ·Q /Q + g8

i
2 [/k, /Q]

)
,

(79)

where

γµ
T = Tµν

Q γν , kµT = Tµν
Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k ·Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

−iΓµ
T = f1 Q

2 γµ
T + f2 k ·QQ2 i

2 [γµ
T , /k]

+ f3
i
2 [γµ, /Q] + f4

1
6 [γµ, /k, /Q]

+ if5 Q
2 kµT + f6 Q

2 kµT /k

+ f7 k ·Q (k ·Qγµ − kµ /Q)

+ f8
i
2 [k ·Qγµ − kµ /Q, /k].

(82)

It satisfies the requirements of Eq. (81) since

f1 Q
2 = g1 + (k ·Q)2g7 ,

f2 Q
2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q
2 = g5 ,

f6 Q
2 = g6 ,

−f7 = g7 ,

f8 = g8 .

(83)
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must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
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measured        by ~3σ: new physics? 
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Electroweak and QCD corrections very small:
           for electron,           for muon

µa

Gernot Eichmann (Uni Giessen) Sep 9, 2014 2 / 14



Light-by-light scattering

Models and phenomenology 35

0

500

1000

1500

2000

M
[M

eV
]

p

K

r

K* N
L

S

X

D

S*

X*

O

experiment
width
input
QCD

FIG. 35 The light hadron spectrum of QCD. Horizontal
lines and bands are the experimental values with their decay
widths. The lattice results are shown by solid circles. Vertical
error bars represent the combined statistical and systematic
error estimates. π, K, and Ξ masses input quantities.

The idea is to link, via the analytic properties, the
perturbative domain of QCD, where calculations can be
done exactly, and the non-perturbative domain, which
can be described in terms of a few basic constants. These
can be adjusted forming a few physical quantities, which
can be used to calculate other quantities.

i. Lattice QCD Here, QCD is reformulated as a field the-
ory in a discretized phase-space and solved using very
astute and powerful techniques which require, however,
expensive computing means. In the domain of hadron
spectroscopy, the best-known applications of lattice QCD
are those dealing with glueballs and hybrid mesons, and
also scalar mesons, but recently the physics of baryons
has also been studied. Figure 35 shows the remark-
able achievements of lattice QCD. Pion masses down to
190MeV were used to extrapolate to the physical point
and lattice sizes of up to 6 fm (Dürr et al., 2008).

Lattice techniques have also been applied to single-
charm baryons (Lewis et al., 2001) and even to double-
charm baryons (Brambilla et al., 2004; Flynn et al.,
2003).

C. Phenomenology of ground-state baryons

1. Missing states

Almost all ground-state baryons containing light or
strange quarks and at most one heavy quark are now
identified. Still missing are the isospin partners Σ0

b and
Ξ0
b and the spin excitations (S = 3/2) of the recently

discovered Ξb and Ωb.
The existence of Ξ+

cc(3519) is uncertain. Its predicted
mass (Fleck and Richard, 1989; Körner et al., 1994) is
about 100MeV larger and recent calculations give even
larger mass values. As compared to a naive equal-spacing
for p(940), Λ+

c (2286) and Ξcc, the first correction is that
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FIG. 36 Comparison of the excitation energy single-charm
and single-beauty baryons above the Λc (Λb mass. The
quantum numbers are deduced from the quark model (Wohl,
2008a). For the Ωb both DØ (top) and CDF (bottom) results
ares shown as dotted lines.

Ξcc is shifted down by the heavy–heavy interaction in the
chromoelectric sector, see Eq. (26). However, both p and
Λc are shifted down by the favorable chromomagnetic
interaction among light quarks.

As the (bc̄) meson has been observed, one should be
able to detect (bcq) baryons with charm and beauty, with
two S = 1/2 states in the ground state, and one S =
3/2 state. Next will come the double-beauty sector, and
ultimately, baryons with three heavy quarks.

2. Regularities

The masses exhibit a smooth behavior in flavor space,
which is compatible with the expectation based on po-
tential models incorporating flavor independence. More-
over, “heavy quark symmetry implies that all of the mass
splittings are independent of the heavy quark flavor”,
to quote (Isgur and Wise, 1991). A comparison is made
on Fig. 36 of the known single-charm and single-beauty
baryons. The comparison suffers from the small number
of beauty baryons but it is clearly seen that the cost of
single-strangeness excitation ΞQ − ΛQ is very similar for
Q = c and Q = b.

For the double-strangeness excitations, the Ωb(6165)0

of DØ is problematic. Most models predict Ωb with
mass of about 6050MeV, 110–120MeV lower than the
observed mass. The measurement by CDF, 6054MeV, is
in better agreement with the expectations.

3. Hyperfine splittings

The hyperfine splitting is also varying smoothly from
one configuration to another. Again, this is compati-

Model results:

Quark loop

28 ... 11

scalar
exchange

pseudoscalar
exchange

axialvector
exchange

𝜋, 𝐾 loop

=

+

+ + + + . . .

𝜋, 𝜂, 𝜂’

ENJL &
MD models
Bijnens 1995
Hakayawa 1995, 
Knecht 2002, 
Melnikov 2004, 
Prades 2009, 
Jegerlehner 2009,
Pauk 2014

Similar values from
quark models
Dorokhov 2008, Greynat 2012
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The hyperfine splitting is also varying smoothly from
one configuration to another. Again, this is compati-
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FIG. 35 The light hadron spectrum of QCD. Horizontal
lines and bands are the experimental values with their decay
widths. The lattice results are shown by solid circles. Vertical
error bars represent the combined statistical and systematic
error estimates. π, K, and Ξ masses input quantities.

The idea is to link, via the analytic properties, the
perturbative domain of QCD, where calculations can be
done exactly, and the non-perturbative domain, which
can be described in terms of a few basic constants. These
can be adjusted forming a few physical quantities, which
can be used to calculate other quantities.

i. Lattice QCD Here, QCD is reformulated as a field the-
ory in a discretized phase-space and solved using very
astute and powerful techniques which require, however,
expensive computing means. In the domain of hadron
spectroscopy, the best-known applications of lattice QCD
are those dealing with glueballs and hybrid mesons, and
also scalar mesons, but recently the physics of baryons
has also been studied. Figure 35 shows the remark-
able achievements of lattice QCD. Pion masses down to
190MeV were used to extrapolate to the physical point
and lattice sizes of up to 6 fm (Dürr et al., 2008).

Lattice techniques have also been applied to single-
charm baryons (Lewis et al., 2001) and even to double-
charm baryons (Brambilla et al., 2004; Flynn et al.,
2003).

C. Phenomenology of ground-state baryons

1. Missing states

Almost all ground-state baryons containing light or
strange quarks and at most one heavy quark are now
identified. Still missing are the isospin partners Σ0

b and
Ξ0
b and the spin excitations (S = 3/2) of the recently

discovered Ξb and Ωb.
The existence of Ξ+

cc(3519) is uncertain. Its predicted
mass (Fleck and Richard, 1989; Körner et al., 1994) is
about 100MeV larger and recent calculations give even
larger mass values. As compared to a naive equal-spacing
for p(940), Λ+

c (2286) and Ξcc, the first correction is that
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FIG. 36 Comparison of the excitation energy single-charm
and single-beauty baryons above the Λc (Λb mass. The
quantum numbers are deduced from the quark model (Wohl,
2008a). For the Ωb both DØ (top) and CDF (bottom) results
ares shown as dotted lines.

Ξcc is shifted down by the heavy–heavy interaction in the
chromoelectric sector, see Eq. (26). However, both p and
Λc are shifted down by the favorable chromomagnetic
interaction among light quarks.

As the (bc̄) meson has been observed, one should be
able to detect (bcq) baryons with charm and beauty, with
two S = 1/2 states in the ground state, and one S =
3/2 state. Next will come the double-beauty sector, and
ultimately, baryons with three heavy quarks.

2. Regularities

The masses exhibit a smooth behavior in flavor space,
which is compatible with the expectation based on po-
tential models incorporating flavor independence. More-
over, “heavy quark symmetry implies that all of the mass
splittings are independent of the heavy quark flavor”,
to quote (Isgur and Wise, 1991). A comparison is made
on Fig. 36 of the known single-charm and single-beauty
baryons. The comparison suffers from the small number
of beauty baryons but it is clearly seen that the cost of
single-strangeness excitation ΞQ − ΛQ is very similar for
Q = c and Q = b.

For the double-strangeness excitations, the Ωb(6165)0

of DØ is problematic. Most models predict Ωb with
mass of about 6050MeV, 110–120MeV lower than the
observed mass. The measurement by CDF, 6054MeV, is
in better agreement with the expectations.

3. Hyperfine splittings

The hyperfine splitting is also varying smoothly from
one configuration to another. Again, this is compati-
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has nonperturbatively enhanced
quark mass function (DSE, Lattice, ...)
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Fig. 1. Quark-photon vertex and the ρ−meson poles it contains.

conservation for electromagnetic form factors, the Goldberger-Treiman relation for
axial form factors and so on, so that no ’fine-tuning’ is necessary.

In order to calculate nucleon form factors and polarizabilities, we must couple
photons to nucleons in a symmetry-preserving way [17–19]. To this end, we should
first understand how a photon microscopically interacts with a quark. Two of the
relevant Green functions that encode this interaction are the quark-photon vertex
and the quark Compton vertex. Here I will discuss some of their properties, the
role of electromagnetic gauge invariance in determining their structure, and their
implications for hadron properties.

2. Quark-photon vertex

Several well-known characteristics of form factors are reflected in the nonper-
turbative structure of the dressed quark-photon vertex. The vertex is defined as the
γµ−contraction of the qq̄ four-point function, see Fig. 1. The four-point function
contains all intermediate hadronic states that can be formed by a valence quark and
antiquark. Therefore, its singularity structure in the vector channel will be inher-
ited by the quark-photon vertex, i.e., ’vector-meson dominance’ is implemented by
construction. On the other hand, the definition allows to derive an inhomogeneous
Bethe-Salpeter equation (BSE) for the vertex; it depends on the qq̄ kernel where
the truncation to rainbow-ladder is made. Its numerical solution has been first
achieved in Ref. [20] and nowadays become almost a routine task. However, even
before solving the vertex dynamically one can gain some insight based on general
properties alone.

Electromagnetic gauge invariance entails that the quark-photon vertex can be
separated into a ’gauge part’ and a purely transverse part:

Γµ(k,Q) =
[
iγµ ΣA + 2kµ(i/k∆A + ∆B)

]
+
[
i

8∑

j=1

fj τ
µ
j (k,Q)

]
. (1)

Here, Q is the photon momentum and k = (k+ + k−)/2 the average momentum
of the quark legs, see Fig. 1. The gauge part in the first bracket is the Ball-Chiu
vertex [21] that satisfies the vector WTI. It is completely determined by the dressed
fermion propagator. At large Q2 it reproduces the tree-level structure, whereas the
nonperturbative dressing effects are contained in ΣA, ∆A and ΣB. These are sums
and difference quotients of the quark dressing functions A(p2) and B(p2):

ΣF (k,Q) =
F (k2+) + F (k2−)

2
, ∆F (k,Q) =

F (k2+) − F (k2−)

k2+ − k2−
, (2)

with F ∈ {A,B}. A(p2) approaches the quark wave-function renormalization con-
stant Z2 at large p2 and is nonperturbatively enhanced. The quark mass function

)B+ ∆A∆k/i(µk+ 2AΣµiγ
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FIG. 35 The light hadron spectrum of QCD. Horizontal
lines and bands are the experimental values with their decay
widths. The lattice results are shown by solid circles. Vertical
error bars represent the combined statistical and systematic
error estimates. π, K, and Ξ masses input quantities.

The idea is to link, via the analytic properties, the
perturbative domain of QCD, where calculations can be
done exactly, and the non-perturbative domain, which
can be described in terms of a few basic constants. These
can be adjusted forming a few physical quantities, which
can be used to calculate other quantities.

i. Lattice QCD Here, QCD is reformulated as a field the-
ory in a discretized phase-space and solved using very
astute and powerful techniques which require, however,
expensive computing means. In the domain of hadron
spectroscopy, the best-known applications of lattice QCD
are those dealing with glueballs and hybrid mesons, and
also scalar mesons, but recently the physics of baryons
has also been studied. Figure 35 shows the remark-
able achievements of lattice QCD. Pion masses down to
190MeV were used to extrapolate to the physical point
and lattice sizes of up to 6 fm (Dürr et al., 2008).

Lattice techniques have also been applied to single-
charm baryons (Lewis et al., 2001) and even to double-
charm baryons (Brambilla et al., 2004; Flynn et al.,
2003).

C. Phenomenology of ground-state baryons

1. Missing states

Almost all ground-state baryons containing light or
strange quarks and at most one heavy quark are now
identified. Still missing are the isospin partners Σ0

b and
Ξ0
b and the spin excitations (S = 3/2) of the recently

discovered Ξb and Ωb.
The existence of Ξ+

cc(3519) is uncertain. Its predicted
mass (Fleck and Richard, 1989; Körner et al., 1994) is
about 100MeV larger and recent calculations give even
larger mass values. As compared to a naive equal-spacing
for p(940), Λ+

c (2286) and Ξcc, the first correction is that
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FIG. 36 Comparison of the excitation energy single-charm
and single-beauty baryons above the Λc (Λb mass. The
quantum numbers are deduced from the quark model (Wohl,
2008a). For the Ωb both DØ (top) and CDF (bottom) results
ares shown as dotted lines.

Ξcc is shifted down by the heavy–heavy interaction in the
chromoelectric sector, see Eq. (26). However, both p and
Λc are shifted down by the favorable chromomagnetic
interaction among light quarks.

As the (bc̄) meson has been observed, one should be
able to detect (bcq) baryons with charm and beauty, with
two S = 1/2 states in the ground state, and one S =
3/2 state. Next will come the double-beauty sector, and
ultimately, baryons with three heavy quarks.

2. Regularities

The masses exhibit a smooth behavior in flavor space,
which is compatible with the expectation based on po-
tential models incorporating flavor independence. More-
over, “heavy quark symmetry implies that all of the mass
splittings are independent of the heavy quark flavor”,
to quote (Isgur and Wise, 1991). A comparison is made
on Fig. 36 of the known single-charm and single-beauty
baryons. The comparison suffers from the small number
of beauty baryons but it is clearly seen that the cost of
single-strangeness excitation ΞQ − ΛQ is very similar for
Q = c and Q = b.

For the double-strangeness excitations, the Ωb(6165)0

of DØ is problematic. Most models predict Ωb with
mass of about 6050MeV, 110–120MeV lower than the
observed mass. The measurement by CDF, 6054MeV, is
in better agreement with the expectations.

3. Hyperfine splittings

The hyperfine splitting is also varying smoothly from
one configuration to another. Again, this is compati-
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Fig. 1. Quark-photon vertex and the ρ−meson poles it contains.

conservation for electromagnetic form factors, the Goldberger-Treiman relation for
axial form factors and so on, so that no ’fine-tuning’ is necessary.

In order to calculate nucleon form factors and polarizabilities, we must couple
photons to nucleons in a symmetry-preserving way [17–19]. To this end, we should
first understand how a photon microscopically interacts with a quark. Two of the
relevant Green functions that encode this interaction are the quark-photon vertex
and the quark Compton vertex. Here I will discuss some of their properties, the
role of electromagnetic gauge invariance in determining their structure, and their
implications for hadron properties.

2. Quark-photon vertex

Several well-known characteristics of form factors are reflected in the nonper-
turbative structure of the dressed quark-photon vertex. The vertex is defined as the
γµ−contraction of the qq̄ four-point function, see Fig. 1. The four-point function
contains all intermediate hadronic states that can be formed by a valence quark and
antiquark. Therefore, its singularity structure in the vector channel will be inher-
ited by the quark-photon vertex, i.e., ’vector-meson dominance’ is implemented by
construction. On the other hand, the definition allows to derive an inhomogeneous
Bethe-Salpeter equation (BSE) for the vertex; it depends on the qq̄ kernel where
the truncation to rainbow-ladder is made. Its numerical solution has been first
achieved in Ref. [20] and nowadays become almost a routine task. However, even
before solving the vertex dynamically one can gain some insight based on general
properties alone.

Electromagnetic gauge invariance entails that the quark-photon vertex can be
separated into a ’gauge part’ and a purely transverse part:

Γµ(k,Q) =
[
iγµ ΣA + 2kµ(i/k∆A + ∆B)

]
+
[
i

8∑

j=1

fj τ
µ
j (k,Q)

]
. (1)

Here, Q is the photon momentum and k = (k+ + k−)/2 the average momentum
of the quark legs, see Fig. 1. The gauge part in the first bracket is the Ball-Chiu
vertex [21] that satisfies the vector WTI. It is completely determined by the dressed
fermion propagator. At large Q2 it reproduces the tree-level structure, whereas the
nonperturbative dressing effects are contained in ΣA, ∆A and ΣB. These are sums
and difference quotients of the quark dressing functions A(p2) and B(p2):

ΣF (k,Q) =
F (k2+) + F (k2−)

2
, ∆F (k,Q) =

F (k2+) − F (k2−)

k2+ − k2−
, (2)

with F ∈ {A,B}. A(p2) approaches the quark wave-function renormalization con-
stant Z2 at large p2 and is nonperturbatively enhanced. The quark mass function
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Quark-photon vertex
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A. Fermion-photon vertex

We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity

Qµ Γµ(k,Q) = S−1(k+) − S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) + B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k,Q) = iγµ ΣA + 2kµ(i/k∆A + ∆B), (72)

where the functions

ΣA(k,Q) :=
A(k2+) + A(k2−)

2
,

∆A(k,Q) :=
A(k2+) −A(k2−)

k2+ − k2−
,

∆B(k,Q) :=
B(k2+) −B(k2−)

k2+ − k2−

(73)

are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k,Q) = Γµ
BC(k,Q) + Γµ

T(k,Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as

(+) γµ

(−) [γµ, /k]

(+) [γµ, /Q]

(+) [γµ, /k, /Q]

(+) kµ

(+) kµ/k

(−) kµ /Q

(+) kµ[/k, /Q]

(−) Qµ

(−) Qµ/k

(+) Qµ /Q

(−) Qµ[/k, /Q].

(75)

To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A,B,C] := [A,B]C + [B,C]A + [C,A]B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k ·Q, the full vertex satisfies

Γµ(k,Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k ·Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ

µ
T + g2 k ·Q i

2 [γµ
T , /k]

+ g3
i
2 [γµ, /Q] + g4

1
6 [γµ, /k, /Q]

+ kµT
(
ig5 + g6 /k + g7 k ·Q /Q + g8

i
2 [/k, /Q]

)
,

(79)

where

γµ
T = Tµν

Q γν , kµT = Tµν
Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k ·Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

−iΓµ
T = f1 Q

2 γµ
T + f2 k ·QQ2 i

2 [γµ
T , /k]

+ f3
i
2 [γµ, /Q] + f4

1
6 [γµ, /k, /Q]

+ if5 Q
2 kµT + f6 Q

2 kµT /k

+ f7 k ·Q (k ·Qγµ − kµ /Q)

+ f8
i
2 [k ·Qγµ − kµ /Q, /k].

(82)

It satisfies the requirements of Eq. (81) since

f1 Q
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A. Fermion-photon vertex

We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity

Qµ Γµ(k,Q) = S−1(k+) − S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) + B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k,Q) = iγµ ΣA + 2kµ(i/k∆A + ∆B), (72)

where the functions

ΣA(k,Q) :=
A(k2+) + A(k2−)

2
,

∆A(k,Q) :=
A(k2+) −A(k2−)

k2+ − k2−
,

∆B(k,Q) :=
B(k2+) −B(k2−)

k2+ − k2−

(73)

are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k,Q) = Γµ
BC(k,Q) + Γµ

T(k,Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as

(+) γµ

(−) [γµ, /k]

(+) [γµ, /Q]

(+) [γµ, /k, /Q]
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(+) kµ/k

(−) kµ /Q

(+) kµ[/k, /Q]
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(+) Qµ /Q

(−) Qµ[/k, /Q].

(75)

To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A,B,C] := [A,B]C + [B,C]A + [C,A]B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k ·Q, the full vertex satisfies

Γµ(k,Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k ·Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition
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k2 > 0, Q2 ∈ R. However, since the projector (78) con-
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must vanish with Q2 for Q2 → 0. Instead of the pro-
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Q which has
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individually when Q2 goes to zero.
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must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

−iΓµ
T = f1 Q

2 γµ
T + f2 k ·QQ2 i

2 [γµ
T , /k]

+ f3
i
2 [γµ, /Q] + f4

1
6 [γµ, /k, /Q]

+ if5 Q
2 kµT + f6 Q

2 kµT /k

+ f7 k ·Q (k ·Qγµ − kµ /Q)

+ f8
i
2 [k ·Qγµ − kµ /Q, /k].

(82)

It satisfies the requirements of Eq. (81) since

f1 Q
2 = g1 + (k ·Q)2g7 ,

f2 Q
2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q
2 = g5 ,

f6 Q
2 = g6 ,

−f7 = g7 ,

f8 = g8 .

(83)
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A. Fermion-photon vertex

We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity

Qµ Γµ(k,Q) = S−1(k+) − S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) + B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k,Q) = iγµ ΣA + 2kµ(i/k∆A + ∆B), (72)

where the functions

ΣA(k,Q) :=
A(k2+) + A(k2−)

2
,

∆A(k,Q) :=
A(k2+) −A(k2−)

k2+ − k2−
,

∆B(k,Q) :=
B(k2+) −B(k2−)

k2+ − k2−

(73)

are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k,Q) = Γµ
BC(k,Q) + Γµ

T(k,Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as

(+) γµ

(−) [γµ, /k]

(+) [γµ, /Q]

(+) [γµ, /k, /Q]

(+) kµ

(+) kµ/k

(−) kµ /Q

(+) kµ[/k, /Q]

(−) Qµ

(−) Qµ/k

(+) Qµ /Q

(−) Qµ[/k, /Q].

(75)

To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A,B,C] := [A,B]C + [B,C]A + [C,A]B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k ·Q, the full vertex satisfies

Γµ(k,Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k ·Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ

µ
T + g2 k ·Q i

2 [γµ
T , /k]

+ g3
i
2 [γµ, /Q] + g4

1
6 [γµ, /k, /Q]

+ kµT
(
ig5 + g6 /k + g7 k ·Q /Q + g8

i
2 [/k, /Q]

)
,

(79)
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we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as
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To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A,B,C] := [A,B]C + [B,C]A + [C,A]B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k ·Q, the full vertex satisfies

Γµ(k,Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k ·Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν
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(78)

to the remaining elements from the first two columns of
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where
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We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k ·Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.
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truly kinematically independent is given by [53–55]
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A. Fermion-photon vertex

We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity

Qµ Γµ(k,Q) = S−1(k+) − S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) + B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k,Q) = iγµ ΣA + 2kµ(i/k∆A + ∆B), (72)

where the functions

ΣA(k,Q) :=
A(k2+) + A(k2−)

2
,

∆A(k,Q) :=
A(k2+) −A(k2−)

k2+ − k2−
,

∆B(k,Q) :=
B(k2+) −B(k2−)

k2+ − k2−

(73)

are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k,Q) = Γµ
BC(k,Q) + Γµ

T(k,Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as

(+) γµ

(−) [γµ, /k]

(+) [γµ, /Q]

(+) [γµ, /k, /Q]

(+) kµ

(+) kµ/k

(−) kµ /Q

(+) kµ[/k, /Q]

(−) Qµ

(−) Qµ/k

(+) Qµ /Q

(−) Qµ[/k, /Q].

(75)

To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A,B,C] := [A,B]C + [B,C]A + [C,A]B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k ·Q, the full vertex satisfies

Γµ(k,Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k ·Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ

µ
T + g2 k ·Q i

2 [γµ
T , /k]

+ g3
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2 [γµ, /Q] + g4
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,

(79)

where

γµ
T = Tµν

Q γν , kµT = Tµν
Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k ·Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]
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It satisfies the requirements of Eq. (81) since

f1 Q
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are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.
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T to
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kinematically independent dressing functions, we want
to express Γµ
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functions gi(k
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tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity

Qµ Γµ(k,Q) = S−1(k+) − S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) + B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k,Q) = iγµ ΣA + 2kµ(i/k∆A + ∆B), (72)

where the functions

ΣA(k,Q) :=
A(k2+) + A(k2−)

2
,

∆A(k,Q) :=
A(k2+) −A(k2−)

k2+ − k2−
,

∆B(k,Q) :=
B(k2+) −B(k2−)

k2+ − k2−

(73)

are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k,Q) = Γµ
BC(k,Q) + Γµ

T(k,Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as

(+) γµ

(−) [γµ, /k]

(+) [γµ, /Q]

(+) [γµ, /k, /Q]

(+) kµ

(+) kµ/k

(−) kµ /Q

(+) kµ[/k, /Q]

(−) Qµ

(−) Qµ/k

(+) Qµ /Q

(−) Qµ[/k, /Q].

(75)

To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A,B,C] := [A,B]C + [B,C]A + [C,A]B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k ·Q, the full vertex satisfies

Γµ(k,Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k ·Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ

µ
T + g2 k ·Q i

2 [γµ
T , /k]

+ g3
i
2 [γµ, /Q] + g4

1
6 [γµ, /k, /Q]

+ kµT
(
ig5 + g6 /k + g7 k ·Q /Q + g8

i
2 [/k, /Q]

)
,

(79)

where

γµ
T = Tµν

Q γν , kµT = Tµν
Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k ·Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

−iΓµ
T = f1 Q

2 γµ
T + f2 k ·QQ2 i

2 [γµ
T , /k]

+ f3
i
2 [γµ, /Q] + f4

1
6 [γµ, /k, /Q]

+ if5 Q
2 kµT + f6 Q

2 kµT /k
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+ f8
i
2 [k ·Qγµ − kµ /Q, /k].

(82)
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Structure of the γγγγ amplitude

Arrange the 24 permutations of            into multiplets:

1234

2341

3412

4123
3142

2431

4213

1324

2314

1243

4132

4231

1342

3124

3214

2413

4321

1432

1423

4312

3241

2134 3421

2143

2

The remaining 18 elements are reserved for the triplets.
If we generalize Eq. (4) to

a±i = P±
(
f
(i)
1 − f

(i)
2 + f

(i)
3 − f

(i)
4

)
,

b±i = P±
(
f
(i)
1 − f

(i)
2 − f

(i)
3 + f

(i)
4

)
,

c±i = P±
(
−f

(i)
1 − f

(i)
2 + f

(i)
3 + f

(i)
4

)
,

(6)

and further define (λ = ±)

(φ1)
λ
1 = λ aλ1 ,

(φ2)
λ
1 = λ bλ2 ,

(φ3)
λ
1 = λ cλ3 ,

(φ1)
λ
2 = aλ2 ,

(φ2)
λ
2 = cλ1 ,

(φ3)
λ
2 = bλ3 ,

(φ1)
λ
3 = aλ3 ,

(φ2)
λ
3 = cλ2 ,

(φ3)
λ
3 = bλ1 ,

(7)

then we can cast the triplets in a common form:

T ±
i =




√
2
3 (φ1 + φ2 + φ3)

±
i

1√
3

(φ2 + φ3 − 2φ1)
±
i

(φ2 − φ3)
∓
i


 . (8)

The doublets and triplets transform as

P12 Di = MDi ,

P23 Di = M′ Di ,

P34 Di = MDi ,

P12 T ±
i = ±H T ±

i ,

P23 T ±
i = ±H′ T ±

i ,

P34 T ±
i = ±H′′ T ±

i ,

(9)

where the two-dimensional representation matrices of the
permutations P12, P23 and P34 are given by

M =

(
−1 0

0 1

)
, M′ =

1

2

(
1 −

√
3

−
√

3 −1

)
(10)

and the three-dimensional ones by H = diag(1, 1,−1),

H′ =
1

2




2 0 0

0 −1 −
√

3

0 −
√

3 1


 ,

H′′ =
1

3




−1 −
√

8 0

−
√

8 1 0

0 0 3


 .

(11)

In principle it would have been sufficient to state the
transformation behavior under P12 and P1234 since all
permutations can be constructed from these two ele-
ments. Since P1234 = P12 P23 P34, the representation ma-
trix for P1234 in the doublet case is given by MM′ M, and
by ±HH′ H′′ for the two types of triplets. The triplets
corresponding to different Young diagrams transform un-
der inequivalent representations: the representation ma-
trices for the T −

i differ by a minus sign from those of the
T +
i , and it is not possible to rearrange the triplet entries

{u, v, w} to obtain a common transformation law.1

1 The representation matrices in Table 3.2 of the van Beveren lec-

B. Product representations

The next step is to construct all possible product rep-
resentations. The strategy is to find suitable products of
two elementary representations (S, A, Dj and T ±

i ) which
also satisfy the transformation law of Eq. (9).

• Symmetric singlets transform trivially with the
’representation matrix’ 1. The possible combina-
tions are

S S , AA , Di · Dj , T ±
i · T ±

j , (12)

where (·) is the usual dot product for vectors:

D · D′ := aa′ + ss′ ,

T · T ′ := uu′ + vv′ + ww′ .
(13)

That these combinations are singlets follows from
the orthogonality of the representation matrices.

• Antisymmetric singlets transform under −1. They
are obtained from

S A , Di ×Dj , T ±
i · T ∓

j , (14)

with the antisymmetric product

D ×D′ := as′ − sa′ . (15)

• Doublets can be constructed in various ways. S D
trivially produces a doublet, and so does the com-
bination ε (AD), where

ε =

(
0 1
−1 0

)
⇒ ε (AD) =

[
s
−a

]
A . (16)

The combination of two doublets or two triplets
also produces doublets:

Di ∗ Dj , T ±
i ∗ T ±

j , ε
(
T ±
i ∗ T ∓

j

)
, (17)

where we defined the (∗) operation as

D ∗ D′ :=

[
as′ + sa′

aa′ − ss′

]
,

T ∗ T ′ :=

[
vw′ + wv′ +

√
2 (uw′ + wu′)

ww′ − vv′ +
√

2 (uv′ + vu′)

]
.

(18)

ture notes follow if one writes instead of Eq. (3):

T +
i =




u
−v
w



+

i

, T −
i =




w
v
u



−

i

, Dj =

[
s
a

]

j

,

however at the price that Eqs. (8)–(11) and the notation for the
product representations become slightly less compact.
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• Triplets of type T + are obtained from

S T +, AT −,
T − ∨ D ,
T + ∧ D ,

T ± ∨ T ± ,
T ± ∧ T ∓ .

(19)

We defined the ’wedge’ and ’vee’ products for the
triplets

T ∧ T ′ :=




vw′ − wv′

wu′ − uw′

uv′ − vu′


 ,

T ∨ T ′ :=




vv′ + ww′ − 2uu′

uv′ + vu′ +
√

2 (vv′ − ww′)
uw′ + wu′ −

√
2 (vw′ + wv′)


 ,

(20)

and for the combination of triplet and doublet:

T ∧ D :=




vs + wa
us− 1√

2
(vs− wa)

ua + 1√
2

(va + ws)


 ,

T ∨ D :=




va− ws
ua− 1√

2
(va + ws)

−us− 1√
2

(vs− wa)


 .

(21)

The wedge product for the triplets is the usual vec-
tor product.

• Finally, triplets of type T − are obtained from

S T −, AT +,
T − ∧ D ,
T + ∨ D

T ± ∧ T ± ,
T ± ∨ T ∓ .

(22)

This list is exhaustive. As an example, suppose we want
to find all possible products of one triplet T + with itself.
The resulting six combinations u2, v2, w2, uv, uw, vw
can be rearranged in a symmetric singlet, a doublet, and
a triplet of type T +:

T + · T + = u2 + v2 + w2 ,

T + ∗ T + =

[
2w (v +

√
2u)

w2 − v2 + 2
√

2uv

]
,

T + ∨ T + =




v2 + w2 − 2u2

2uv +
√

2 (v2 − w2)

2w (u−
√

2 v)


 .

(23)

The triplet of type T − vanishes because T + ∧ T + = 0.

II. PHASE SPACE

A. Kinematics

The photon four-point function depends on the mo-
menta p1, p2, p3, p4, of which only three are inde-
pendent due to the momentum-conservation constraint
p1 + p2 + p3 + p4 = 0. The kinematics of the Bose-
symmetric photon four-point function are perhaps most
conveniently expressed in terms of s−, u− and t−channel
momenta:

p = p2 + p3 = −p1 − p4 ,

q = p3 + p1 = −p2 − p4 ,

k = p1 + p2 = −p3 − p4 ,

(24)

with the inverse relations

p1 = 1
2 (q − p + k) ,

p3 = 1
2 (q + p− k) ,

p2 = − 1
2 (q − p− k) ,

p4 = − 1
2 (q + p + k) .

(25)

The system is described by six independent Lorentz in-
variants. From the momenta above one can form the
three Mandelstam variables p2, q2, k2, and the angular
variables

ω1 = q · k, ω2 = p · k, ω3 = p · q (26)

which are related to the ’offshellness’ of the photons as
we shall see below.

As we explained in Sec. ??, for the practical calculation
of the photon four-point function it is not necessary to
compute all 24 permutations explicitly. It is sufficient to
retain only those three that transform the s−, u− and
t−channel among themselves:

t− channel : p1, p2, p3, p4 ⇔ p, q, k,

s− channel : p2, p3, p1, p4 ⇔ q, k, p, (27)

u− channel : p3, p1, p2, p4 ⇔ k, p, q.

Apparently these three transformations amount to cyclic
permutations of the variables p2, q2 k2 and also the ωi.
Because we would like to implement these permutations
with the smallest numerical effort, let us take a closer
look at the phase space that the above variables generate.
In particular we want to arrange these Lorentz invariants
in permutation-group multiplets.

Let us first find the multiplets for the four-momenta.
If we use the seed f1234 = k = p1 + p2 and perform the
steps in Eqs. (??–??), we find that only the triplet T +

is nonzero:

T + =
1

2




1√
3

(p + q + k)
1√
6

(p + q − 2k)
1√
2

(q − p)


 . (28)

These are just the three independent Jacobi momenta
of the system. When we now apply the three product

2

The remaining 18 elements are reserved for the triplets.
If we generalize Eq. (4) to

a±i = P±
(
f
(i)
1 − f

(i)
2 + f

(i)
3 − f

(i)
4

)
,

b±i = P±
(
f
(i)
1 − f

(i)
2 − f

(i)
3 + f

(i)
4

)
,

c±i = P±
(
−f

(i)
1 − f

(i)
2 + f

(i)
3 + f

(i)
4

)
,

(6)

and further define (λ = ±)

(φ1)
λ
1 = λ aλ1 ,

(φ2)
λ
1 = λ bλ2 ,

(φ3)
λ
1 = λ cλ3 ,

(φ1)
λ
2 = aλ2 ,

(φ2)
λ
2 = cλ1 ,

(φ3)
λ
2 = bλ3 ,

(φ1)
λ
3 = aλ3 ,

(φ2)
λ
3 = cλ2 ,

(φ3)
λ
3 = bλ1 ,

(7)

then we can cast the triplets in a common form:

T ±
i =




√
2
3 (φ1 + φ2 + φ3)

±
i

1√
3

(φ2 + φ3 − 2φ1)
±
i

(φ2 − φ3)
∓
i


 . (8)

The doublets and triplets transform as

P12 Di = MDi ,

P23 Di = M′ Di ,

P34 Di = MDi ,

P12 T ±
i = ±H T ±

i ,

P23 T ±
i = ±H′ T ±

i ,

P34 T ±
i = ±H′′ T ±

i ,

(9)

where the two-dimensional representation matrices of the
permutations P12, P23 and P34 are given by

M =

(
−1 0

0 1

)
, M′ =

1

2

(
1 −

√
3

−
√

3 −1

)
(10)

and the three-dimensional ones by H = diag(1, 1,−1),

H′ =
1

2




2 0 0

0 −1 −
√

3

0 −
√

3 1


 ,

H′′ =
1

3




−1 −
√

8 0

−
√

8 1 0

0 0 3


 .

(11)

In principle it would have been sufficient to state the
transformation behavior under P12 and P1234 since all
permutations can be constructed from these two ele-
ments. Since P1234 = P12 P23 P34, the representation ma-
trix for P1234 in the doublet case is given by MM′ M, and
by ±HH′ H′′ for the two types of triplets. The triplets
corresponding to different Young diagrams transform un-
der inequivalent representations: the representation ma-
trices for the T −

i differ by a minus sign from those of the
T +
i , and it is not possible to rearrange the triplet entries

{u, v, w} to obtain a common transformation law.1

1 The representation matrices in Table 3.2 of the van Beveren lec-

B. Product representations

The next step is to construct all possible product rep-
resentations. The strategy is to find suitable products of
two elementary representations (S, A, Dj and T ±

i ) which
also satisfy the transformation law of Eq. (9).

• Symmetric singlets transform trivially with the
’representation matrix’ 1. The possible combina-
tions are

S S , AA , Di · Dj , T ±
i · T ±

j , (12)

where (·) is the usual dot product for vectors:

D · D′ := aa′ + ss′ ,

T · T ′ := uu′ + vv′ + ww′ .
(13)

That these combinations are singlets follows from
the orthogonality of the representation matrices.

• Antisymmetric singlets transform under −1. They
are obtained from

S A , Di ×Dj , T ±
i · T ∓

j , (14)

with the antisymmetric product

D ×D′ := as′ − sa′ . (15)

• Doublets can be constructed in various ways. S D
trivially produces a doublet, and so does the com-
bination ε (AD), where

ε =

(
0 1
−1 0

)
⇒ ε (AD) =

[
s
−a

]
A . (16)

The combination of two doublets or two triplets
also produces doublets:

Di ∗ Dj , T ±
i ∗ T ±

j , ε
(
T ±
i ∗ T ∓

j

)
, (17)

where we defined the (∗) operation as

D ∗ D′ :=

[
as′ + sa′

aa′ − ss′

]
,

T ∗ T ′ :=

[
vw′ + wv′ +

√
2 (uw′ + wu′)

ww′ − vv′ +
√

2 (uv′ + vu′)

]
.

(18)

ture notes follow if one writes instead of Eq. (3):

T +
i =




u
−v
w



+

i

, T −
i =




w
v
u



−

i

, Dj =

[
s
a

]

j

,

however at the price that Eqs. (8)–(11) and the notation for the
product representations become slightly less compact.
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• Triplets of type T + are obtained from

S T +, AT −,
T − ∨ D ,
T + ∧ D ,

T ± ∨ T ± ,
T ± ∧ T ∓ .

(19)

We defined the ’wedge’ and ’vee’ products for the
triplets

T ∧ T ′ :=




vw′ − wv′

wu′ − uw′

uv′ − vu′


 ,

T ∨ T ′ :=




vv′ + ww′ − 2uu′

uv′ + vu′ +
√

2 (vv′ − ww′)
uw′ + wu′ −

√
2 (vw′ + wv′)


 ,

(20)

and for the combination of triplet and doublet:

T ∧ D :=




vs + wa
us− 1√

2
(vs− wa)

ua + 1√
2

(va + ws)


 ,

T ∨ D :=




va− ws
ua− 1√

2
(va + ws)

−us− 1√
2

(vs− wa)


 .

(21)

The wedge product for the triplets is the usual vec-
tor product.

• Finally, triplets of type T − are obtained from

S T −, AT +,
T − ∧ D ,
T + ∨ D

T ± ∧ T ± ,
T ± ∨ T ∓ .

(22)

This list is exhaustive. As an example, suppose we want
to find all possible products of one triplet T + with itself.
The resulting six combinations u2, v2, w2, uv, uw, vw
can be rearranged in a symmetric singlet, a doublet, and
a triplet of type T +:

T + · T + = u2 + v2 + w2 ,

T + ∗ T + =

[
2w (v +

√
2u)

w2 − v2 + 2
√

2uv

]
,

T + ∨ T + =




v2 + w2 − 2u2

2uv +
√

2 (v2 − w2)

2w (u−
√

2 v)


 .

(23)

The triplet of type T − vanishes because T + ∧ T + = 0.

II. PHASE SPACE

A. Kinematics

The photon four-point function depends on the mo-
menta p1, p2, p3, p4, of which only three are inde-
pendent due to the momentum-conservation constraint
p1 + p2 + p3 + p4 = 0. The kinematics of the Bose-
symmetric photon four-point function are perhaps most
conveniently expressed in terms of s−, u− and t−channel
momenta:

p = p2 + p3 = −p1 − p4 ,

q = p3 + p1 = −p2 − p4 ,

k = p1 + p2 = −p3 − p4 ,

(24)

with the inverse relations

p1 = 1
2 (q − p + k) ,

p3 = 1
2 (q + p− k) ,

p2 = − 1
2 (q − p− k) ,

p4 = − 1
2 (q + p + k) .

(25)

The system is described by six independent Lorentz in-
variants. From the momenta above one can form the
three Mandelstam variables p2, q2, k2, and the angular
variables

ω1 = q · k, ω2 = p · k, ω3 = p · q (26)

which are related to the ’offshellness’ of the photons as
we shall see below.

As we explained in Sec. ??, for the practical calculation
of the photon four-point function it is not necessary to
compute all 24 permutations explicitly. It is sufficient to
retain only those three that transform the s−, u− and
t−channel among themselves:

t− channel : p1, p2, p3, p4 ⇔ p, q, k,

s− channel : p2, p3, p1, p4 ⇔ q, k, p, (27)

u− channel : p3, p1, p2, p4 ⇔ k, p, q.

Apparently these three transformations amount to cyclic
permutations of the variables p2, q2 k2 and also the ωi.
Because we would like to implement these permutations
with the smallest numerical effort, let us take a closer
look at the phase space that the above variables generate.
In particular we want to arrange these Lorentz invariants
in permutation-group multiplets.

Let us first find the multiplets for the four-momenta.
If we use the seed f1234 = k = p1 + p2 and perform the
steps in Eqs. (??–??), we find that only the triplet T +

is nonzero:

T + =
1

2




1√
3

(p + q + k)
1√
6

(p + q − 2k)
1√
2

(q − p)


 . (28)

These are just the three independent Jacobi momenta
of the system. When we now apply the three product

6 Lorentz invariants form singlet      , doublet     , triplet 0S +TD

3 independent momenta:  

S4 multiplets

Bose symmetry:

6 Lorentz invariants: 
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)p, q, k(i
µνρστ). . .(if
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Notes on the photon four-point function

I. PERMUTATION GROUP

A. Permutation-group multiplets

The permutation group S4 consists of 4! = 24 elements.
Each permutation of an object f1234 can be reconstructed
from two group elements, a transposition P12 and a 4-
cycle P1234. (The former interchanges the indices 1 ↔ 2,
whereas in the latter each index is replaced by its neigh-
bor on the right: 1 → 2, 2 → 3, 3 → 4, 4 → 1.) For
example, one has

P23 = (P1234)
2 P12 P1234 P12 ,

P34 = P12 (P1234)
2 P12 (P1234)

2 P12 .
(1)

This leads to the Cayley graph in Fig. 1 which repre-
sents the group manifold as a geometric structure made
of squares and hexagons. The squares contain the ele-
ments that are connected to each other by 4-cycles, for
example

f1234
P1234−−−→ f2341

P1234−−−→ f3412
P1234−−−→ f4123 . (2)

In total there are six squares with four elements each.
They are connected to each other by transpositions P12

which generates the hexagons. The two permutation
chains in Eq. (1) then correspond to paths along the Cay-
ley diagram. Instead of P12 and P1234 it is also common
practice to span the group by the transpositions P12, P23

and P34 which leads to a similar Cayley graph.
One can rearrange the 24 permutations in terms of

multiplets that transform under the irreducible represen-
tations of the S4. In terms of Young diagrams, one has
the following possibilities:

S T +
i Dj T −

i A

S and A are the singlets which are completely symmet-
ric or antisymmetric. The doublets Dj (j = 1, 2) form
a two-dimensional irreducible subspace. The triplets T +

i
and T −

i (i = 1, 2, 3) transform under inequivalent irre-
ducible representations and thereby form two different
three-dimensional subspaces. In the following we will de-
note their elements by

T ±
i =




u
v
w



±

i

, Dj =

[
a
s

]

j

. (3)

For the explicit construction of the multiplets it is help-
ful to group the 24 permutations of an element f1234 into

1234

2341

3412

4123
3142

2431

4213

1324

2314

1243

4132

4231

1342

3124

3214

2413

4321

1432

1423

4312

3241

2134 3421

2143

FIG. 1. Cayley graph for the group S4, also known as ’per-
mutohedron of order 4’. (Based on a figure from Wikipedia.)

the following three subclasses (s, t, u channel):

f (1) =




f1234
f3412
f2143
f4321


, f (2) =




f3241
f1423
f4132
f2314


, f (3) =




f4213
f2431
f3124
f1342


.

Together with the transpositions P12, each class defines a
closed path in Fig. 1 that contains eight elements. Now,
take the sum of the entries in each column vector and
(anti-)symmetrize with P± = 1 ± P12:

ψ±
i = P±

4∑

k=1

f
(i)
k , i = 1, 2, 3 . (4)

The resulting six combinations constitute the singlets and
doublets, which have the same structure as the multiplets
in S3 (cf. Eq. (??) in Ref. [? ]):

S = (ψ1 + ψ2 + ψ3)
+
,

A = (ψ1 + ψ2 + ψ3)
−

,

D1 =

[
(ψ2 − ψ3)

−

− 1√
3

(ψ2 + ψ3 − 2ψ1)
+

]
,

D2 =

[
1√
3

(ψ2 + ψ3 − 2ψ1)
−

(ψ2 − ψ3)
+

]
.

(5)
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ley diagram. Instead of P12 and P1234 it is also common
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and P34 which leads to a similar Cayley graph.
One can rearrange the 24 permutations in terms of
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the following possibilities:
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Structure of the γγγγ amplitude

Arrange the 24 permutations of            into multiplets:

1234

2341

3412

4123
3142

2431

4213

1324

2314

1243

4132

4231

1342

3124

3214

2413

4321

1432

1423

4312

3241

2134 3421

2143

2

The remaining 18 elements are reserved for the triplets.
If we generalize Eq. (4) to

a±i = P±
(
f
(i)
1 − f

(i)
2 + f

(i)
3 − f

(i)
4

)
,

b±i = P±
(
f
(i)
1 − f

(i)
2 − f

(i)
3 + f

(i)
4

)
,

c±i = P±
(
−f

(i)
1 − f

(i)
2 + f

(i)
3 + f

(i)
4

)
,

(6)

and further define (λ = ±)

(φ1)
λ
1 = λ aλ1 ,

(φ2)
λ
1 = λ bλ2 ,

(φ3)
λ
1 = λ cλ3 ,

(φ1)
λ
2 = aλ2 ,

(φ2)
λ
2 = cλ1 ,

(φ3)
λ
2 = bλ3 ,

(φ1)
λ
3 = aλ3 ,

(φ2)
λ
3 = cλ2 ,

(φ3)
λ
3 = bλ1 ,

(7)

then we can cast the triplets in a common form:

T ±
i =




√
2
3 (φ1 + φ2 + φ3)

±
i

1√
3

(φ2 + φ3 − 2φ1)
±
i

(φ2 − φ3)
∓
i


 . (8)

The doublets and triplets transform as

P12 Di = MDi ,

P23 Di = M′ Di ,

P34 Di = MDi ,

P12 T ±
i = ±H T ±

i ,

P23 T ±
i = ±H′ T ±

i ,

P34 T ±
i = ±H′′ T ±

i ,

(9)

where the two-dimensional representation matrices of the
permutations P12, P23 and P34 are given by

M =

(
−1 0

0 1

)
, M′ =

1

2

(
1 −

√
3

−
√

3 −1

)
(10)

and the three-dimensional ones by H = diag(1, 1,−1),

H′ =
1

2




2 0 0

0 −1 −
√

3

0 −
√

3 1


 ,

H′′ =
1

3




−1 −
√

8 0

−
√

8 1 0

0 0 3


 .

(11)

In principle it would have been sufficient to state the
transformation behavior under P12 and P1234 since all
permutations can be constructed from these two ele-
ments. Since P1234 = P12 P23 P34, the representation ma-
trix for P1234 in the doublet case is given by MM′ M, and
by ±HH′ H′′ for the two types of triplets. The triplets
corresponding to different Young diagrams transform un-
der inequivalent representations: the representation ma-
trices for the T −

i differ by a minus sign from those of the
T +
i , and it is not possible to rearrange the triplet entries

{u, v, w} to obtain a common transformation law.1

1 The representation matrices in Table 3.2 of the van Beveren lec-

B. Product representations

The next step is to construct all possible product rep-
resentations. The strategy is to find suitable products of
two elementary representations (S, A, Dj and T ±

i ) which
also satisfy the transformation law of Eq. (9).

• Symmetric singlets transform trivially with the
’representation matrix’ 1. The possible combina-
tions are

S S , AA , Di · Dj , T ±
i · T ±

j , (12)

where (·) is the usual dot product for vectors:

D · D′ := aa′ + ss′ ,

T · T ′ := uu′ + vv′ + ww′ .
(13)

That these combinations are singlets follows from
the orthogonality of the representation matrices.

• Antisymmetric singlets transform under −1. They
are obtained from

S A , Di ×Dj , T ±
i · T ∓

j , (14)

with the antisymmetric product

D ×D′ := as′ − sa′ . (15)

• Doublets can be constructed in various ways. S D
trivially produces a doublet, and so does the com-
bination ε (AD), where

ε =

(
0 1
−1 0

)
⇒ ε (AD) =

[
s
−a

]
A . (16)

The combination of two doublets or two triplets
also produces doublets:

Di ∗ Dj , T ±
i ∗ T ±

j , ε
(
T ±
i ∗ T ∓

j

)
, (17)

where we defined the (∗) operation as

D ∗ D′ :=

[
as′ + sa′

aa′ − ss′

]
,

T ∗ T ′ :=

[
vw′ + wv′ +

√
2 (uw′ + wu′)

ww′ − vv′ +
√

2 (uv′ + vu′)

]
.

(18)

ture notes follow if one writes instead of Eq. (3):

T +
i =




u
−v
w



+

i

, T −
i =




w
v
u



−

i

, Dj =

[
s
a

]

j

,

however at the price that Eqs. (8)–(11) and the notation for the
product representations become slightly less compact.
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permutations can be constructed from these two ele-
ments. Since P1234 = P12 P23 P34, the representation ma-
trix for P1234 in the doublet case is given by MM′ M, and
by ±HH′ H′′ for the two types of triplets. The triplets
corresponding to different Young diagrams transform un-
der inequivalent representations: the representation ma-
trices for the T −

i differ by a minus sign from those of the
T +
i , and it is not possible to rearrange the triplet entries

{u, v, w} to obtain a common transformation law.1

1 The representation matrices in Table 3.2 of the van Beveren lec-
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The next step is to construct all possible product rep-
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two elementary representations (S, A, Dj and T ±

i ) which
also satisfy the transformation law of Eq. (9).

• Symmetric singlets transform trivially with the
’representation matrix’ 1. The possible combina-
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j , (12)

where (·) is the usual dot product for vectors:

D · D′ := aa′ + ss′ ,
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That these combinations are singlets follows from
the orthogonality of the representation matrices.

• Antisymmetric singlets transform under −1. They
are obtained from
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• Doublets can be constructed in various ways. S D
trivially produces a doublet, and so does the com-
bination ε (AD), where

ε =

(
0 1
−1 0

)
⇒ ε (AD) =

[
s
−a

]
A . (16)

The combination of two doublets or two triplets
also produces doublets:

Di ∗ Dj , T ±
i ∗ T ±

j , ε
(
T ±
i ∗ T ∓

j
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, (17)

where we defined the (∗) operation as

D ∗ D′ :=

[
as′ + sa′

aa′ − ss′

]
,

T ∗ T ′ :=

[
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√
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ture notes follow if one writes instead of Eq. (3):

T +
i =




u
−v
w



+

i

, T −
i =




w
v
u



−

i

, Dj =

[
s
a

]

j

,

however at the price that Eqs. (8)–(11) and the notation for the
product representations become slightly less compact.
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• Triplets of type T + are obtained from

S T +, AT −,
T − ∨ D ,
T + ∧ D ,

T ± ∨ T ± ,
T ± ∧ T ∓ .

(19)

We defined the ’wedge’ and ’vee’ products for the
triplets

T ∧ T ′ :=




vw′ − wv′

wu′ − uw′

uv′ − vu′


 ,

T ∨ T ′ :=




vv′ + ww′ − 2uu′

uv′ + vu′ +
√

2 (vv′ − ww′)
uw′ + wu′ −

√
2 (vw′ + wv′)


 ,

(20)

and for the combination of triplet and doublet:

T ∧ D :=




vs + wa
us− 1√

2
(vs− wa)

ua + 1√
2

(va + ws)


 ,

T ∨ D :=




va− ws
ua− 1√

2
(va + ws)

−us− 1√
2

(vs− wa)


 .

(21)

The wedge product for the triplets is the usual vec-
tor product.

• Finally, triplets of type T − are obtained from

S T −, AT +,
T − ∧ D ,
T + ∨ D

T ± ∧ T ± ,
T ± ∨ T ∓ .

(22)

This list is exhaustive. As an example, suppose we want
to find all possible products of one triplet T + with itself.
The resulting six combinations u2, v2, w2, uv, uw, vw
can be rearranged in a symmetric singlet, a doublet, and
a triplet of type T +:

T + · T + = u2 + v2 + w2 ,

T + ∗ T + =

[
2w (v +

√
2u)

w2 − v2 + 2
√

2uv

]
,

T + ∨ T + =




v2 + w2 − 2u2

2uv +
√

2 (v2 − w2)

2w (u−
√

2 v)


 .

(23)

The triplet of type T − vanishes because T + ∧ T + = 0.

II. PHASE SPACE

A. Kinematics

The photon four-point function depends on the mo-
menta p1, p2, p3, p4, of which only three are inde-
pendent due to the momentum-conservation constraint
p1 + p2 + p3 + p4 = 0. The kinematics of the Bose-
symmetric photon four-point function are perhaps most
conveniently expressed in terms of s−, u− and t−channel
momenta:

p = p2 + p3 = −p1 − p4 ,

q = p3 + p1 = −p2 − p4 ,

k = p1 + p2 = −p3 − p4 ,

(24)

with the inverse relations

p1 = 1
2 (q − p + k) ,

p3 = 1
2 (q + p− k) ,

p2 = − 1
2 (q − p− k) ,

p4 = − 1
2 (q + p + k) .

(25)

The system is described by six independent Lorentz in-
variants. From the momenta above one can form the
three Mandelstam variables p2, q2, k2, and the angular
variables

ω1 = q · k, ω2 = p · k, ω3 = p · q (26)

which are related to the ’offshellness’ of the photons as
we shall see below.

As we explained in Sec. ??, for the practical calculation
of the photon four-point function it is not necessary to
compute all 24 permutations explicitly. It is sufficient to
retain only those three that transform the s−, u− and
t−channel among themselves:

t− channel : p1, p2, p3, p4 ⇔ p, q, k,

s− channel : p2, p3, p1, p4 ⇔ q, k, p, (27)

u− channel : p3, p1, p2, p4 ⇔ k, p, q.

Apparently these three transformations amount to cyclic
permutations of the variables p2, q2 k2 and also the ωi.
Because we would like to implement these permutations
with the smallest numerical effort, let us take a closer
look at the phase space that the above variables generate.
In particular we want to arrange these Lorentz invariants
in permutation-group multiplets.

Let us first find the multiplets for the four-momenta.
If we use the seed f1234 = k = p1 + p2 and perform the
steps in Eqs. (??–??), we find that only the triplet T +

is nonzero:

T + =
1

2




1√
3

(p + q + k)
1√
6

(p + q − 2k)
1√
2

(q − p)


 . (28)

These are just the three independent Jacobi momenta
of the system. When we now apply the three product
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i =




√
2
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±
i

1√
3
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±
i
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∓
i


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The doublets and triplets transform as
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i ,
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where the two-dimensional representation matrices of the
permutations P12, P23 and P34 are given by
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0 1
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1

2

(
1 −

√
3

−
√

3 −1

)
(10)

and the three-dimensional ones by H = diag(1, 1,−1),
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3 1
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In principle it would have been sufficient to state the
transformation behavior under P12 and P1234 since all
permutations can be constructed from these two ele-
ments. Since P1234 = P12 P23 P34, the representation ma-
trix for P1234 in the doublet case is given by MM′ M, and
by ±HH′ H′′ for the two types of triplets. The triplets
corresponding to different Young diagrams transform un-
der inequivalent representations: the representation ma-
trices for the T −

i differ by a minus sign from those of the
T +
i , and it is not possible to rearrange the triplet entries

{u, v, w} to obtain a common transformation law.1

1 The representation matrices in Table 3.2 of the van Beveren lec-

B. Product representations

The next step is to construct all possible product rep-
resentations. The strategy is to find suitable products of
two elementary representations (S, A, Dj and T ±

i ) which
also satisfy the transformation law of Eq. (9).

• Symmetric singlets transform trivially with the
’representation matrix’ 1. The possible combina-
tions are

S S , AA , Di · Dj , T ±
i · T ±

j , (12)

where (·) is the usual dot product for vectors:

D · D′ := aa′ + ss′ ,

T · T ′ := uu′ + vv′ + ww′ .
(13)

That these combinations are singlets follows from
the orthogonality of the representation matrices.

• Antisymmetric singlets transform under −1. They
are obtained from

S A , Di ×Dj , T ±
i · T ∓

j , (14)

with the antisymmetric product

D ×D′ := as′ − sa′ . (15)

• Doublets can be constructed in various ways. S D
trivially produces a doublet, and so does the com-
bination ε (AD), where

ε =
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0 1
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[
s
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]
A . (16)

The combination of two doublets or two triplets
also produces doublets:
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j , ε
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T ±
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j
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, (17)

where we defined the (∗) operation as

D ∗ D′ :=
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,

T ∗ T ′ :=

[
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2 (uw′ + wu′)
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√

2 (uv′ + vu′)

]
.

(18)

ture notes follow if one writes instead of Eq. (3):
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however at the price that Eqs. (8)–(11) and the notation for the
product representations become slightly less compact.
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[
s
a

]

j

,

however at the price that Eqs. (8)–(11) and the notation for the
product representations become slightly less compact.
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• Triplets of type T + are obtained from

S T +, AT −,
T − ∨ D ,
T + ∧ D ,

T ± ∨ T ± ,
T ± ∧ T ∓ .

(19)

We defined the ’wedge’ and ’vee’ products for the
triplets

T ∧ T ′ :=




vw′ − wv′

wu′ − uw′

uv′ − vu′


 ,

T ∨ T ′ :=




vv′ + ww′ − 2uu′

uv′ + vu′ +
√

2 (vv′ − ww′)
uw′ + wu′ −

√
2 (vw′ + wv′)


 ,

(20)

and for the combination of triplet and doublet:

T ∧ D :=




vs + wa
us− 1√

2
(vs− wa)

ua + 1√
2

(va + ws)


 ,

T ∨ D :=




va− ws
ua− 1√

2
(va + ws)

−us− 1√
2

(vs− wa)


 .

(21)

The wedge product for the triplets is the usual vec-
tor product.

• Finally, triplets of type T − are obtained from

S T −, AT +,
T − ∧ D ,
T + ∨ D

T ± ∧ T ± ,
T ± ∨ T ∓ .

(22)

This list is exhaustive. As an example, suppose we want
to find all possible products of one triplet T + with itself.
The resulting six combinations u2, v2, w2, uv, uw, vw
can be rearranged in a symmetric singlet, a doublet, and
a triplet of type T +:

T + · T + = u2 + v2 + w2 ,

T + ∗ T + =

[
2w (v +

√
2u)

w2 − v2 + 2
√

2uv

]
,

T + ∨ T + =




v2 + w2 − 2u2

2uv +
√

2 (v2 − w2)

2w (u−
√

2 v)


 .

(23)

The triplet of type T − vanishes because T + ∧ T + = 0.

II. PHASE SPACE

A. Kinematics

The photon four-point function depends on the mo-
menta p1, p2, p3, p4, of which only three are inde-
pendent due to the momentum-conservation constraint
p1 + p2 + p3 + p4 = 0. The kinematics of the Bose-
symmetric photon four-point function are perhaps most
conveniently expressed in terms of s−, u− and t−channel
momenta:

p = p2 + p3 = −p1 − p4 ,

q = p3 + p1 = −p2 − p4 ,

k = p1 + p2 = −p3 − p4 ,

(24)

with the inverse relations

p1 = 1
2 (q − p + k) ,

p3 = 1
2 (q + p− k) ,

p2 = − 1
2 (q − p− k) ,

p4 = − 1
2 (q + p + k) .

(25)

The system is described by six independent Lorentz in-
variants. From the momenta above one can form the
three Mandelstam variables p2, q2, k2, and the angular
variables

ω1 = q · k, ω2 = p · k, ω3 = p · q (26)

which are related to the ’offshellness’ of the photons as
we shall see below.

As we explained in Sec. ??, for the practical calculation
of the photon four-point function it is not necessary to
compute all 24 permutations explicitly. It is sufficient to
retain only those three that transform the s−, u− and
t−channel among themselves:

t− channel : p1, p2, p3, p4 ⇔ p, q, k,

s− channel : p2, p3, p1, p4 ⇔ q, k, p, (27)

u− channel : p3, p1, p2, p4 ⇔ k, p, q.

Apparently these three transformations amount to cyclic
permutations of the variables p2, q2 k2 and also the ωi.
Because we would like to implement these permutations
with the smallest numerical effort, let us take a closer
look at the phase space that the above variables generate.
In particular we want to arrange these Lorentz invariants
in permutation-group multiplets.

Let us first find the multiplets for the four-momenta.
If we use the seed f1234 = k = p1 + p2 and perform the
steps in Eqs. (??–??), we find that only the triplet T +

is nonzero:

T + =
1

2




1√
3

(p + q + k)
1√
6

(p + q − 2k)
1√
2

(q − p)


 . (28)

These are just the three independent Jacobi momenta
of the system. When we now apply the three product

6 Lorentz invariants form singlet      , doublet     , triplet 0S +TD

3 independent momenta:  

S4 multiplets

Bose symmetry:

6 Lorentz invariants: 

k·k, q·q, p·, p2, k2, q2p

)p, q, k(i
µνρστ). . .(if

=1i

136∑
) =p, q, k(µνρσΓ

=
!
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I. PERMUTATION GROUP

A. Permutation-group multiplets

The permutation group S4 consists of 4! = 24 elements.
Each permutation of an object f1234 can be reconstructed
from two group elements, a transposition P12 and a 4-
cycle P1234. (The former interchanges the indices 1 ↔ 2,
whereas in the latter each index is replaced by its neigh-
bor on the right: 1 → 2, 2 → 3, 3 → 4, 4 → 1.) For
example, one has

P23 = (P1234)
2 P12 P1234 P12 ,

P34 = P12 (P1234)
2 P12 (P1234)

2 P12 .
(1)

This leads to the Cayley graph in Fig. 1 which repre-
sents the group manifold as a geometric structure made
of squares and hexagons. The squares contain the ele-
ments that are connected to each other by 4-cycles, for
example

f1234
P1234−−−→ f2341

P1234−−−→ f3412
P1234−−−→ f4123 . (2)

In total there are six squares with four elements each.
They are connected to each other by transpositions P12

which generates the hexagons. The two permutation
chains in Eq. (1) then correspond to paths along the Cay-
ley diagram. Instead of P12 and P1234 it is also common
practice to span the group by the transpositions P12, P23

and P34 which leads to a similar Cayley graph.
One can rearrange the 24 permutations in terms of

multiplets that transform under the irreducible represen-
tations of the S4. In terms of Young diagrams, one has
the following possibilities:

S T +
i Dj T −

i A

S and A are the singlets which are completely symmet-
ric or antisymmetric. The doublets Dj (j = 1, 2) form
a two-dimensional irreducible subspace. The triplets T +

i
and T −

i (i = 1, 2, 3) transform under inequivalent irre-
ducible representations and thereby form two different
three-dimensional subspaces. In the following we will de-
note their elements by

T ±
i =




u
v
w



±

i

, Dj =

[
a
s

]

j

. (3)

For the explicit construction of the multiplets it is help-
ful to group the 24 permutations of an element f1234 into

1234

2341

3412

4123
3142

2431

4213

1324

2314

1243

4132

4231

1342

3124

3214

2413

4321

1432

1423

4312

3241

2134 3421

2143

FIG. 1. Cayley graph for the group S4, also known as ’per-
mutohedron of order 4’. (Based on a figure from Wikipedia.)

the following three subclasses (s, t, u channel):

f (1) =




f1234
f3412
f2143
f4321


, f (2) =




f3241
f1423
f4132
f2314


, f (3) =




f4213
f2431
f3124
f1342


.

Together with the transpositions P12, each class defines a
closed path in Fig. 1 that contains eight elements. Now,
take the sum of the entries in each column vector and
(anti-)symmetrize with P± = 1 ± P12:

ψ±
i = P±

4∑

k=1

f
(i)
k , i = 1, 2, 3 . (4)

The resulting six combinations constitute the singlets and
doublets, which have the same structure as the multiplets
in S3 (cf. Eq. (??) in Ref. [? ]):

S = (ψ1 + ψ2 + ψ3)
+
,

A = (ψ1 + ψ2 + ψ3)
−

,

D1 =

[
(ψ2 − ψ3)

−

− 1√
3

(ψ2 + ψ3 − 2ψ1)
+

]
,

D2 =

[
1√
3

(ψ2 + ψ3 − 2ψ1)
−

(ψ2 − ψ3)
+

]
.

(5)

Notes on the photon four-point function

I. PERMUTATION GROUP

A. Permutation-group multiplets

The permutation group S4 consists of 4! = 24 elements.
Each permutation of an object f1234 can be reconstructed
from two group elements, a transposition P12 and a 4-
cycle P1234. (The former interchanges the indices 1 ↔ 2,
whereas in the latter each index is replaced by its neigh-
bor on the right: 1 → 2, 2 → 3, 3 → 4, 4 → 1.) For
example, one has

P23 = (P1234)
2 P12 P1234 P12 ,

P34 = P12 (P1234)
2 P12 (P1234)

2 P12 .
(1)

This leads to the Cayley graph in Fig. 1 which repre-
sents the group manifold as a geometric structure made
of squares and hexagons. The squares contain the ele-
ments that are connected to each other by 4-cycles, for
example

f1234
P1234−−−→ f2341

P1234−−−→ f3412
P1234−−−→ f4123 . (2)

In total there are six squares with four elements each.
They are connected to each other by transpositions P12

which generates the hexagons. The two permutation
chains in Eq. (1) then correspond to paths along the Cay-
ley diagram. Instead of P12 and P1234 it is also common
practice to span the group by the transpositions P12, P23

and P34 which leads to a similar Cayley graph.
One can rearrange the 24 permutations in terms of

multiplets that transform under the irreducible represen-
tations of the S4. In terms of Young diagrams, one has
the following possibilities:

S T +
i Dj T −

i A

S and A are the singlets which are completely symmet-
ric or antisymmetric. The doublets Dj (j = 1, 2) form
a two-dimensional irreducible subspace. The triplets T +

i
and T −

i (i = 1, 2, 3) transform under inequivalent irre-
ducible representations and thereby form two different
three-dimensional subspaces. In the following we will de-
note their elements by

T ±
i =




u
v
w



±

i

, Dj =

[
a
s

]

j

. (3)

For the explicit construction of the multiplets it is help-
ful to group the 24 permutations of an element f1234 into

1234

2341

3412

4123
3142

2431

4213

1324

2314

1243

4132

4231

1342

3124

3214

2413

4321

1432

1423

4312

3241

2134 3421

2143

FIG. 1. Cayley graph for the group S4, also known as ’per-
mutohedron of order 4’. (Based on a figure from Wikipedia.)

the following three subclasses (s, t, u channel):

f (1) =




f1234
f3412
f2143
f4321


, f (2) =




f3241
f1423
f4132
f2314


, f (3) =




f4213
f2431
f3124
f1342


.

Together with the transpositions P12, each class defines a
closed path in Fig. 1 that contains eight elements. Now,
take the sum of the entries in each column vector and
(anti-)symmetrize with P± = 1 ± P12:

ψ±
i = P±

4∑

k=1

f
(i)
k , i = 1, 2, 3 . (4)

The resulting six combinations constitute the singlets and
doublets, which have the same structure as the multiplets
in S3 (cf. Eq. (??) in Ref. [? ]):

S = (ψ1 + ψ2 + ψ3)
+
,

A = (ψ1 + ψ2 + ψ3)
−

,

D1 =

[
(ψ2 − ψ3)

−

− 1√
3

(ψ2 + ψ3 − 2ψ1)
+

]
,

D2 =

[
1√
3

(ψ2 + ψ3 − 2ψ1)
−

(ψ2 − ψ3)
+

]
.

(5)

Notes on the photon four-point function

I. PERMUTATION GROUP

A. Permutation-group multiplets

The permutation group S4 consists of 4! = 24 elements.
Each permutation of an object f1234 can be reconstructed
from two group elements, a transposition P12 and a 4-
cycle P1234. (The former interchanges the indices 1 ↔ 2,
whereas in the latter each index is replaced by its neigh-
bor on the right: 1 → 2, 2 → 3, 3 → 4, 4 → 1.) For
example, one has

P23 = (P1234)
2 P12 P1234 P12 ,

P34 = P12 (P1234)
2 P12 (P1234)

2 P12 .
(1)

This leads to the Cayley graph in Fig. 1 which repre-
sents the group manifold as a geometric structure made
of squares and hexagons. The squares contain the ele-
ments that are connected to each other by 4-cycles, for
example

f1234
P1234−−−→ f2341

P1234−−−→ f3412
P1234−−−→ f4123 . (2)

In total there are six squares with four elements each.
They are connected to each other by transpositions P12

which generates the hexagons. The two permutation
chains in Eq. (1) then correspond to paths along the Cay-
ley diagram. Instead of P12 and P1234 it is also common
practice to span the group by the transpositions P12, P23

and P34 which leads to a similar Cayley graph.
One can rearrange the 24 permutations in terms of

multiplets that transform under the irreducible represen-
tations of the S4. In terms of Young diagrams, one has
the following possibilities:

S T +
i Dj T −

i A

S and A are the singlets which are completely symmet-
ric or antisymmetric. The doublets Dj (j = 1, 2) form
a two-dimensional irreducible subspace. The triplets T +

i
and T −

i (i = 1, 2, 3) transform under inequivalent irre-
ducible representations and thereby form two different
three-dimensional subspaces. In the following we will de-
note their elements by

T ±
i =




u
v
w



±

i

, Dj =

[
a
s

]

j

. (3)

For the explicit construction of the multiplets it is help-
ful to group the 24 permutations of an element f1234 into

1234

2341

3412

4123
3142

2431

4213

1324

2314

1243

4132

4231

1342

3124

3214

2413

4321

1432

1423

4312

3241

2134 3421

2143

FIG. 1. Cayley graph for the group S4, also known as ’per-
mutohedron of order 4’. (Based on a figure from Wikipedia.)

the following three subclasses (s, t, u channel):

f (1) =




f1234
f3412
f2143
f4321


, f (2) =




f3241
f1423
f4132
f2314


, f (3) =




f4213
f2431
f3124
f1342


.

Together with the transpositions P12, each class defines a
closed path in Fig. 1 that contains eight elements. Now,
take the sum of the entries in each column vector and
(anti-)symmetrize with P± = 1 ± P12:

ψ±
i = P±

4∑

k=1

f
(i)
k , i = 1, 2, 3 . (4)

The resulting six combinations constitute the singlets and
doublets, which have the same structure as the multiplets
in S3 (cf. Eq. (??) in Ref. [? ]):

S = (ψ1 + ψ2 + ψ3)
+
,

A = (ψ1 + ψ2 + ψ3)
−

,

D1 =

[
(ψ2 − ψ3)

−

− 1√
3

(ψ2 + ψ3 − 2ψ1)
+

]
,

D2 =

[
1√
3

(ψ2 + ψ3 − 2ψ1)
−

(ψ2 − ψ3)
+

]
.

(5)

Notes on the photon four-point function

I. PERMUTATION GROUP

A. Permutation-group multiplets

The permutation group S4 consists of 4! = 24 elements.
Each permutation of an object f1234 can be reconstructed
from two group elements, a transposition P12 and a 4-
cycle P1234. (The former interchanges the indices 1 ↔ 2,
whereas in the latter each index is replaced by its neigh-
bor on the right: 1 → 2, 2 → 3, 3 → 4, 4 → 1.) For
example, one has

P23 = (P1234)
2 P12 P1234 P12 ,

P34 = P12 (P1234)
2 P12 (P1234)

2 P12 .
(1)

This leads to the Cayley graph in Fig. 1 which repre-
sents the group manifold as a geometric structure made
of squares and hexagons. The squares contain the ele-
ments that are connected to each other by 4-cycles, for
example

f1234
P1234−−−→ f2341

P1234−−−→ f3412
P1234−−−→ f4123 . (2)

In total there are six squares with four elements each.
They are connected to each other by transpositions P12

which generates the hexagons. The two permutation
chains in Eq. (1) then correspond to paths along the Cay-
ley diagram. Instead of P12 and P1234 it is also common
practice to span the group by the transpositions P12, P23

and P34 which leads to a similar Cayley graph.
One can rearrange the 24 permutations in terms of

multiplets that transform under the irreducible represen-
tations of the S4. In terms of Young diagrams, one has
the following possibilities:

S T +
i Dj T −

i A

S and A are the singlets which are completely symmet-
ric or antisymmetric. The doublets Dj (j = 1, 2) form
a two-dimensional irreducible subspace. The triplets T +

i
and T −

i (i = 1, 2, 3) transform under inequivalent irre-
ducible representations and thereby form two different
three-dimensional subspaces. In the following we will de-
note their elements by

T ±
i =




u
v
w



±

i

, Dj =

[
a
s

]

j

. (3)

For the explicit construction of the multiplets it is help-
ful to group the 24 permutations of an element f1234 into

1234

2341

3412

4123
3142

2431

4213

1324

2314

1243

4132

4231

1342

3124

3214

2413

4321

1432

1423

4312

3241

2134 3421

2143

FIG. 1. Cayley graph for the group S4, also known as ’per-
mutohedron of order 4’. (Based on a figure from Wikipedia.)

the following three subclasses (s, t, u channel):

f (1) =




f1234
f3412
f2143
f4321


, f (2) =




f3241
f1423
f4132
f2314


, f (3) =




f4213
f2431
f3124
f1342


.

Together with the transpositions P12, each class defines a
closed path in Fig. 1 that contains eight elements. Now,
take the sum of the entries in each column vector and
(anti-)symmetrize with P± = 1 ± P12:

ψ±
i = P±

4∑

k=1

f
(i)
k , i = 1, 2, 3 . (4)

The resulting six combinations constitute the singlets and
doublets, which have the same structure as the multiplets
in S3 (cf. Eq. (??) in Ref. [? ]):

S = (ψ1 + ψ2 + ψ3)
+
,

A = (ψ1 + ψ2 + ψ3)
−

,

D1 =

[
(ψ2 − ψ3)

−

− 1√
3

(ψ2 + ψ3 − 2ψ1)
+

]
,

D2 =

[
1√
3

(ψ2 + ψ3 − 2ψ1)
−

(ψ2 − ψ3)
+

]
.

(5)

Notes on the photon four-point function

I. PERMUTATION GROUP

A. Permutation-group multiplets

The permutation group S4 consists of 4! = 24 elements.
Each permutation of an object f1234 can be reconstructed
from two group elements, a transposition P12 and a 4-
cycle P1234. (The former interchanges the indices 1 ↔ 2,
whereas in the latter each index is replaced by its neigh-
bor on the right: 1 → 2, 2 → 3, 3 → 4, 4 → 1.) For
example, one has

P23 = (P1234)
2 P12 P1234 P12 ,

P34 = P12 (P1234)
2 P12 (P1234)

2 P12 .
(1)

This leads to the Cayley graph in Fig. 1 which repre-
sents the group manifold as a geometric structure made
of squares and hexagons. The squares contain the ele-
ments that are connected to each other by 4-cycles, for
example

f1234
P1234−−−→ f2341

P1234−−−→ f3412
P1234−−−→ f4123 . (2)

In total there are six squares with four elements each.
They are connected to each other by transpositions P12

which generates the hexagons. The two permutation
chains in Eq. (1) then correspond to paths along the Cay-
ley diagram. Instead of P12 and P1234 it is also common
practice to span the group by the transpositions P12, P23

and P34 which leads to a similar Cayley graph.
One can rearrange the 24 permutations in terms of

multiplets that transform under the irreducible represen-
tations of the S4. In terms of Young diagrams, one has
the following possibilities:

S T +
i Dj T −

i A

S and A are the singlets which are completely symmet-
ric or antisymmetric. The doublets Dj (j = 1, 2) form
a two-dimensional irreducible subspace. The triplets T +

i
and T −

i (i = 1, 2, 3) transform under inequivalent irre-
ducible representations and thereby form two different
three-dimensional subspaces. In the following we will de-
note their elements by

T ±
i =




u
v
w



±

i

, Dj =

[
a
s

]

j

. (3)

For the explicit construction of the multiplets it is help-
ful to group the 24 permutations of an element f1234 into

1234

2341

3412

4123
3142

2431

4213

1324

2314

1243

4132

4231

1342

3124

3214

2413

4321

1432

1423

4312

3241

2134 3421

2143

FIG. 1. Cayley graph for the group S4, also known as ’per-
mutohedron of order 4’. (Based on a figure from Wikipedia.)

the following three subclasses (s, t, u channel):

f (1) =




f1234
f3412
f2143
f4321


, f (2) =




f3241
f1423
f4132
f2314


, f (3) =




f4213
f2431
f3124
f1342


.

Together with the transpositions P12, each class defines a
closed path in Fig. 1 that contains eight elements. Now,
take the sum of the entries in each column vector and
(anti-)symmetrize with P± = 1 ± P12:

ψ±
i = P±

4∑

k=1

f
(i)
k , i = 1, 2, 3 . (4)

The resulting six combinations constitute the singlets and
doublets, which have the same structure as the multiplets
in S3 (cf. Eq. (??) in Ref. [? ]):

S = (ψ1 + ψ2 + ψ3)
+
,

A = (ψ1 + ψ2 + ψ3)
−

,

D1 =

[
(ψ2 − ψ3)

−

− 1√
3

(ψ2 + ψ3 − 2ψ1)
+

]
,

D2 =

[
1√
3

(ψ2 + ψ3 − 2ψ1)
−

(ψ2 − ψ3)
+

]
.

(5)




•
•
•




=i
+T 



•
•
•




=i
–T

]

•
•

[
 =jD

Notes on the photon four-point function

I. PERMUTATION GROUP

A. Permutation-group multiplets

The permutation group S4 consists of 4! = 24 elements.
Each permutation of an object f1234 can be reconstructed
from two group elements, a transposition P12 and a 4-
cycle P1234. (The former interchanges the indices 1 ↔ 2,
whereas in the latter each index is replaced by its neigh-
bor on the right: 1 → 2, 2 → 3, 3 → 4, 4 → 1.) For
example, one has

P23 = (P1234)
2 P12 P1234 P12 ,

P34 = P12 (P1234)
2 P12 (P1234)

2 P12 .
(1)

This leads to the Cayley graph in Fig. 1 which repre-
sents the group manifold as a geometric structure made
of squares and hexagons. The squares contain the ele-
ments that are connected to each other by 4-cycles, for
example

f1234
P1234−−−→ f2341

P1234−−−→ f3412
P1234−−−→ f4123 . (2)

In total there are six squares with four elements each.
They are connected to each other by transpositions P12

which generates the hexagons. The two permutation
chains in Eq. (1) then correspond to paths along the Cay-
ley diagram. Instead of P12 and P1234 it is also common
practice to span the group by the transpositions P12, P23

and P34 which leads to a similar Cayley graph.
One can rearrange the 24 permutations in terms of

multiplets that transform under the irreducible represen-
tations of the S4. In terms of Young diagrams, one has
the following possibilities:

S T +
i Dj T −

i A

S and A are the singlets which are completely symmet-
ric or antisymmetric. The doublets Dj (j = 1, 2) form
a two-dimensional irreducible subspace. The triplets T +

i
and T −

i (i = 1, 2, 3) transform under inequivalent irre-
ducible representations and thereby form two different
three-dimensional subspaces. In the following we will de-
note their elements by

T ±
i =




u
v
w



±

i

, Dj =

[
a
s

]

j

. (3)

For the explicit construction of the multiplets it is help-
ful to group the 24 permutations of an element f1234 into

1234

2341

3412

4123
3142

2431

4213

1324

2314

1243

4132

4231

1342

3124

3214

2413

4321

1432

1423

4312

3241

2134 3421

2143

FIG. 1. Cayley graph for the group S4, also known as ’per-
mutohedron of order 4’. (Based on a figure from Wikipedia.)

the following three subclasses (s, t, u channel):

f (1) =




f1234
f3412
f2143
f4321


, f (2) =




f3241
f1423
f4132
f2314


, f (3) =




f4213
f2431
f3124
f1342


.

Together with the transpositions P12, each class defines a
closed path in Fig. 1 that contains eight elements. Now,
take the sum of the entries in each column vector and
(anti-)symmetrize with P± = 1 ± P12:

ψ±
i = P±

4∑

k=1

f
(i)
k , i = 1, 2, 3 . (4)

The resulting six combinations constitute the singlets and
doublets, which have the same structure as the multiplets
in S3 (cf. Eq. (??) in Ref. [? ]):

S = (ψ1 + ψ2 + ψ3)
+
,

A = (ψ1 + ψ2 + ψ3)
−

,

D1 =

[
(ψ2 − ψ3)

−

− 1√
3

(ψ2 + ψ3 − 2ψ1)
+

]
,

D2 =

[
1√
3

(ψ2 + ψ3 − 2ψ1)
−

(ψ2 − ψ3)
+

]
.

(5)
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bor on the right: 1 → 2, 2 → 3, 3 → 4, 4 → 1.) For
example, one has

P23 = (P1234)
2 P12 P1234 P12 ,

P34 = P12 (P1234)
2 P12 (P1234)

2 P12 .
(1)

This leads to the Cayley graph in Fig. 1 which repre-
sents the group manifold as a geometric structure made
of squares and hexagons. The squares contain the ele-
ments that are connected to each other by 4-cycles, for
example

f1234
P1234−−−→ f2341

P1234−−−→ f3412
P1234−−−→ f4123 . (2)

In total there are six squares with four elements each.
They are connected to each other by transpositions P12

which generates the hexagons. The two permutation
chains in Eq. (1) then correspond to paths along the Cay-
ley diagram. Instead of P12 and P1234 it is also common
practice to span the group by the transpositions P12, P23

and P34 which leads to a similar Cayley graph.
One can rearrange the 24 permutations in terms of

multiplets that transform under the irreducible represen-
tations of the S4. In terms of Young diagrams, one has
the following possibilities:

S T +
i Dj T −

i A

S and A are the singlets which are completely symmet-
ric or antisymmetric. The doublets Dj (j = 1, 2) form
a two-dimensional irreducible subspace. The triplets T +

i
and T −

i (i = 1, 2, 3) transform under inequivalent irre-
ducible representations and thereby form two different
three-dimensional subspaces. In the following we will de-
note their elements by

T ±
i =




u
v
w



±

i

, Dj =

[
a
s

]

j

. (3)

For the explicit construction of the multiplets it is help-
ful to group the 24 permutations of an element f1234 into

1234

2341

3412

4123
3142

2431

4213

1324

2314

1243

4132

4231

1342

3124

3214

2413

4321

1432

1423

4312

3241
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FIG. 1. Cayley graph for the group S4, also known as ’per-
mutohedron of order 4’. (Based on a figure from Wikipedia.)

the following three subclasses (s, t, u channel):

f (1) =




f1234
f3412
f2143
f4321


, f (2) =




f3241
f1423
f4132
f2314


, f (3) =




f4213
f2431
f3124
f1342


.

Together with the transpositions P12, each class defines a
closed path in Fig. 1 that contains eight elements. Now,
take the sum of the entries in each column vector and
(anti-)symmetrize with P± = 1 ± P12:

ψ±
i = P±

4∑

k=1

f
(i)
k , i = 1, 2, 3 . (4)

The resulting six combinations constitute the singlets and
doublets, which have the same structure as the multiplets
in S3 (cf. Eq. (??) in Ref. [? ]):

S = (ψ1 + ψ2 + ψ3)
+
,

A = (ψ1 + ψ2 + ψ3)
−

,

D1 =

[
(ψ2 − ψ3)

−

− 1√
3

(ψ2 + ψ3 − 2ψ1)
+

]
,

D2 =

[
1√
3

(ψ2 + ψ3 − 2ψ1)
−

(ψ2 − ψ3)
+

]
.

(5)
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(anti-)symmetrize with P± = 1 ± P12:
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k , i = 1, 2, 3 . (4)

The resulting six combinations constitute the singlets and
doublets, which have the same structure as the multiplets
in S3 (cf. Eq. (??) in Ref. [? ]):
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ley diagram. Instead of P12 and P1234 it is also common
practice to span the group by the transpositions P12, P23

and P34 which leads to a similar Cayley graph.
One can rearrange the 24 permutations in terms of

multiplets that transform under the irreducible represen-
tations of the S4. In terms of Young diagrams, one has
the following possibilities:
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S and A are the singlets which are completely symmet-
ric or antisymmetric. The doublets Dj (j = 1, 2) form
a two-dimensional irreducible subspace. The triplets T +
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and T −

i (i = 1, 2, 3) transform under inequivalent irre-
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T ±
i =




u
v
w



±

i

, Dj =

[
a
s

]

j

. (3)

For the explicit construction of the multiplets it is help-
ful to group the 24 permutations of an element f1234 into

1234

2341

3412

4123
3142

2431

4213

1324

2314

1243

4132

4231

1342

3124

3214

2413

4321

1432

1423

4312

3241

2134 3421

2143

FIG. 1. Cayley graph for the group S4, also known as ’per-
mutohedron of order 4’. (Based on a figure from Wikipedia.)

the following three subclasses (s, t, u channel):

f (1) =




f1234
f3412
f2143
f4321


, f (2) =




f3241
f1423
f4132
f2314


, f (3) =




f4213
f2431
f3124
f1342


.

Together with the transpositions P12, each class defines a
closed path in Fig. 1 that contains eight elements. Now,
take the sum of the entries in each column vector and
(anti-)symmetrize with P± = 1 ± P12:

ψ±
i = P±

4∑

k=1

f
(i)
k , i = 1, 2, 3 . (4)

The resulting six combinations constitute the singlets and
doublets, which have the same structure as the multiplets
in S3 (cf. Eq. (??) in Ref. [? ]):

S = (ψ1 + ψ2 + ψ3)
+
,

A = (ψ1 + ψ2 + ψ3)
−

,

D1 =

[
(ψ2 − ψ3)

−

− 1√
3

(ψ2 + ψ3 − 2ψ1)
+

]
,

D2 =

[
1√
3

(ψ2 + ψ3 − 2ψ1)
−

(ψ2 − ψ3)
+

]
.

(5)

Notes on the photon four-point function

I. PERMUTATION GROUP

A. Permutation-group multiplets

The permutation group S4 consists of 4! = 24 elements.
Each permutation of an object f1234 can be reconstructed
from two group elements, a transposition P12 and a 4-
cycle P1234. (The former interchanges the indices 1 ↔ 2,
whereas in the latter each index is replaced by its neigh-
bor on the right: 1 → 2, 2 → 3, 3 → 4, 4 → 1.) For
example, one has

P23 = (P1234)
2 P12 P1234 P12 ,

P34 = P12 (P1234)
2 P12 (P1234)

2 P12 .
(1)

This leads to the Cayley graph in Fig. 1 which repre-
sents the group manifold as a geometric structure made
of squares and hexagons. The squares contain the ele-
ments that are connected to each other by 4-cycles, for
example

f1234
P1234−−−→ f2341

P1234−−−→ f3412
P1234−−−→ f4123 . (2)

In total there are six squares with four elements each.
They are connected to each other by transpositions P12

which generates the hexagons. The two permutation
chains in Eq. (1) then correspond to paths along the Cay-
ley diagram. Instead of P12 and P1234 it is also common
practice to span the group by the transpositions P12, P23

and P34 which leads to a similar Cayley graph.
One can rearrange the 24 permutations in terms of

multiplets that transform under the irreducible represen-
tations of the S4. In terms of Young diagrams, one has
the following possibilities:

S T +
i Dj T −

i A

S and A are the singlets which are completely symmet-
ric or antisymmetric. The doublets Dj (j = 1, 2) form
a two-dimensional irreducible subspace. The triplets T +

i
and T −

i (i = 1, 2, 3) transform under inequivalent irre-
ducible representations and thereby form two different
three-dimensional subspaces. In the following we will de-
note their elements by

T ±
i =




u
v
w



±

i

, Dj =

[
a
s

]

j

. (3)

For the explicit construction of the multiplets it is help-
ful to group the 24 permutations of an element f1234 into

1234

2341

3412

4123
3142

2431

4213

1324

2314

1243

4132

4231

1342

3124

3214

2413

4321

1432

1423

4312

3241

2134 3421

2143

FIG. 1. Cayley graph for the group S4, also known as ’per-
mutohedron of order 4’. (Based on a figure from Wikipedia.)

the following three subclasses (s, t, u channel):

f (1) =




f1234
f3412
f2143
f4321


, f (2) =




f3241
f1423
f4132
f2314


, f (3) =




f4213
f2431
f3124
f1342


.

Together with the transpositions P12, each class defines a
closed path in Fig. 1 that contains eight elements. Now,
take the sum of the entries in each column vector and
(anti-)symmetrize with P± = 1 ± P12:

ψ±
i = P±

4∑

k=1

f
(i)
k , i = 1, 2, 3 . (4)

The resulting six combinations constitute the singlets and
doublets, which have the same structure as the multiplets
in S3 (cf. Eq. (??) in Ref. [? ]):

S = (ψ1 + ψ2 + ψ3)
+
,

A = (ψ1 + ψ2 + ψ3)
−

,

D1 =

[
(ψ2 − ψ3)

−

− 1√
3

(ψ2 + ψ3 − 2ψ1)
+

]
,

D2 =

[
1√
3

(ψ2 + ψ3 − 2ψ1)
−

(ψ2 − ψ3)
+

]
.

(5)

Notes on the photon four-point function

I. PERMUTATION GROUP

A. Permutation-group multiplets

The permutation group S4 consists of 4! = 24 elements.
Each permutation of an object f1234 can be reconstructed
from two group elements, a transposition P12 and a 4-
cycle P1234. (The former interchanges the indices 1 ↔ 2,
whereas in the latter each index is replaced by its neigh-
bor on the right: 1 → 2, 2 → 3, 3 → 4, 4 → 1.) For
example, one has

P23 = (P1234)
2 P12 P1234 P12 ,

P34 = P12 (P1234)
2 P12 (P1234)

2 P12 .
(1)

This leads to the Cayley graph in Fig. 1 which repre-
sents the group manifold as a geometric structure made
of squares and hexagons. The squares contain the ele-
ments that are connected to each other by 4-cycles, for
example

f1234
P1234−−−→ f2341

P1234−−−→ f3412
P1234−−−→ f4123 . (2)

In total there are six squares with four elements each.
They are connected to each other by transpositions P12

which generates the hexagons. The two permutation
chains in Eq. (1) then correspond to paths along the Cay-
ley diagram. Instead of P12 and P1234 it is also common
practice to span the group by the transpositions P12, P23

and P34 which leads to a similar Cayley graph.
One can rearrange the 24 permutations in terms of

multiplets that transform under the irreducible represen-
tations of the S4. In terms of Young diagrams, one has
the following possibilities:

S T +
i Dj T −

i A

S and A are the singlets which are completely symmet-
ric or antisymmetric. The doublets Dj (j = 1, 2) form
a two-dimensional irreducible subspace. The triplets T +

i
and T −

i (i = 1, 2, 3) transform under inequivalent irre-
ducible representations and thereby form two different
three-dimensional subspaces. In the following we will de-
note their elements by

T ±
i =




u
v
w



±

i

, Dj =

[
a
s

]

j

. (3)

For the explicit construction of the multiplets it is help-
ful to group the 24 permutations of an element f1234 into

1234

2341

3412

4123
3142

2431

4213

1324

2314

1243

4132

4231

1342

3124

3214

2413

4321

1432

1423

4312

3241

2134 3421

2143

FIG. 1. Cayley graph for the group S4, also known as ’per-
mutohedron of order 4’. (Based on a figure from Wikipedia.)

the following three subclasses (s, t, u channel):

f (1) =




f1234
f3412
f2143
f4321


, f (2) =




f3241
f1423
f4132
f2314


, f (3) =




f4213
f2431
f3124
f1342


.

Together with the transpositions P12, each class defines a
closed path in Fig. 1 that contains eight elements. Now,
take the sum of the entries in each column vector and
(anti-)symmetrize with P± = 1 ± P12:

ψ±
i = P±

4∑

k=1

f
(i)
k , i = 1, 2, 3 . (4)

The resulting six combinations constitute the singlets and
doublets, which have the same structure as the multiplets
in S3 (cf. Eq. (??) in Ref. [? ]):

S = (ψ1 + ψ2 + ψ3)
+
,

A = (ψ1 + ψ2 + ψ3)
−

,

D1 =

[
(ψ2 − ψ3)

−

− 1√
3

(ψ2 + ψ3 − 2ψ1)
+

]
,

D2 =

[
1√
3

(ψ2 + ψ3 − 2ψ1)
−

(ψ2 − ψ3)
+

]
.

(5)

Notes on the photon four-point function

I. PERMUTATION GROUP

A. Permutation-group multiplets

The permutation group S4 consists of 4! = 24 elements.
Each permutation of an object f1234 can be reconstructed
from two group elements, a transposition P12 and a 4-
cycle P1234. (The former interchanges the indices 1 ↔ 2,
whereas in the latter each index is replaced by its neigh-
bor on the right: 1 → 2, 2 → 3, 3 → 4, 4 → 1.) For
example, one has

P23 = (P1234)
2 P12 P1234 P12 ,

P34 = P12 (P1234)
2 P12 (P1234)

2 P12 .
(1)

This leads to the Cayley graph in Fig. 1 which repre-
sents the group manifold as a geometric structure made
of squares and hexagons. The squares contain the ele-
ments that are connected to each other by 4-cycles, for
example

f1234
P1234−−−→ f2341

P1234−−−→ f3412
P1234−−−→ f4123 . (2)

In total there are six squares with four elements each.
They are connected to each other by transpositions P12

which generates the hexagons. The two permutation
chains in Eq. (1) then correspond to paths along the Cay-
ley diagram. Instead of P12 and P1234 it is also common
practice to span the group by the transpositions P12, P23

and P34 which leads to a similar Cayley graph.
One can rearrange the 24 permutations in terms of

multiplets that transform under the irreducible represen-
tations of the S4. In terms of Young diagrams, one has
the following possibilities:

S T +
i Dj T −

i A

S and A are the singlets which are completely symmet-
ric or antisymmetric. The doublets Dj (j = 1, 2) form
a two-dimensional irreducible subspace. The triplets T +

i
and T −

i (i = 1, 2, 3) transform under inequivalent irre-
ducible representations and thereby form two different
three-dimensional subspaces. In the following we will de-
note their elements by

T ±
i =




u
v
w



±

i

, Dj =

[
a
s

]

j

. (3)

For the explicit construction of the multiplets it is help-
ful to group the 24 permutations of an element f1234 into

1234

2341

3412

4123
3142

2431

4213

1324

2314

1243

4132

4231

1342

3124

3214

2413

4321

1432

1423

4312

3241

2134 3421

2143

FIG. 1. Cayley graph for the group S4, also known as ’per-
mutohedron of order 4’. (Based on a figure from Wikipedia.)

the following three subclasses (s, t, u channel):

f (1) =




f1234
f3412
f2143
f4321


, f (2) =




f3241
f1423
f4132
f2314


, f (3) =




f4213
f2431
f3124
f1342


.

Together with the transpositions P12, each class defines a
closed path in Fig. 1 that contains eight elements. Now,
take the sum of the entries in each column vector and
(anti-)symmetrize with P± = 1 ± P12:

ψ±
i = P±

4∑

k=1

f
(i)
k , i = 1, 2, 3 . (4)

The resulting six combinations constitute the singlets and
doublets, which have the same structure as the multiplets
in S3 (cf. Eq. (??) in Ref. [? ]):

S = (ψ1 + ψ2 + ψ3)
+
,

A = (ψ1 + ψ2 + ψ3)
−

,

D1 =

[
(ψ2 − ψ3)

−

− 1√
3

(ψ2 + ψ3 − 2ψ1)
+

]
,

D2 =

[
1√
3

(ψ2 + ψ3 − 2ψ1)
−

(ψ2 − ψ3)
+

]
.

(5)

Notes on the photon four-point function

I. PERMUTATION GROUP

A. Permutation-group multiplets

The permutation group S4 consists of 4! = 24 elements.
Each permutation of an object f1234 can be reconstructed
from two group elements, a transposition P12 and a 4-
cycle P1234. (The former interchanges the indices 1 ↔ 2,
whereas in the latter each index is replaced by its neigh-
bor on the right: 1 → 2, 2 → 3, 3 → 4, 4 → 1.) For
example, one has

P23 = (P1234)
2 P12 P1234 P12 ,

P34 = P12 (P1234)
2 P12 (P1234)

2 P12 .
(1)

This leads to the Cayley graph in Fig. 1 which repre-
sents the group manifold as a geometric structure made
of squares and hexagons. The squares contain the ele-
ments that are connected to each other by 4-cycles, for
example

f1234
P1234−−−→ f2341

P1234−−−→ f3412
P1234−−−→ f4123 . (2)

In total there are six squares with four elements each.
They are connected to each other by transpositions P12

which generates the hexagons. The two permutation
chains in Eq. (1) then correspond to paths along the Cay-
ley diagram. Instead of P12 and P1234 it is also common
practice to span the group by the transpositions P12, P23

and P34 which leads to a similar Cayley graph.
One can rearrange the 24 permutations in terms of

multiplets that transform under the irreducible represen-
tations of the S4. In terms of Young diagrams, one has
the following possibilities:

S T +
i Dj T −

i A

S and A are the singlets which are completely symmet-
ric or antisymmetric. The doublets Dj (j = 1, 2) form
a two-dimensional irreducible subspace. The triplets T +

i
and T −

i (i = 1, 2, 3) transform under inequivalent irre-
ducible representations and thereby form two different
three-dimensional subspaces. In the following we will de-
note their elements by

T ±
i =




u
v
w



±

i

, Dj =

[
a
s

]

j

. (3)

For the explicit construction of the multiplets it is help-
ful to group the 24 permutations of an element f1234 into

1234

2341

3412

4123
3142

2431

4213

1324

2314

1243

4132

4231

1342

3124

3214

2413

4321

1432

1423

4312

3241

2134 3421

2143

FIG. 1. Cayley graph for the group S4, also known as ’per-
mutohedron of order 4’. (Based on a figure from Wikipedia.)

the following three subclasses (s, t, u channel):

f (1) =




f1234
f3412
f2143
f4321


, f (2) =




f3241
f1423
f4132
f2314


, f (3) =




f4213
f2431
f3124
f1342


.

Together with the transpositions P12, each class defines a
closed path in Fig. 1 that contains eight elements. Now,
take the sum of the entries in each column vector and
(anti-)symmetrize with P± = 1 ± P12:

ψ±
i = P±

4∑

k=1

f
(i)
k , i = 1, 2, 3 . (4)

The resulting six combinations constitute the singlets and
doublets, which have the same structure as the multiplets
in S3 (cf. Eq. (??) in Ref. [? ]):

S = (ψ1 + ψ2 + ψ3)
+
,

A = (ψ1 + ψ2 + ψ3)
−

,

D1 =

[
(ψ2 − ψ3)

−

− 1√
3

(ψ2 + ψ3 − 2ψ1)
+

]
,

D2 =

[
1√
3

(ψ2 + ψ3 − 2ψ1)
−

(ψ2 − ψ3)
+

]
.

(5)

Notes on the photon four-point function

I. PERMUTATION GROUP

A. Permutation-group multiplets

The permutation group S4 consists of 4! = 24 elements.
Each permutation of an object f1234 can be reconstructed
from two group elements, a transposition P12 and a 4-
cycle P1234. (The former interchanges the indices 1 ↔ 2,
whereas in the latter each index is replaced by its neigh-
bor on the right: 1 → 2, 2 → 3, 3 → 4, 4 → 1.) For
example, one has

P23 = (P1234)
2 P12 P1234 P12 ,

P34 = P12 (P1234)
2 P12 (P1234)

2 P12 .
(1)

This leads to the Cayley graph in Fig. 1 which repre-
sents the group manifold as a geometric structure made
of squares and hexagons. The squares contain the ele-
ments that are connected to each other by 4-cycles, for
example

f1234
P1234−−−→ f2341

P1234−−−→ f3412
P1234−−−→ f4123 . (2)

In total there are six squares with four elements each.
They are connected to each other by transpositions P12

which generates the hexagons. The two permutation
chains in Eq. (1) then correspond to paths along the Cay-
ley diagram. Instead of P12 and P1234 it is also common
practice to span the group by the transpositions P12, P23

and P34 which leads to a similar Cayley graph.
One can rearrange the 24 permutations in terms of

multiplets that transform under the irreducible represen-
tations of the S4. In terms of Young diagrams, one has
the following possibilities:

S T +
i Dj T −

i A

S and A are the singlets which are completely symmet-
ric or antisymmetric. The doublets Dj (j = 1, 2) form
a two-dimensional irreducible subspace. The triplets T +

i
and T −

i (i = 1, 2, 3) transform under inequivalent irre-
ducible representations and thereby form two different
three-dimensional subspaces. In the following we will de-
note their elements by

T ±
i =




u
v
w



±

i

, Dj =

[
a
s

]

j

. (3)

For the explicit construction of the multiplets it is help-
ful to group the 24 permutations of an element f1234 into

1234

2341

3412

4123
3142

2431

4213

1324

2314

1243

4132

4231

1342

3124

3214

2413

4321

1432

1423

4312

3241

2134 3421

2143

FIG. 1. Cayley graph for the group S4, also known as ’per-
mutohedron of order 4’. (Based on a figure from Wikipedia.)

the following three subclasses (s, t, u channel):

f (1) =




f1234
f3412
f2143
f4321


, f (2) =




f3241
f1423
f4132
f2314


, f (3) =




f4213
f2431
f3124
f1342


.

Together with the transpositions P12, each class defines a
closed path in Fig. 1 that contains eight elements. Now,
take the sum of the entries in each column vector and
(anti-)symmetrize with P± = 1 ± P12:

ψ±
i = P±

4∑

k=1

f
(i)
k , i = 1, 2, 3 . (4)

The resulting six combinations constitute the singlets and
doublets, which have the same structure as the multiplets
in S3 (cf. Eq. (??) in Ref. [? ]):

S = (ψ1 + ψ2 + ψ3)
+
,

A = (ψ1 + ψ2 + ψ3)
−

,

D1 =

[
(ψ2 − ψ3)

−

− 1√
3

(ψ2 + ψ3 − 2ψ1)
+

]
,

D2 =

[
1√
3

(ψ2 + ψ3 − 2ψ1)
−

(ψ2 − ψ3)
+

]
.

(5)

Notes on the photon four-point function

I. PERMUTATION GROUP

A. Permutation-group multiplets

The permutation group S4 consists of 4! = 24 elements.
Each permutation of an object f1234 can be reconstructed
from two group elements, a transposition P12 and a 4-
cycle P1234. (The former interchanges the indices 1 ↔ 2,
whereas in the latter each index is replaced by its neigh-
bor on the right: 1 → 2, 2 → 3, 3 → 4, 4 → 1.) For
example, one has

P23 = (P1234)
2 P12 P1234 P12 ,

P34 = P12 (P1234)
2 P12 (P1234)

2 P12 .
(1)

This leads to the Cayley graph in Fig. 1 which repre-
sents the group manifold as a geometric structure made
of squares and hexagons. The squares contain the ele-
ments that are connected to each other by 4-cycles, for
example

f1234
P1234−−−→ f2341

P1234−−−→ f3412
P1234−−−→ f4123 . (2)

In total there are six squares with four elements each.
They are connected to each other by transpositions P12

which generates the hexagons. The two permutation
chains in Eq. (1) then correspond to paths along the Cay-
ley diagram. Instead of P12 and P1234 it is also common
practice to span the group by the transpositions P12, P23

and P34 which leads to a similar Cayley graph.
One can rearrange the 24 permutations in terms of

multiplets that transform under the irreducible represen-
tations of the S4. In terms of Young diagrams, one has
the following possibilities:

S T +
i Dj T −

i A

S and A are the singlets which are completely symmet-
ric or antisymmetric. The doublets Dj (j = 1, 2) form
a two-dimensional irreducible subspace. The triplets T +

i
and T −

i (i = 1, 2, 3) transform under inequivalent irre-
ducible representations and thereby form two different
three-dimensional subspaces. In the following we will de-
note their elements by

T ±
i =




u
v
w



±

i

, Dj =

[
a
s

]

j

. (3)

For the explicit construction of the multiplets it is help-
ful to group the 24 permutations of an element f1234 into

1234

2341

3412

4123
3142

2431

4213

1324

2314

1243

4132

4231

1342

3124

3214

2413

4321

1432

1423

4312

3241

2134 3421

2143

FIG. 1. Cayley graph for the group S4, also known as ’per-
mutohedron of order 4’. (Based on a figure from Wikipedia.)

the following three subclasses (s, t, u channel):

f (1) =




f1234
f3412
f2143
f4321


, f (2) =




f3241
f1423
f4132
f2314


, f (3) =




f4213
f2431
f3124
f1342


.

Together with the transpositions P12, each class defines a
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ψ±
i = P±

4∑

k=1

f
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k , i = 1, 2, 3 . (4)

The resulting six combinations constitute the singlets and
doublets, which have the same structure as the multiplets
in S3 (cf. Eq. (??) in Ref. [? ]):

S = (ψ1 + ψ2 + ψ3)
+
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−
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The remaining 18 elements are reserved for the triplets.
If we generalize Eq. (4) to

a±i = P±
(
f
(i)
1 − f

(i)
2 + f

(i)
3 − f

(i)
4

)
,

b±i = P±
(
f
(i)
1 − f

(i)
2 − f

(i)
3 + f

(i)
4

)
,

c±i = P±
(
−f

(i)
1 − f

(i)
2 + f

(i)
3 + f

(i)
4

)
,

(6)

and further define (λ = ±)

(φ1)
λ
1 = λ aλ1 ,

(φ2)
λ
1 = λ bλ2 ,

(φ3)
λ
1 = λ cλ3 ,

(φ1)
λ
2 = aλ2 ,

(φ2)
λ
2 = cλ1 ,

(φ3)
λ
2 = bλ3 ,

(φ1)
λ
3 = aλ3 ,

(φ2)
λ
3 = cλ2 ,

(φ3)
λ
3 = bλ1 ,

(7)

then we can cast the triplets in a common form:

T ±
i =




√
2
3 (φ1 + φ2 + φ3)

±
i

1√
3

(φ2 + φ3 − 2φ1)
±
i

(φ2 − φ3)
∓
i


 . (8)

The doublets and triplets transform as

P12 Di = MDi ,

P23 Di = M′ Di ,

P34 Di = MDi ,

P12 T ±
i = ±H T ±

i ,

P23 T ±
i = ±H′ T ±

i ,

P34 T ±
i = ±H′′ T ±

i ,

(9)

where the two-dimensional representation matrices of the
permutations P12, P23 and P34 are given by

M =

(
−1 0

0 1

)
, M′ =

1

2

(
1 −

√
3

−
√

3 −1

)
(10)

and the three-dimensional ones by H = diag(1, 1,−1),

H′ =
1

2




2 0 0

0 −1 −
√

3

0 −
√

3 1


 ,

H′′ =
1

3




−1 −
√

8 0

−
√

8 1 0

0 0 3


 .

(11)

In principle it would have been sufficient to state the
transformation behavior under P12 and P1234 since all
permutations can be constructed from these two ele-
ments. Since P1234 = P12 P23 P34, the representation ma-
trix for P1234 in the doublet case is given by MM′ M, and
by ±HH′ H′′ for the two types of triplets. The triplets
corresponding to different Young diagrams transform un-
der inequivalent representations: the representation ma-
trices for the T −

i differ by a minus sign from those of the
T +
i , and it is not possible to rearrange the triplet entries

{u, v, w} to obtain a common transformation law.1

1 The representation matrices in Table 3.2 of the van Beveren lec-

B. Product representations

The next step is to construct all possible product rep-
resentations. The strategy is to find suitable products of
two elementary representations (S, A, Dj and T ±

i ) which
also satisfy the transformation law of Eq. (9).

• Symmetric singlets transform trivially with the
’representation matrix’ 1. The possible combina-
tions are

S S , AA , Di · Dj , T ±
i · T ±

j , (12)

where (·) is the usual dot product for vectors:

D · D′ := aa′ + ss′ ,

T · T ′ := uu′ + vv′ + ww′ .
(13)

That these combinations are singlets follows from
the orthogonality of the representation matrices.

• Antisymmetric singlets transform under −1. They
are obtained from

S A , Di ×Dj , T ±
i · T ∓

j , (14)

with the antisymmetric product

D ×D′ := as′ − sa′ . (15)

• Doublets can be constructed in various ways. S D
trivially produces a doublet, and so does the com-
bination ε (AD), where

ε =

(
0 1
−1 0

)
⇒ ε (AD) =

[
s
−a

]
A . (16)

The combination of two doublets or two triplets
also produces doublets:

Di ∗ Dj , T ±
i ∗ T ±

j , ε
(
T ±
i ∗ T ∓

j

)
, (17)

where we defined the (∗) operation as

D ∗ D′ :=

[
as′ + sa′

aa′ − ss′

]
,

T ∗ T ′ :=

[
vw′ + wv′ +

√
2 (uw′ + wu′)

ww′ − vv′ +
√

2 (uv′ + vu′)

]
.

(18)

ture notes follow if one writes instead of Eq. (3):

T +
i =




u
−v
w



+

i

, T −
i =




w
v
u



−

i

, Dj =

[
s
a

]

j

,

however at the price that Eqs. (8)–(11) and the notation for the
product representations become slightly less compact.
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ww′ − vv′ +
√

2 (uv′ + vu′)

]
.

(18)

ture notes follow if one writes instead of Eq. (3):

T +
i =




u
−v
w



+

i

, T −
i =




w
v
u



−

i

, Dj =

[
s
a

]

j

,

however at the price that Eqs. (8)–(11) and the notation for the
product representations become slightly less compact.
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• Triplets of type T + are obtained from

S T +, AT −,
T − ∨ D ,
T + ∧ D ,

T ± ∨ T ± ,
T ± ∧ T ∓ .

(19)

We defined the ’wedge’ and ’vee’ products for the
triplets

T ∧ T ′ :=




vw′ − wv′

wu′ − uw′

uv′ − vu′


 ,

T ∨ T ′ :=




vv′ + ww′ − 2uu′

uv′ + vu′ +
√

2 (vv′ − ww′)
uw′ + wu′ −

√
2 (vw′ + wv′)


 ,

(20)

and for the combination of triplet and doublet:

T ∧ D :=




vs + wa
us− 1√

2
(vs− wa)

ua + 1√
2

(va + ws)


 ,

T ∨ D :=




va− ws
ua− 1√

2
(va + ws)

−us− 1√
2

(vs− wa)


 .

(21)

The wedge product for the triplets is the usual vec-
tor product.

• Finally, triplets of type T − are obtained from

S T −, AT +,
T − ∧ D ,
T + ∨ D

T ± ∧ T ± ,
T ± ∨ T ∓ .

(22)

This list is exhaustive. As an example, suppose we want
to find all possible products of one triplet T + with itself.
The resulting six combinations u2, v2, w2, uv, uw, vw
can be rearranged in a symmetric singlet, a doublet, and
a triplet of type T +:

T + · T + = u2 + v2 + w2 ,

T + ∗ T + =

[
2w (v +

√
2u)

w2 − v2 + 2
√

2uv

]
,

T + ∨ T + =




v2 + w2 − 2u2

2uv +
√

2 (v2 − w2)

2w (u−
√

2 v)


 .

(23)

The triplet of type T − vanishes because T + ∧ T + = 0.

II. PHASE SPACE

A. Kinematics

The photon four-point function depends on the mo-
menta p1, p2, p3, p4, of which only three are inde-
pendent due to the momentum-conservation constraint
p1 + p2 + p3 + p4 = 0. The kinematics of the Bose-
symmetric photon four-point function are perhaps most
conveniently expressed in terms of s−, u− and t−channel
momenta:

p = p2 + p3 = −p1 − p4 ,

q = p3 + p1 = −p2 − p4 ,

k = p1 + p2 = −p3 − p4 ,

(24)

with the inverse relations

p1 = 1
2 (q − p + k) ,

p3 = 1
2 (q + p− k) ,

p2 = − 1
2 (q − p− k) ,

p4 = − 1
2 (q + p + k) .

(25)

The system is described by six independent Lorentz in-
variants. From the momenta above one can form the
three Mandelstam variables p2, q2, k2, and the angular
variables

ω1 = q · k, ω2 = p · k, ω3 = p · q (26)

which are related to the ’offshellness’ of the photons as
we shall see below.

As we explained in Sec. ??, for the practical calculation
of the photon four-point function it is not necessary to
compute all 24 permutations explicitly. It is sufficient to
retain only those three that transform the s−, u− and
t−channel among themselves:

t− channel : p1, p2, p3, p4 ⇔ p, q, k,

s− channel : p2, p3, p1, p4 ⇔ q, k, p, (27)

u− channel : p3, p1, p2, p4 ⇔ k, p, q.

Apparently these three transformations amount to cyclic
permutations of the variables p2, q2 k2 and also the ωi.
Because we would like to implement these permutations
with the smallest numerical effort, let us take a closer
look at the phase space that the above variables generate.
In particular we want to arrange these Lorentz invariants
in permutation-group multiplets.

Let us first find the multiplets for the four-momenta.
If we use the seed f1234 = k = p1 + p2 and perform the
steps in Eqs. (??–??), we find that only the triplet T +

is nonzero:

T + =
1

2




1√
3

(p + q + k)
1√
6

(p + q − 2k)
1√
2

(q − p)


 . (28)

These are just the three independent Jacobi momenta
of the system. When we now apply the three product
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The remaining 18 elements are reserved for the triplets.
If we generalize Eq. (4) to

a±i = P±
(
f
(i)
1 − f

(i)
2 + f

(i)
3 − f

(i)
4

)
,

b±i = P±
(
f
(i)
1 − f

(i)
2 − f

(i)
3 + f

(i)
4

)
,

c±i = P±
(
−f

(i)
1 − f

(i)
2 + f

(i)
3 + f

(i)
4

)
,

(6)

and further define (λ = ±)

(φ1)
λ
1 = λ aλ1 ,

(φ2)
λ
1 = λ bλ2 ,

(φ3)
λ
1 = λ cλ3 ,

(φ1)
λ
2 = aλ2 ,

(φ2)
λ
2 = cλ1 ,

(φ3)
λ
2 = bλ3 ,

(φ1)
λ
3 = aλ3 ,

(φ2)
λ
3 = cλ2 ,

(φ3)
λ
3 = bλ1 ,

(7)

then we can cast the triplets in a common form:

T ±
i =




√
2
3 (φ1 + φ2 + φ3)

±
i

1√
3

(φ2 + φ3 − 2φ1)
±
i

(φ2 − φ3)
∓
i


 . (8)

The doublets and triplets transform as

P12 Di = MDi ,

P23 Di = M′ Di ,

P34 Di = MDi ,

P12 T ±
i = ±H T ±

i ,

P23 T ±
i = ±H′ T ±

i ,

P34 T ±
i = ±H′′ T ±

i ,

(9)

where the two-dimensional representation matrices of the
permutations P12, P23 and P34 are given by

M =

(
−1 0

0 1

)
, M′ =

1

2

(
1 −

√
3

−
√

3 −1

)
(10)

and the three-dimensional ones by H = diag(1, 1,−1),

H′ =
1

2




2 0 0

0 −1 −
√

3

0 −
√

3 1


 ,

H′′ =
1

3




−1 −
√

8 0

−
√

8 1 0

0 0 3


 .

(11)

In principle it would have been sufficient to state the
transformation behavior under P12 and P1234 since all
permutations can be constructed from these two ele-
ments. Since P1234 = P12 P23 P34, the representation ma-
trix for P1234 in the doublet case is given by MM′ M, and
by ±HH′ H′′ for the two types of triplets. The triplets
corresponding to different Young diagrams transform un-
der inequivalent representations: the representation ma-
trices for the T −

i differ by a minus sign from those of the
T +
i , and it is not possible to rearrange the triplet entries

{u, v, w} to obtain a common transformation law.1

1 The representation matrices in Table 3.2 of the van Beveren lec-

B. Product representations

The next step is to construct all possible product rep-
resentations. The strategy is to find suitable products of
two elementary representations (S, A, Dj and T ±

i ) which
also satisfy the transformation law of Eq. (9).

• Symmetric singlets transform trivially with the
’representation matrix’ 1. The possible combina-
tions are

S S , AA , Di · Dj , T ±
i · T ±

j , (12)

where (·) is the usual dot product for vectors:

D · D′ := aa′ + ss′ ,

T · T ′ := uu′ + vv′ + ww′ .
(13)

That these combinations are singlets follows from
the orthogonality of the representation matrices.

• Antisymmetric singlets transform under −1. They
are obtained from

S A , Di ×Dj , T ±
i · T ∓

j , (14)

with the antisymmetric product

D ×D′ := as′ − sa′ . (15)

• Doublets can be constructed in various ways. S D
trivially produces a doublet, and so does the com-
bination ε (AD), where

ε =

(
0 1
−1 0

)
⇒ ε (AD) =

[
s
−a

]
A . (16)

The combination of two doublets or two triplets
also produces doublets:

Di ∗ Dj , T ±
i ∗ T ±

j , ε
(
T ±
i ∗ T ∓

j

)
, (17)

where we defined the (∗) operation as

D ∗ D′ :=

[
as′ + sa′

aa′ − ss′

]
,

T ∗ T ′ :=

[
vw′ + wv′ +

√
2 (uw′ + wu′)

ww′ − vv′ +
√

2 (uv′ + vu′)

]
.

(18)

ture notes follow if one writes instead of Eq. (3):

T +
i =




u
−v
w



+

i

, T −
i =




w
v
u



−

i

, Dj =

[
s
a

]

j

,

however at the price that Eqs. (8)–(11) and the notation for the
product representations become slightly less compact.
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also produces doublets:
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• Triplets of type T + are obtained from

S T +, AT −,
T − ∨ D ,
T + ∧ D ,

T ± ∨ T ± ,
T ± ∧ T ∓ .

(19)

We defined the ’wedge’ and ’vee’ products for the
triplets

T ∧ T ′ :=




vw′ − wv′

wu′ − uw′

uv′ − vu′


 ,

T ∨ T ′ :=




vv′ + ww′ − 2uu′

uv′ + vu′ +
√

2 (vv′ − ww′)
uw′ + wu′ −

√
2 (vw′ + wv′)


 ,

(20)

and for the combination of triplet and doublet:

T ∧ D :=




vs + wa
us− 1√

2
(vs− wa)

ua + 1√
2

(va + ws)


 ,

T ∨ D :=




va− ws
ua− 1√

2
(va + ws)

−us− 1√
2

(vs− wa)


 .

(21)

The wedge product for the triplets is the usual vec-
tor product.

• Finally, triplets of type T − are obtained from

S T −, AT +,
T − ∧ D ,
T + ∨ D

T ± ∧ T ± ,
T ± ∨ T ∓ .

(22)

This list is exhaustive. As an example, suppose we want
to find all possible products of one triplet T + with itself.
The resulting six combinations u2, v2, w2, uv, uw, vw
can be rearranged in a symmetric singlet, a doublet, and
a triplet of type T +:

T + · T + = u2 + v2 + w2 ,

T + ∗ T + =

[
2w (v +

√
2u)

w2 − v2 + 2
√

2uv

]
,

T + ∨ T + =




v2 + w2 − 2u2

2uv +
√

2 (v2 − w2)

2w (u−
√

2 v)


 .

(23)

The triplet of type T − vanishes because T + ∧ T + = 0.

II. PHASE SPACE

A. Kinematics

The photon four-point function depends on the mo-
menta p1, p2, p3, p4, of which only three are inde-
pendent due to the momentum-conservation constraint
p1 + p2 + p3 + p4 = 0. The kinematics of the Bose-
symmetric photon four-point function are perhaps most
conveniently expressed in terms of s−, u− and t−channel
momenta:

p = p2 + p3 = −p1 − p4 ,

q = p3 + p1 = −p2 − p4 ,

k = p1 + p2 = −p3 − p4 ,

(24)

with the inverse relations

p1 = 1
2 (q − p + k) ,

p3 = 1
2 (q + p− k) ,

p2 = − 1
2 (q − p− k) ,

p4 = − 1
2 (q + p + k) .

(25)

The system is described by six independent Lorentz in-
variants. From the momenta above one can form the
three Mandelstam variables p2, q2, k2, and the angular
variables

ω1 = q · k, ω2 = p · k, ω3 = p · q (26)

which are related to the ’offshellness’ of the photons as
we shall see below.

As we explained in Sec. ??, for the practical calculation
of the photon four-point function it is not necessary to
compute all 24 permutations explicitly. It is sufficient to
retain only those three that transform the s−, u− and
t−channel among themselves:

t− channel : p1, p2, p3, p4 ⇔ p, q, k,

s− channel : p2, p3, p1, p4 ⇔ q, k, p, (27)

u− channel : p3, p1, p2, p4 ⇔ k, p, q.

Apparently these three transformations amount to cyclic
permutations of the variables p2, q2 k2 and also the ωi.
Because we would like to implement these permutations
with the smallest numerical effort, let us take a closer
look at the phase space that the above variables generate.
In particular we want to arrange these Lorentz invariants
in permutation-group multiplets.

Let us first find the multiplets for the four-momenta.
If we use the seed f1234 = k = p1 + p2 and perform the
steps in Eqs. (??–??), we find that only the triplet T +

is nonzero:

T + =
1

2




1√
3

(p + q + k)
1√
6

(p + q − 2k)
1√
2

(q − p)


 . (28)

These are just the three independent Jacobi momenta
of the system. When we now apply the three product

6 Lorentz invariants form singlet      , doublet     , triplet 0S +TD

3 independent momenta:  

S4 multiplets

Bose symmetry:

6 Lorentz invariants: 
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µνρστ). . .(if
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136∑
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Notes on the photon four-point function

I. PERMUTATION GROUP

A. Permutation-group multiplets

The permutation group S4 consists of 4! = 24 elements.
Each permutation of an object f1234 can be reconstructed
from two group elements, a transposition P12 and a 4-
cycle P1234. (The former interchanges the indices 1 ↔ 2,
whereas in the latter each index is replaced by its neigh-
bor on the right: 1 → 2, 2 → 3, 3 → 4, 4 → 1.) For
example, one has

P23 = (P1234)
2 P12 P1234 P12 ,

P34 = P12 (P1234)
2 P12 (P1234)

2 P12 .
(1)

This leads to the Cayley graph in Fig. 1 which repre-
sents the group manifold as a geometric structure made
of squares and hexagons. The squares contain the ele-
ments that are connected to each other by 4-cycles, for
example

f1234
P1234−−−→ f2341

P1234−−−→ f3412
P1234−−−→ f4123 . (2)

In total there are six squares with four elements each.
They are connected to each other by transpositions P12

which generates the hexagons. The two permutation
chains in Eq. (1) then correspond to paths along the Cay-
ley diagram. Instead of P12 and P1234 it is also common
practice to span the group by the transpositions P12, P23

and P34 which leads to a similar Cayley graph.
One can rearrange the 24 permutations in terms of

multiplets that transform under the irreducible represen-
tations of the S4. In terms of Young diagrams, one has
the following possibilities:

S T +
i Dj T −

i A

S and A are the singlets which are completely symmet-
ric or antisymmetric. The doublets Dj (j = 1, 2) form
a two-dimensional irreducible subspace. The triplets T +

i
and T −

i (i = 1, 2, 3) transform under inequivalent irre-
ducible representations and thereby form two different
three-dimensional subspaces. In the following we will de-
note their elements by

T ±
i =




u
v
w



±

i

, Dj =

[
a
s

]

j

. (3)

For the explicit construction of the multiplets it is help-
ful to group the 24 permutations of an element f1234 into

1234

2341

3412

4123
3142

2431

4213

1324

2314

1243

4132

4231

1342

3124

3214

2413

4321

1432

1423

4312

3241

2134 3421

2143

FIG. 1. Cayley graph for the group S4, also known as ’per-
mutohedron of order 4’. (Based on a figure from Wikipedia.)

the following three subclasses (s, t, u channel):

f (1) =




f1234
f3412
f2143
f4321


, f (2) =




f3241
f1423
f4132
f2314


, f (3) =




f4213
f2431
f3124
f1342


.

Together with the transpositions P12, each class defines a
closed path in Fig. 1 that contains eight elements. Now,
take the sum of the entries in each column vector and
(anti-)symmetrize with P± = 1 ± P12:

ψ±
i = P±

4∑

k=1

f
(i)
k , i = 1, 2, 3 . (4)

The resulting six combinations constitute the singlets and
doublets, which have the same structure as the multiplets
in S3 (cf. Eq. (??) in Ref. [? ]):

S = (ψ1 + ψ2 + ψ3)
+
,

A = (ψ1 + ψ2 + ψ3)
−

,

D1 =

[
(ψ2 − ψ3)

−

− 1√
3

(ψ2 + ψ3 − 2ψ1)
+

]
,

D2 =

[
1√
3

(ψ2 + ψ3 − 2ψ1)
−

(ψ2 − ψ3)
+

]
.

(5)
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(anti-)symmetrize with P± = 1 ± P12:

ψ±
i = P±

4∑

k=1

f
(i)
k , i = 1, 2, 3 . (4)

The resulting six combinations constitute the singlets and
doublets, which have the same structure as the multiplets
in S3 (cf. Eq. (??) in Ref. [? ]):

S = (ψ1 + ψ2 + ψ3)
+
,

A = (ψ1 + ψ2 + ψ3)
−

,

D1 =

[
(ψ2 − ψ3)

−

− 1√
3

(ψ2 + ψ3 − 2ψ1)
+

]
,

D2 =

[
1√
3

(ψ2 + ψ3 − 2ψ1)
−

(ψ2 − ψ3)
+

]
.

(5)

Notes on the photon four-point function

I. PERMUTATION GROUP

A. Permutation-group multiplets

The permutation group S4 consists of 4! = 24 elements.
Each permutation of an object f1234 can be reconstructed
from two group elements, a transposition P12 and a 4-
cycle P1234. (The former interchanges the indices 1 ↔ 2,
whereas in the latter each index is replaced by its neigh-
bor on the right: 1 → 2, 2 → 3, 3 → 4, 4 → 1.) For
example, one has

P23 = (P1234)
2 P12 P1234 P12 ,

P34 = P12 (P1234)
2 P12 (P1234)

2 P12 .
(1)

This leads to the Cayley graph in Fig. 1 which repre-
sents the group manifold as a geometric structure made
of squares and hexagons. The squares contain the ele-
ments that are connected to each other by 4-cycles, for
example

f1234
P1234−−−→ f2341

P1234−−−→ f3412
P1234−−−→ f4123 . (2)

In total there are six squares with four elements each.
They are connected to each other by transpositions P12

which generates the hexagons. The two permutation
chains in Eq. (1) then correspond to paths along the Cay-
ley diagram. Instead of P12 and P1234 it is also common
practice to span the group by the transpositions P12, P23

and P34 which leads to a similar Cayley graph.
One can rearrange the 24 permutations in terms of

multiplets that transform under the irreducible represen-
tations of the S4. In terms of Young diagrams, one has
the following possibilities:

S T +
i Dj T −

i A

S and A are the singlets which are completely symmet-
ric or antisymmetric. The doublets Dj (j = 1, 2) form
a two-dimensional irreducible subspace. The triplets T +

i
and T −

i (i = 1, 2, 3) transform under inequivalent irre-
ducible representations and thereby form two different
three-dimensional subspaces. In the following we will de-
note their elements by

T ±
i =




u
v
w



±

i

, Dj =

[
a
s

]

j

. (3)

For the explicit construction of the multiplets it is help-
ful to group the 24 permutations of an element f1234 into

1234

2341

3412

4123
3142

2431

4213

1324

2314

1243

4132

4231

1342

3124

3214

2413

4321

1432

1423

4312

3241

2134 3421

2143

FIG. 1. Cayley graph for the group S4, also known as ’per-
mutohedron of order 4’. (Based on a figure from Wikipedia.)

the following three subclasses (s, t, u channel):

f (1) =




f1234
f3412
f2143
f4321


, f (2) =




f3241
f1423
f4132
f2314


, f (3) =




f4213
f2431
f3124
f1342


.

Together with the transpositions P12, each class defines a
closed path in Fig. 1 that contains eight elements. Now,
take the sum of the entries in each column vector and
(anti-)symmetrize with P± = 1 ± P12:

ψ±
i = P±

4∑

k=1

f
(i)
k , i = 1, 2, 3 . (4)

The resulting six combinations constitute the singlets and
doublets, which have the same structure as the multiplets
in S3 (cf. Eq. (??) in Ref. [? ]):

S = (ψ1 + ψ2 + ψ3)
+
,

A = (ψ1 + ψ2 + ψ3)
−

,

D1 =

[
(ψ2 − ψ3)

−

− 1√
3

(ψ2 + ψ3 − 2ψ1)
+

]
,

D2 =

[
1√
3

(ψ2 + ψ3 − 2ψ1)
−

(ψ2 − ψ3)
+

]
.

(5)

⟶ ⟶

symmetric
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• Triplets of type T + are obtained from

S T +, AT −,
T − ∨ D ,
T + ∧ D ,

T ± ∨ T ± ,
T ± ∧ T ∓ .

(19)

We defined the ’wedge’ and ’vee’ products for the
triplets

T ∧ T ′ :=




vw′ − wv′

wu′ − uw′

uv′ − vu′


 ,

T ∨ T ′ :=




vv′ + ww′ − 2uu′

uv′ + vu′ +
√

2 (vv′ − ww′)
uw′ + wu′ −

√
2 (vw′ + wv′)


 ,

(20)

and for the combination of triplet and doublet:

T ∧ D :=




vs + wa
us− 1√

2
(vs− wa)

ua + 1√
2

(va + ws)


 ,

T ∨ D :=




va− ws
ua− 1√

2
(va + ws)

−us− 1√
2

(vs− wa)


 .

(21)

The wedge product for the triplets is the usual vec-
tor product.

• Finally, triplets of type T − are obtained from

S T −, AT +,
T − ∧ D ,
T + ∨ D

T ± ∧ T ± ,
T ± ∨ T ∓ .

(22)

This list is exhaustive. As an example, suppose we want
to find all possible products of one triplet T + with itself.
The resulting six combinations u2, v2, w2, uv, uw, vw
can be rearranged in a symmetric singlet, a doublet, and
a triplet of type T +:

T + · T + = u2 + v2 + w2 ,

T + ∗ T + =

[
2w (v +

√
2u)

w2 − v2 + 2
√

2uv

]
,

T + ∨ T + =




v2 + w2 − 2u2

2uv +
√

2 (v2 − w2)

2w (u−
√

2 v)


 .

(23)

The triplet of type T − vanishes because T + ∧ T + = 0.

II. PHASE SPACE

A. Kinematics

The photon four-point function depends on the mo-
menta p1, p2, p3, p4, of which only three are inde-
pendent due to the momentum-conservation constraint
p1 + p2 + p3 + p4 = 0. The kinematics of the Bose-
symmetric photon four-point function are perhaps most
conveniently expressed in terms of s−, u− and t−channel
momenta:

p = p2 + p3 = −p1 − p4 ,

q = p3 + p1 = −p2 − p4 ,

k = p1 + p2 = −p3 − p4 ,

(24)

with the inverse relations

p1 = 1
2 (q − p + k) ,

p3 = 1
2 (q + p− k) ,

p2 = − 1
2 (q − p− k) ,

p4 = − 1
2 (q + p + k) .

(25)

The system is described by six independent Lorentz in-
variants. From the momenta above one can form the
three Mandelstam variables p2, q2, k2, and the angular
variables

ω1 = q · k, ω2 = p · k, ω3 = p · q (26)

which are related to the ’offshellness’ of the photons as
we shall see below.

As we explained in Sec. ??, for the practical calculation
of the photon four-point function it is not necessary to
compute all 24 permutations explicitly. It is sufficient to
retain only those three that transform the s−, u− and
t−channel among themselves:

t− channel : p1, p2, p3, p4 ⇔ p, q, k,

s− channel : p2, p3, p1, p4 ⇔ q, k, p, (27)

u− channel : p3, p1, p2, p4 ⇔ k, p, q.

Apparently these three transformations amount to cyclic
permutations of the variables p2, q2 k2 and also the ωi.
Because we would like to implement these permutations
with the smallest numerical effort, let us take a closer
look at the phase space that the above variables generate.
In particular we want to arrange these Lorentz invariants
in permutation-group multiplets.

Let us first find the multiplets for the four-momenta.
If we use the seed f1234 = k = p1 + p2 and perform the
steps in Eqs. (??–??), we find that only the triplet T +

is nonzero:

T + =
1

2




1√
3

(p + q + k)
1√
6

(p + q − 2k)
1√
2

(q − p)


 . (28)

These are just the three independent Jacobi momenta
of the system. When we now apply the three product
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FIG. 5. Different kinematic points in the doublet triangle (bottom row) and the corresponding spacelike regions within the
triplet tetrahedron (top row). The alignments are the same as in Figs. 3 and 4. A rotation ϕ → ϕ ± 2π

3
will also rotate the

tetrahedron. The leftmost panel (r = 0) contains both the central limit (R = 0) and the symmetric limit (R = 2, the corners
of the spacelike volume).

be weakest in the corners of the doublet triangle (where
the triplet volume shrinks to the point R = 0) and
strongest at the centers of its sides (where the triplet
extends to the edges of the tetrahedron at R = 2).

Generally, while the spacelike interior of the triangle
and the tetrahedron is free of singularities, one- and two-
photon poles will therefore influence the behavior of the
dressing functions from the timelike domain. The case
of the four-gluon vertex is similar: one expects soft-
gluon divergencies at the tetrahedron’s surface (analo-
gous to the three-gluon vertex) but also glueball bound-
state poles that form triangles in the doublet plane.

C. Special momentum configurations

We conclude this section by discussing some special
momentum configurations.

(i) Uniform soft limit: all momenta vanish simulta-
neously, p = q = k = 0, and consequently also all Lorentz
invariants are zero. This is the limit S0 = 0.

(ii) Central limit: the Mandelstam momenta have
the same length and are orthogonal to each other:

p2 = q2 = k2 = 4
3 S0, ω1 = ω2 = ω3 = 0 . (78)

Therefore only S0 �= 0, whereas a = s = u = v = w = 0.
This is the center of the triangle and the tetrahedron.
The doublet and triplet radii vanish, r = R = 0, and all
photon virtualities are equal: xi = S0.

(iii) Symmetric limit: all Mandelstam momenta are
equal: p = q = k, which entails p1 = p2 = p3 = −3p4.
Therefore also all Lorentz-invariants are identical:

p2 = q2 = k2 = ω1 = ω2 = ω3 = 4
3 S0 . (79)

This entails a = s = v = w = 0 but u = −2, and hence
r = 0, θ = 0 and R = 2 (or equivalently R̂ = 1). The
photon virtualities are

x1 = x2 = x3 = 1
3 S0, x4 = 3S0 . (80)

(iv) Soft-photon limit: one external momentum
vanishes, e.g. p4 = 0 and therefore p + q + k = 0. This
is the phase space relevant for the g− 2 calculation. The
variables p2, q2 and k2 are still independent but

ω1 = 1
2 (p2 − q2 − k2),

ω2 = − 1
2 (p2 − q2 + k2),

ω3 = − 1
2 (p2 + q2 − k2) .

(81)

In terms of doublet and triplet variables, S0, a and s
remain independent whereas

u = 1, v = −
√

2s, w = −
√

2a .

This is the lower face of the tetrahedron in Fig. 4 whose
remaining variables v and w are now proportional to
those in the Mandelstam triangle s and a. The triplet
variables from Eq. (71) become

R2 = 1 + 2r2, cos θ = − 1√
1 + 2r2

, φ = ϕ .

fixed doublet variables ⟹ complicated geometric object inside tetrahedron:

    1
  

  0.9
  relevant

for g-2

3

• Triplets of type T + are obtained from

S T +, AT −,
T − ∨ D ,
T + ∧ D ,

T ± ∨ T ± ,
T ± ∧ T ∓ .

(19)

We defined the ’wedge’ and ’vee’ products for the
triplets

T ∧ T ′ :=




vw′ − wv′

wu′ − uw′

uv′ − vu′


 ,

T ∨ T ′ :=




vv′ + ww′ − 2uu′

uv′ + vu′ +
√

2 (vv′ − ww′)
uw′ + wu′ −

√
2 (vw′ + wv′)


 ,

(20)

and for the combination of triplet and doublet:

T ∧ D :=




vs + wa
us− 1√

2
(vs− wa)

ua + 1√
2

(va + ws)


 ,

T ∨ D :=




va− ws
ua− 1√

2
(va + ws)

−us− 1√
2

(vs− wa)


 .

(21)

The wedge product for the triplets is the usual vec-
tor product.

• Finally, triplets of type T − are obtained from

S T −, AT +,
T − ∧ D ,
T + ∨ D

T ± ∧ T ± ,
T ± ∨ T ∓ .

(22)

This list is exhaustive. As an example, suppose we want
to find all possible products of one triplet T + with itself.
The resulting six combinations u2, v2, w2, uv, uw, vw
can be rearranged in a symmetric singlet, a doublet, and
a triplet of type T +:

T + · T + = u2 + v2 + w2 ,

T + ∗ T + =

[
2w (v +

√
2u)

w2 − v2 + 2
√

2uv

]
,

T + ∨ T + =




v2 + w2 − 2u2

2uv +
√

2 (v2 − w2)

2w (u−
√

2 v)


 .

(23)

The triplet of type T − vanishes because T + ∧ T + = 0.

II. PHASE SPACE

A. Kinematics

The photon four-point function depends on the mo-
menta p1, p2, p3, p4, of which only three are inde-
pendent due to the momentum-conservation constraint
p1 + p2 + p3 + p4 = 0. The kinematics of the Bose-
symmetric photon four-point function are perhaps most
conveniently expressed in terms of s−, u− and t−channel
momenta:

p = p2 + p3 = −p1 − p4 ,

q = p3 + p1 = −p2 − p4 ,

k = p1 + p2 = −p3 − p4 ,

(24)

with the inverse relations

p1 = 1
2 (q − p + k) ,

p3 = 1
2 (q + p− k) ,

p2 = − 1
2 (q − p− k) ,

p4 = − 1
2 (q + p + k) .

(25)

The system is described by six independent Lorentz in-
variants. From the momenta above one can form the
three Mandelstam variables p2, q2, k2, and the angular
variables

ω1 = q · k, ω2 = p · k, ω3 = p · q (26)

which are related to the ’offshellness’ of the photons as
we shall see below.

As we explained in Sec. ??, for the practical calculation
of the photon four-point function it is not necessary to
compute all 24 permutations explicitly. It is sufficient to
retain only those three that transform the s−, u− and
t−channel among themselves:

t− channel : p1, p2, p3, p4 ⇔ p, q, k,

s− channel : p2, p3, p1, p4 ⇔ q, k, p, (27)

u− channel : p3, p1, p2, p4 ⇔ k, p, q.

Apparently these three transformations amount to cyclic
permutations of the variables p2, q2 k2 and also the ωi.
Because we would like to implement these permutations
with the smallest numerical effort, let us take a closer
look at the phase space that the above variables generate.
In particular we want to arrange these Lorentz invariants
in permutation-group multiplets.

Let us first find the multiplets for the four-momenta.
If we use the seed f1234 = k = p1 + p2 and perform the
steps in Eqs. (??–??), we find that only the triplet T +

is nonzero:

T + =
1

2




1√
3

(p + q + k)
1√
6

(p + q − 2k)
1√
2

(q − p)


 . (28)

These are just the three independent Jacobi momenta
of the system. When we now apply the three product
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Tensor basis I

construct all possible multiplets
from generic seed elements:
138 elements, but only 136 independent

Dressing functions form multiplets too 
⟹ expand them into singlets:

Singlets depend (almost) only on      ,
dependence on      ,        absorbed in basis

This works extremely well!

removing the “wrong ones” leads to
kinematic singularities!

14

n Seed # Multiplet type

0 δµνδρσ 3 S, D1

2 δµν kρ kσ 6 S, D1, T +
1

δµν pρ pσ 12 S, D1, D2, T ±
1 , A

δµν pρ qσ 12 S, D1, T +
1 , T ±

2

δµν pρ kσ 24 S, D1, D2, T ±
1 , T ±

2 , T ±
3 , A

4 pµ pν pρ pσ 3 S, D1

pµ pν qρ qσ 6 S, D1, T −
1

pµ pν kρ kσ 10 S, (D1,) D2, T ±
1 , A

pµ qν kρ kσ 12 S, D1, T +
1 , T ±

2

pµ pν pρ kσ 24 S, D1, D2, T ±
1 , T ±

2 , T ±
3 , A

pµ pν qρ kσ 24 S, D1, D2, T ±
1 , T ±

2 , T ±
3 , A

TABLE I. 136-dimensional tensor basis for the 4PA; transver-
sality is not yet implemented. The last row produces six inde-
pendent combinations but the doublet is linearly dependent
due to the spacetime restriction (its inclusion would lead to
138 instead of 136 tensor structures).

with

∆ = p2 q2 k2 − p2 ω2
1 − q2 ω2

2 − k2 ω2
3 + 2ω1 ω2 ω3 (90)

and

α1 = q2 k2 − ω2
1 ,

α2 = p2 k2 − ω2
2 ,

α3 = p2 q2 − ω2
3 ,

β1 = p2 ω1 − ω2 ω3,

β2 = q2 ω2 − ω1 ω3,

β3 = k2 ω3 − ω1 ω2.

(91)

The function ∆ vanishes at the spacelike surface, see
Eq. (74); in that limit V µV ν and δµν are no longer lin-
early related. Hence, V µV νV ρV σ cannot generally re-
place any of the tensor structures that contain Kronecker
deltas but rather those with mass dimension n = 4. We
tested various options by calculating the quark loop and
projecting onto Table I upon removing different doublets.
Removing any two singlets does not work because the re-
sulting bases are linearly dependent. The only safe choice
turned out be eliminating the doublet D1 for the seed
pµ pν kρ kσ; this leads to dressing functions that are free
of kinematic singularities and well-behaved.

Since each seed produces only one symmetric singlet
and there are 11 singlets in total, this is also the mini-
mum number of independent form factors in the 4PA.
In principle, all 136 dressing dressing functions can be
reconstructed from those eleven through permutations.
However, our goal is different: we want to recast all dress-
ing functions in permutation-group singlets so that their
momentum dependencies become simple.

To this end we also have to expand the dressing func-
tions that correspond to the basis elements in Table I
(which we equip now with a subscript ’B’ for ’basis’) into
multiplets. So far, the contribution from any doublet or
triplet to the 4PA has the form

M = · · · +
[
d1
d2

]
· DB + · · · +



t1
t2
t3


 · T +

B + . . . , (92)

where the dk and tk are the Lorentz-invariant dressing
functions that are obtained numerically. Since the 4PA
is Bose-symmetric, they also form doublets, triplets etc.
Hence, we can expand them into the same types of mul-
tiplets in momentum space (subscript ’M’):

[
d1
d2

]
=

2∑

k=1

d̃k D(k)
M ,



t1
t2
t3


 =

3∑

k=1

t̃k T +
M

(k)
, (93)

etc., where the new dressing functions d̃k and t̃k are now
permutation-group singlets.

In principle this is equivalent to constructing singlets
from the basis elements according to Eq. (28):

D(k)
M · DB, T +

M

(k) · T +
B , . . . (94)

A doublet DB contains two Lorentz tensors and therefore
it can generate two singlets, so we must find two indepen-
dent momentum doublets to contract it with. A triplet
or antitriplet containts three Lorentz tensors and hence
we need three triplets and three antitriplets in momen-
tum space. These should have the lowest possible mass
dimension to avoid kinematic singularities.

The lowest-dimensional multiplets that one can con-
struct from the Lorentz invariants S0, D0 and T0 in
Eq. (54) are collected in Table II. D0 and T0 both con-
tribute with mass dimension n = 2, their bilinears have
n = 4 etc. Up to n = 4 there are three doublets, three
triplets and one antitriplet; the remaining antitriplets
and antisinglets come with n ≥ 6. We have also stated
the powers nD and nT that count how many doublets
D0 or triplets T0 appear in the product; via Eqs. (60)
and (71) these are the powers in the radii r and R.

Note that each slot in Table II for given n, nD and nT
contains at most one element. In principle, for higher
n there are several possibilities to construct multiplets
within the same class but they are all identical up to
numerical factors. These possibilities are collected in
App. ??. An empty slot either means that (a) the re-
spective multiplet is forbidden by the construction rules
in Sec. III C, for example in the case n = 4: a doublet
and triplet cannot be combined to a singlet, doublet or
antisinglet; (b) the multiplet is allowed but vanishes, for
example D ∧ D = 0, T ∧ T = 0, T ∗ (T ∨ T ) = 0; or
(c) the multiplet is allowed, but by factorizing out sin-
glets it can be reduced to lower-dimensional ones, e.g.
D ∗ (D ∗ D) = (D · D)D.

),1D(
+

1

]

•
•

[
)0S(1c +

2

]

•
•

[
)0S(2c=

]

2f
1f

[
)0T,0D,0S(
)0T,0D,0S( ...

0S

3

• Triplets of type T + are obtained from

S T +, AT −,
T − ∨ D ,
T + ∧ D ,

T ± ∨ T ± ,
T ± ∧ T ∓ .

(19)

We defined the ’wedge’ and ’vee’ products for the
triplets

T ∧ T ′ :=




vw′ − wv′

wu′ − uw′

uv′ − vu′


 ,

T ∨ T ′ :=




vv′ + ww′ − 2uu′

uv′ + vu′ +
√

2 (vv′ − ww′)
uw′ + wu′ −

√
2 (vw′ + wv′)


 ,

(20)

and for the combination of triplet and doublet:

T ∧ D :=




vs + wa
us− 1√

2
(vs− wa)

ua + 1√
2

(va + ws)


 ,

T ∨ D :=




va− ws
ua− 1√

2
(va + ws)

−us− 1√
2

(vs− wa)


 .

(21)

The wedge product for the triplets is the usual vec-
tor product.

• Finally, triplets of type T − are obtained from

S T −, AT +,
T − ∧ D ,
T + ∨ D

T ± ∧ T ± ,
T ± ∨ T ∓ .

(22)

This list is exhaustive. As an example, suppose we want
to find all possible products of one triplet T + with itself.
The resulting six combinations u2, v2, w2, uv, uw, vw
can be rearranged in a symmetric singlet, a doublet, and
a triplet of type T +:

T + · T + = u2 + v2 + w2 ,

T + ∗ T + =

[
2w (v +

√
2u)

w2 − v2 + 2
√

2uv

]
,

T + ∨ T + =




v2 + w2 − 2u2

2uv +
√

2 (v2 − w2)

2w (u−
√

2 v)


 .

(23)

The triplet of type T − vanishes because T + ∧ T + = 0.

II. PHASE SPACE

A. Kinematics

The photon four-point function depends on the mo-
menta p1, p2, p3, p4, of which only three are inde-
pendent due to the momentum-conservation constraint
p1 + p2 + p3 + p4 = 0. The kinematics of the Bose-
symmetric photon four-point function are perhaps most
conveniently expressed in terms of s−, u− and t−channel
momenta:

p = p2 + p3 = −p1 − p4 ,

q = p3 + p1 = −p2 − p4 ,

k = p1 + p2 = −p3 − p4 ,

(24)

with the inverse relations

p1 = 1
2 (q − p + k) ,

p3 = 1
2 (q + p− k) ,

p2 = − 1
2 (q − p− k) ,

p4 = − 1
2 (q + p + k) .

(25)

The system is described by six independent Lorentz in-
variants. From the momenta above one can form the
three Mandelstam variables p2, q2, k2, and the angular
variables

ω1 = q · k, ω2 = p · k, ω3 = p · q (26)

which are related to the ’offshellness’ of the photons as
we shall see below.

As we explained in Sec. ??, for the practical calculation
of the photon four-point function it is not necessary to
compute all 24 permutations explicitly. It is sufficient to
retain only those three that transform the s−, u− and
t−channel among themselves:

t− channel : p1, p2, p3, p4 ⇔ p, q, k,

s− channel : p2, p3, p1, p4 ⇔ q, k, p, (27)

u− channel : p3, p1, p2, p4 ⇔ k, p, q.

Apparently these three transformations amount to cyclic
permutations of the variables p2, q2 k2 and also the ωi.
Because we would like to implement these permutations
with the smallest numerical effort, let us take a closer
look at the phase space that the above variables generate.
In particular we want to arrange these Lorentz invariants
in permutation-group multiplets.

Let us first find the multiplets for the four-momenta.
If we use the seed f1234 = k = p1 + p2 and perform the
steps in Eqs. (??–??), we find that only the triplet T +

is nonzero:

T + =
1

2




1√
3

(p + q + k)
1√
6

(p + q − 2k)
1√
2

(q − p)


 . (28)

These are just the three independent Jacobi momenta
of the system. When we now apply the three product
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Tensor basis I

construct all possible multiplets
from generic seed elements:
138 elements, but only 136 independent

Dressing functions form multiplets too 
⟹ expand them into singlets:

Singlets depend (almost) only on      ,
dependence on      ,        absorbed in basis

This works extremely well!

removing the “wrong ones” leads to
kinematic singularities!

14

n Seed # Multiplet type

0 δµνδρσ 3 S, D1

2 δµν kρ kσ 6 S, D1, T +
1

δµν pρ pσ 12 S, D1, D2, T ±
1 , A

δµν pρ qσ 12 S, D1, T +
1 , T ±

2

δµν pρ kσ 24 S, D1, D2, T ±
1 , T ±

2 , T ±
3 , A

4 pµ pν pρ pσ 3 S, D1

pµ pν qρ qσ 6 S, D1, T −
1

pµ pν kρ kσ 10 S, (D1,) D2, T ±
1 , A

pµ qν kρ kσ 12 S, D1, T +
1 , T ±

2

pµ pν pρ kσ 24 S, D1, D2, T ±
1 , T ±

2 , T ±
3 , A

pµ pν qρ kσ 24 S, D1, D2, T ±
1 , T ±

2 , T ±
3 , A

TABLE I. 136-dimensional tensor basis for the 4PA; transver-
sality is not yet implemented. The last row produces six inde-
pendent combinations but the doublet is linearly dependent
due to the spacetime restriction (its inclusion would lead to
138 instead of 136 tensor structures).

with

∆ = p2 q2 k2 − p2 ω2
1 − q2 ω2

2 − k2 ω2
3 + 2ω1 ω2 ω3 (90)

and

α1 = q2 k2 − ω2
1 ,

α2 = p2 k2 − ω2
2 ,

α3 = p2 q2 − ω2
3 ,

β1 = p2 ω1 − ω2 ω3,

β2 = q2 ω2 − ω1 ω3,

β3 = k2 ω3 − ω1 ω2.

(91)

The function ∆ vanishes at the spacelike surface, see
Eq. (74); in that limit V µV ν and δµν are no longer lin-
early related. Hence, V µV νV ρV σ cannot generally re-
place any of the tensor structures that contain Kronecker
deltas but rather those with mass dimension n = 4. We
tested various options by calculating the quark loop and
projecting onto Table I upon removing different doublets.
Removing any two singlets does not work because the re-
sulting bases are linearly dependent. The only safe choice
turned out be eliminating the doublet D1 for the seed
pµ pν kρ kσ; this leads to dressing functions that are free
of kinematic singularities and well-behaved.

Since each seed produces only one symmetric singlet
and there are 11 singlets in total, this is also the mini-
mum number of independent form factors in the 4PA.
In principle, all 136 dressing dressing functions can be
reconstructed from those eleven through permutations.
However, our goal is different: we want to recast all dress-
ing functions in permutation-group singlets so that their
momentum dependencies become simple.

To this end we also have to expand the dressing func-
tions that correspond to the basis elements in Table I
(which we equip now with a subscript ’B’ for ’basis’) into
multiplets. So far, the contribution from any doublet or
triplet to the 4PA has the form

M = · · · +
[
d1
d2

]
· DB + · · · +



t1
t2
t3


 · T +

B + . . . , (92)

where the dk and tk are the Lorentz-invariant dressing
functions that are obtained numerically. Since the 4PA
is Bose-symmetric, they also form doublets, triplets etc.
Hence, we can expand them into the same types of mul-
tiplets in momentum space (subscript ’M’):

[
d1
d2

]
=

2∑

k=1

d̃k D(k)
M ,



t1
t2
t3


 =

3∑

k=1

t̃k T +
M

(k)
, (93)

etc., where the new dressing functions d̃k and t̃k are now
permutation-group singlets.

In principle this is equivalent to constructing singlets
from the basis elements according to Eq. (28):

D(k)
M · DB, T +

M

(k) · T +
B , . . . (94)

A doublet DB contains two Lorentz tensors and therefore
it can generate two singlets, so we must find two indepen-
dent momentum doublets to contract it with. A triplet
or antitriplet containts three Lorentz tensors and hence
we need three triplets and three antitriplets in momen-
tum space. These should have the lowest possible mass
dimension to avoid kinematic singularities.

The lowest-dimensional multiplets that one can con-
struct from the Lorentz invariants S0, D0 and T0 in
Eq. (54) are collected in Table II. D0 and T0 both con-
tribute with mass dimension n = 2, their bilinears have
n = 4 etc. Up to n = 4 there are three doublets, three
triplets and one antitriplet; the remaining antitriplets
and antisinglets come with n ≥ 6. We have also stated
the powers nD and nT that count how many doublets
D0 or triplets T0 appear in the product; via Eqs. (60)
and (71) these are the powers in the radii r and R.

Note that each slot in Table II for given n, nD and nT
contains at most one element. In principle, for higher
n there are several possibilities to construct multiplets
within the same class but they are all identical up to
numerical factors. These possibilities are collected in
App. ??. An empty slot either means that (a) the re-
spective multiplet is forbidden by the construction rules
in Sec. III C, for example in the case n = 4: a doublet
and triplet cannot be combined to a singlet, doublet or
antisinglet; (b) the multiplet is allowed but vanishes, for
example D ∧ D = 0, T ∧ T = 0, T ∗ (T ∨ T ) = 0; or
(c) the multiplet is allowed, but by factorizing out sin-
glets it can be reduced to lower-dimensional ones, e.g.
D ∗ (D ∗ D) = (D · D)D.
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• Triplets of type T + are obtained from

S T +, AT −,
T − ∨ D ,
T + ∧ D ,

T ± ∨ T ± ,
T ± ∧ T ∓ .

(19)

We defined the ’wedge’ and ’vee’ products for the
triplets

T ∧ T ′ :=




vw′ − wv′

wu′ − uw′

uv′ − vu′


 ,

T ∨ T ′ :=




vv′ + ww′ − 2uu′

uv′ + vu′ +
√

2 (vv′ − ww′)
uw′ + wu′ −

√
2 (vw′ + wv′)


 ,

(20)

and for the combination of triplet and doublet:

T ∧ D :=




vs + wa
us− 1√

2
(vs− wa)

ua + 1√
2

(va + ws)


 ,

T ∨ D :=




va− ws
ua− 1√

2
(va + ws)

−us− 1√
2

(vs− wa)


 .

(21)

The wedge product for the triplets is the usual vec-
tor product.

• Finally, triplets of type T − are obtained from

S T −, AT +,
T − ∧ D ,
T + ∨ D

T ± ∧ T ± ,
T ± ∨ T ∓ .

(22)

This list is exhaustive. As an example, suppose we want
to find all possible products of one triplet T + with itself.
The resulting six combinations u2, v2, w2, uv, uw, vw
can be rearranged in a symmetric singlet, a doublet, and
a triplet of type T +:

T + · T + = u2 + v2 + w2 ,

T + ∗ T + =

[
2w (v +

√
2u)

w2 − v2 + 2
√

2uv

]
,

T + ∨ T + =




v2 + w2 − 2u2

2uv +
√

2 (v2 − w2)

2w (u−
√

2 v)


 .

(23)

The triplet of type T − vanishes because T + ∧ T + = 0.

II. PHASE SPACE

A. Kinematics

The photon four-point function depends on the mo-
menta p1, p2, p3, p4, of which only three are inde-
pendent due to the momentum-conservation constraint
p1 + p2 + p3 + p4 = 0. The kinematics of the Bose-
symmetric photon four-point function are perhaps most
conveniently expressed in terms of s−, u− and t−channel
momenta:

p = p2 + p3 = −p1 − p4 ,

q = p3 + p1 = −p2 − p4 ,

k = p1 + p2 = −p3 − p4 ,

(24)

with the inverse relations

p1 = 1
2 (q − p + k) ,

p3 = 1
2 (q + p− k) ,

p2 = − 1
2 (q − p− k) ,

p4 = − 1
2 (q + p + k) .

(25)

The system is described by six independent Lorentz in-
variants. From the momenta above one can form the
three Mandelstam variables p2, q2, k2, and the angular
variables

ω1 = q · k, ω2 = p · k, ω3 = p · q (26)

which are related to the ’offshellness’ of the photons as
we shall see below.

As we explained in Sec. ??, for the practical calculation
of the photon four-point function it is not necessary to
compute all 24 permutations explicitly. It is sufficient to
retain only those three that transform the s−, u− and
t−channel among themselves:

t− channel : p1, p2, p3, p4 ⇔ p, q, k,

s− channel : p2, p3, p1, p4 ⇔ q, k, p, (27)

u− channel : p3, p1, p2, p4 ⇔ k, p, q.

Apparently these three transformations amount to cyclic
permutations of the variables p2, q2 k2 and also the ωi.
Because we would like to implement these permutations
with the smallest numerical effort, let us take a closer
look at the phase space that the above variables generate.
In particular we want to arrange these Lorentz invariants
in permutation-group multiplets.

Let us first find the multiplets for the four-momenta.
If we use the seed f1234 = k = p1 + p2 and perform the
steps in Eqs. (??–??), we find that only the triplet T +

is nonzero:

T + =
1

2




1√
3

(p + q + k)
1√
6

(p + q − 2k)
1√
2

(q − p)


 . (28)

These are just the three independent Jacobi momenta
of the system. When we now apply the three product
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Tensor basis II

To make gauge invariance explicit,
split γγγγ amplitude into

... but is it?

17

n Seed element # Multiplets n = 4 n = 6 n = 8 n = 10 n = 12

4 tµν
12 tρσ34 3 S, D1 1 1 1

εµν
12 ερσ34 3 S, D1 1 1 1

6 εµλα
1 tαν

22 ερλβ3 tβσ44 9 S, D1, D2, T +
2 , A 1 3 4 1

tµν
12 tρλ33 tλσ44 5 S, T +

1 , A 1 1 2 1

tµν
12 tρλ31 tλσ24 4 S, T +

1 1 1 2

εµν
12 ερλ31 tλσ24 5 D2, T +

2 2 3

tµ123 t
νρσ
234 3 T +

1 1 2

8 tµν
12 tρα31 tαβ

12 tβσ24 5 S, D1, D2 1 2 2

εµν
12 ερα31 tαβ

12 tβσ24 4 D1, D2 2 2

Total 41 2 5 11 17 6

TABLE III. 41-dimensional tensor basis for the transverse part of the 4PA. n denotes the mass dimension of the seed elements
and #m the number of the resulting singlets with mass dimension m.

Applying this to the two seeds (104), we arrive at two
Lorentz tensors at n = 4, two at n = 6 and two at n = 8,
cf. Table VI.

We proceed with the n = 6 case. Here one can find
many possible Lorentz tensors via suitable combinations
of (97); however, only few of them are linearly indepen-
dent. In particular we find only three singlets at n = 6,
namely those that are derived from the seed elements

ψµνρσ
3 = εµλα1 tαν22 ερλβ3 tβσ44 ,

ψµνρσ
4 = tµν12 tρλ33 t

λσ
44 ,

ψµνρσ
5 = tµν12 tρλ31 t

λσ
24 .

(106)

ψ3 mirrors the product of two axialvector currents and
will exhibit axialvector poles. ψ4 is the product of the
two scalar tensor structures in (102) and will therefore
have scalar poles. Another basis element

ψµνρσ
6 = εµν12 ερλ31 t

λσ
24 (107)

produces a singlet which is identical to S ′(ψ2) and also
encodes axialvector poles.

So far we have arrived at seven Lorentz tensors up to
n = 6. Apart from the singlets, the seeds ψ3...6 also pro-
duce further multiplets that will give singlets at n ≥ 8.
While it is not possible to saturate the basis at nmax = 8
(we are still short of 41 − 9 = 32 elements which would
all have to come at n = 8), one can achieve a satura-
tion at nmax = 10. The n = 6 doublets and triplets all
contribute up to dimension 10: a doublet produces two
singlets and a triplet three. An antitriplet contributes
only one basis element up to n = 10 and an antisymmet-
ric singlet drops out entirely. Together with two more

linearly independent seeds at n = 8,

ψµνρσ
7 = tµν12 tρα31 tαβ12 tβσ24 ,

ψµνρσ
8 = εµν12 ερα31 tαβ12 tβσ24 ,

(108)

we finally arrive at 41 transverse singlets up to n = 10
which complete the transverse basis.

The basis elements with the lowest mass dimension
(i.e., dimension four) should carry the dominant dressing
functions: the singlets constructed from ψ1 and ψ2.

VI. RESULTS FOR THE QUARK LOOP

To do:

• Show results for quark loop in NJL and DSE and
discuss their similarities/differences. (Don’t give
value for g-2; also save T-matrix/meson-pole con-
tributions for later.)

• Plot dominant dressing functions over S0. Show
angular dependence (in remaining five variables) as
bands, if possible.

• Show that gauge part is zero.

• Also pion loop?

• Is there an analytic result for the NJL quark loop
(or pion loop)?

17
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Applying this to the two seeds (104), we arrive at two
Lorentz tensors at n = 4, two at n = 6 and two at n = 8,
cf. Table VI.

We proceed with the n = 6 case. Here one can find
many possible Lorentz tensors via suitable combinations
of (97); however, only few of them are linearly indepen-
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we finally arrive at 41 transverse singlets up to n = 10
which complete the transverse basis.

The basis elements with the lowest mass dimension
(i.e., dimension four) should carry the dominant dressing
functions: the singlets constructed from ψ1 and ψ2.
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n Seed # Multiplet type

0 δµνδρσ 3 S, D1

2 δµν kρ kσ 6 S, D1, T +
1

δµν pρ pσ 12 S, D1, D2, T ±
1 , A

δµν pρ qσ 12 S, D1, T +
1 , T ±

2

δµν pρ kσ 24 S, D1, D2, T ±
1 , T ±

2 , T ±
3 , A

4 pµ pν pρ pσ 3 S, D1

pµ pν qρ qσ 6 S, D1, T −
1

pµ pν kρ kσ 10 S, (D1,) D2, T ±
1 , A

pµ qν kρ kσ 12 S, D1, T +
1 , T ±

2

pµ pν pρ kσ 24 S, D1, D2, T ±
1 , T ±

2 , T ±
3 , A

pµ pν qρ kσ 24 S, D1, D2, T ±
1 , T ±

2 , T ±
3 , A

TABLE I. 136-dimensional tensor basis for the 4PA; transver-
sality is not yet implemented. The last row produces six inde-
pendent combinations but the doublet is linearly dependent
due to the spacetime restriction (its inclusion would lead to
138 instead of 136 tensor structures).

with

∆ = p2 q2 k2 − p2 ω2
1 − q2 ω2

2 − k2 ω2
3 + 2ω1 ω2 ω3 (90)

and

α1 = q2 k2 − ω2
1 ,

α2 = p2 k2 − ω2
2 ,

α3 = p2 q2 − ω2
3 ,

β1 = p2 ω1 − ω2 ω3,

β2 = q2 ω2 − ω1 ω3,

β3 = k2 ω3 − ω1 ω2.

(91)

The function ∆ vanishes at the spacelike surface, see
Eq. (74); in that limit V µV ν and δµν are no longer lin-
early related. Hence, V µV νV ρV σ cannot generally re-
place any of the tensor structures that contain Kronecker
deltas but rather those with mass dimension n = 4. We
tested various options by calculating the quark loop and
projecting onto Table I upon removing different doublets.
Removing any two singlets does not work because the re-
sulting bases are linearly dependent. The only safe choice
turned out be eliminating the doublet D1 for the seed
pµ pν kρ kσ; this leads to dressing functions that are free
of kinematic singularities and well-behaved.

Since each seed produces only one symmetric singlet
and there are 11 singlets in total, this is also the mini-
mum number of independent form factors in the 4PA.
In principle, all 136 dressing dressing functions can be
reconstructed from those eleven through permutations.
However, our goal is different: we want to recast all dress-
ing functions in permutation-group singlets so that their
momentum dependencies become simple.

To this end we also have to expand the dressing func-
tions that correspond to the basis elements in Table I
(which we equip now with a subscript ’B’ for ’basis’) into
multiplets. So far, the contribution from any doublet or
triplet to the 4PA has the form

M = · · · +
[
d1
d2

]
· DB + · · · +



t1
t2
t3


 · T +

B + . . . , (92)

where the dk and tk are the Lorentz-invariant dressing
functions that are obtained numerically. Since the 4PA
is Bose-symmetric, they also form doublets, triplets etc.
Hence, we can expand them into the same types of mul-
tiplets in momentum space (subscript ’M’):

[
d1
d2

]
=

2∑

k=1

d̃k D(k)
M ,



t1
t2
t3


 =

3∑

k=1

t̃k T +
M

(k)
, (93)

etc., where the new dressing functions d̃k and t̃k are now
permutation-group singlets.

In principle this is equivalent to constructing singlets
from the basis elements according to Eq. (28):

D(k)
M · DB, T +

M

(k) · T +
B , . . . (94)

A doublet DB contains two Lorentz tensors and therefore
it can generate two singlets, so we must find two indepen-
dent momentum doublets to contract it with. A triplet
or antitriplet containts three Lorentz tensors and hence
we need three triplets and three antitriplets in momen-
tum space. These should have the lowest possible mass
dimension to avoid kinematic singularities.

The lowest-dimensional multiplets that one can con-
struct from the Lorentz invariants S0, D0 and T0 in
Eq. (54) are collected in Table II. D0 and T0 both con-
tribute with mass dimension n = 2, their bilinears have
n = 4 etc. Up to n = 4 there are three doublets, three
triplets and one antitriplet; the remaining antitriplets
and antisinglets come with n ≥ 6. We have also stated
the powers nD and nT that count how many doublets
D0 or triplets T0 appear in the product; via Eqs. (60)
and (71) these are the powers in the radii r and R.

Note that each slot in Table II for given n, nD and nT
contains at most one element. In principle, for higher
n there are several possibilities to construct multiplets
within the same class but they are all identical up to
numerical factors. These possibilities are collected in
App. ??. An empty slot either means that (a) the re-
spective multiplet is forbidden by the construction rules
in Sec. III C, for example in the case n = 4: a doublet
and triplet cannot be combined to a singlet, doublet or
antisinglet; (b) the multiplet is allowed but vanishes, for
example D ∧ D = 0, T ∧ T = 0, T ∗ (T ∨ T ) = 0; or
(c) the multiplet is allowed, but by factorizing out sin-
glets it can be reduced to lower-dimensional ones, e.g.
D ∗ (D ∗ D) = (D · D)D.
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n Seed # Multiplet type

0 δµνδρσ 3 S, D1

2 δµν kρ kσ 6 S, D1, T +
1

δµν pρ pσ 12 S, D1, D2, T ±
1 , A

δµν pρ qσ 12 S, D1, T +
1 , T ±

2

δµν pρ kσ 24 S, D1, D2, T ±
1 , T ±

2 , T ±
3 , A

4 pµ pν pρ pσ 3 S, D1

pµ pν qρ qσ 6 S, D1, T −
1

pµ pν kρ kσ 10 S, (D1,) D2, T ±
1 , A

pµ qν kρ kσ 12 S, D1, T +
1 , T ±

2

pµ pν pρ kσ 24 S, D1, D2, T ±
1 , T ±

2 , T ±
3 , A

pµ pν qρ kσ 24 S, D1, D2, T ±
1 , T ±

2 , T ±
3 , A

TABLE I. 136-dimensional tensor basis for the 4PA; transver-
sality is not yet implemented. The last row produces six inde-
pendent combinations but the doublet is linearly dependent
due to the spacetime restriction (its inclusion would lead to
138 instead of 136 tensor structures).

with

∆ = p2 q2 k2 − p2 ω2
1 − q2 ω2

2 − k2 ω2
3 + 2ω1 ω2 ω3 (90)

and

α1 = q2 k2 − ω2
1 ,

α2 = p2 k2 − ω2
2 ,

α3 = p2 q2 − ω2
3 ,

β1 = p2 ω1 − ω2 ω3,

β2 = q2 ω2 − ω1 ω3,

β3 = k2 ω3 − ω1 ω2.

(91)

The function ∆ vanishes at the spacelike surface, see
Eq. (74); in that limit V µV ν and δµν are no longer lin-
early related. Hence, V µV νV ρV σ cannot generally re-
place any of the tensor structures that contain Kronecker
deltas but rather those with mass dimension n = 4. We
tested various options by calculating the quark loop and
projecting onto Table I upon removing different doublets.
Removing any two singlets does not work because the re-
sulting bases are linearly dependent. The only safe choice
turned out be eliminating the doublet D1 for the seed
pµ pν kρ kσ; this leads to dressing functions that are free
of kinematic singularities and well-behaved.

Since each seed produces only one symmetric singlet
and there are 11 singlets in total, this is also the mini-
mum number of independent form factors in the 4PA.
In principle, all 136 dressing dressing functions can be
reconstructed from those eleven through permutations.
However, our goal is different: we want to recast all dress-
ing functions in permutation-group singlets so that their
momentum dependencies become simple.

To this end we also have to expand the dressing func-
tions that correspond to the basis elements in Table I
(which we equip now with a subscript ’B’ for ’basis’) into
multiplets. So far, the contribution from any doublet or
triplet to the 4PA has the form
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where the dk and tk are the Lorentz-invariant dressing
functions that are obtained numerically. Since the 4PA
is Bose-symmetric, they also form doublets, triplets etc.
Hence, we can expand them into the same types of mul-
tiplets in momentum space (subscript ’M’):
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etc., where the new dressing functions d̃k and t̃k are now
permutation-group singlets.

In principle this is equivalent to constructing singlets
from the basis elements according to Eq. (28):

D(k)
M · DB, T +

M

(k) · T +
B , . . . (94)

A doublet DB contains two Lorentz tensors and therefore
it can generate two singlets, so we must find two indepen-
dent momentum doublets to contract it with. A triplet
or antitriplet containts three Lorentz tensors and hence
we need three triplets and three antitriplets in momen-
tum space. These should have the lowest possible mass
dimension to avoid kinematic singularities.

The lowest-dimensional multiplets that one can con-
struct from the Lorentz invariants S0, D0 and T0 in
Eq. (54) are collected in Table II. D0 and T0 both con-
tribute with mass dimension n = 2, their bilinears have
n = 4 etc. Up to n = 4 there are three doublets, three
triplets and one antitriplet; the remaining antitriplets
and antisinglets come with n ≥ 6. We have also stated
the powers nD and nT that count how many doublets
D0 or triplets T0 appear in the product; via Eqs. (60)
and (71) these are the powers in the radii r and R.

Note that each slot in Table II for given n, nD and nT
contains at most one element. In principle, for higher
n there are several possibilities to construct multiplets
within the same class but they are all identical up to
numerical factors. These possibilities are collected in
App. ??. An empty slot either means that (a) the re-
spective multiplet is forbidden by the construction rules
in Sec. III C, for example in the case n = 4: a doublet
and triplet cannot be combined to a singlet, doublet or
antisinglet; (b) the multiplet is allowed but vanishes, for
example D ∧ D = 0, T ∧ T = 0, T ∗ (T ∨ T ) = 0; or
(c) the multiplet is allowed, but by factorizing out sin-
glets it can be reduced to lower-dimensional ones, e.g.
D ∗ (D ∗ D) = (D · D)D.
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3 ,

β1 = p2 ω1 − ω2 ω3,
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The function ∆ vanishes at the spacelike surface, see
Eq. (74); in that limit V µV ν and δµν are no longer lin-
early related. Hence, V µV νV ρV σ cannot generally re-
place any of the tensor structures that contain Kronecker
deltas but rather those with mass dimension n = 4. We
tested various options by calculating the quark loop and
projecting onto Table I upon removing different doublets.
Removing any two singlets does not work because the re-
sulting bases are linearly dependent. The only safe choice
turned out be eliminating the doublet D1 for the seed
pµ pν kρ kσ; this leads to dressing functions that are free
of kinematic singularities and well-behaved.

Since each seed produces only one symmetric singlet
and there are 11 singlets in total, this is also the mini-
mum number of independent form factors in the 4PA.
In principle, all 136 dressing dressing functions can be
reconstructed from those eleven through permutations.
However, our goal is different: we want to recast all dress-
ing functions in permutation-group singlets so that their
momentum dependencies become simple.

To this end we also have to expand the dressing func-
tions that correspond to the basis elements in Table I
(which we equip now with a subscript ’B’ for ’basis’) into
multiplets. So far, the contribution from any doublet or
triplet to the 4PA has the form

M = · · · +
[
d1
d2

]
· DB + · · · +



t1
t2
t3


 · T +

B + . . . , (92)

where the dk and tk are the Lorentz-invariant dressing
functions that are obtained numerically. Since the 4PA
is Bose-symmetric, they also form doublets, triplets etc.
Hence, we can expand them into the same types of mul-
tiplets in momentum space (subscript ’M’):

[
d1
d2

]
=

2∑

k=1

d̃k D(k)
M ,



t1
t2
t3


 =

3∑

k=1

t̃k T +
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etc., where the new dressing functions d̃k and t̃k are now
permutation-group singlets.

In principle this is equivalent to constructing singlets
from the basis elements according to Eq. (28):

D(k)
M · DB, T +

M

(k) · T +
B , . . . (94)

A doublet DB contains two Lorentz tensors and therefore
it can generate two singlets, so we must find two indepen-
dent momentum doublets to contract it with. A triplet
or antitriplet containts three Lorentz tensors and hence
we need three triplets and three antitriplets in momen-
tum space. These should have the lowest possible mass
dimension to avoid kinematic singularities.

The lowest-dimensional multiplets that one can con-
struct from the Lorentz invariants S0, D0 and T0 in
Eq. (54) are collected in Table II. D0 and T0 both con-
tribute with mass dimension n = 2, their bilinears have
n = 4 etc. Up to n = 4 there are three doublets, three
triplets and one antitriplet; the remaining antitriplets
and antisinglets come with n ≥ 6. We have also stated
the powers nD and nT that count how many doublets
D0 or triplets T0 appear in the product; via Eqs. (60)
and (71) these are the powers in the radii r and R.

Note that each slot in Table II for given n, nD and nT
contains at most one element. In principle, for higher
n there are several possibilities to construct multiplets
within the same class but they are all identical up to
numerical factors. These possibilities are collected in
App. ??. An empty slot either means that (a) the re-
spective multiplet is forbidden by the construction rules
in Sec. III C, for example in the case n = 4: a doublet
and triplet cannot be combined to a singlet, doublet or
antisinglet; (b) the multiplet is allowed but vanishes, for
example D ∧ D = 0, T ∧ T = 0, T ∗ (T ∨ T ) = 0; or
(c) the multiplet is allowed, but by factorizing out sin-
glets it can be reduced to lower-dimensional ones, e.g.
D ∗ (D ∗ D) = (D · D)D.
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3 ,
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The function ∆ vanishes at the spacelike surface, see
Eq. (74); in that limit V µV ν and δµν are no longer lin-
early related. Hence, V µV νV ρV σ cannot generally re-
place any of the tensor structures that contain Kronecker
deltas but rather those with mass dimension n = 4. We
tested various options by calculating the quark loop and
projecting onto Table I upon removing different doublets.
Removing any two singlets does not work because the re-
sulting bases are linearly dependent. The only safe choice
turned out be eliminating the doublet D1 for the seed
pµ pν kρ kσ; this leads to dressing functions that are free
of kinematic singularities and well-behaved.

Since each seed produces only one symmetric singlet
and there are 11 singlets in total, this is also the mini-
mum number of independent form factors in the 4PA.
In principle, all 136 dressing dressing functions can be
reconstructed from those eleven through permutations.
However, our goal is different: we want to recast all dress-
ing functions in permutation-group singlets so that their
momentum dependencies become simple.

To this end we also have to expand the dressing func-
tions that correspond to the basis elements in Table I
(which we equip now with a subscript ’B’ for ’basis’) into
multiplets. So far, the contribution from any doublet or
triplet to the 4PA has the form

M = · · · +
[
d1
d2

]
· DB + · · · +



t1
t2
t3


 · T +

B + . . . , (92)

where the dk and tk are the Lorentz-invariant dressing
functions that are obtained numerically. Since the 4PA
is Bose-symmetric, they also form doublets, triplets etc.
Hence, we can expand them into the same types of mul-
tiplets in momentum space (subscript ’M’):

[
d1
d2

]
=

2∑

k=1

d̃k D(k)
M ,



t1
t2
t3


 =

3∑

k=1

t̃k T +
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(k)
, (93)

etc., where the new dressing functions d̃k and t̃k are now
permutation-group singlets.

In principle this is equivalent to constructing singlets
from the basis elements according to Eq. (28):

D(k)
M · DB, T +

M

(k) · T +
B , . . . (94)

A doublet DB contains two Lorentz tensors and therefore
it can generate two singlets, so we must find two indepen-
dent momentum doublets to contract it with. A triplet
or antitriplet containts three Lorentz tensors and hence
we need three triplets and three antitriplets in momen-
tum space. These should have the lowest possible mass
dimension to avoid kinematic singularities.

The lowest-dimensional multiplets that one can con-
struct from the Lorentz invariants S0, D0 and T0 in
Eq. (54) are collected in Table II. D0 and T0 both con-
tribute with mass dimension n = 2, their bilinears have
n = 4 etc. Up to n = 4 there are three doublets, three
triplets and one antitriplet; the remaining antitriplets
and antisinglets come with n ≥ 6. We have also stated
the powers nD and nT that count how many doublets
D0 or triplets T0 appear in the product; via Eqs. (60)
and (71) these are the powers in the radii r and R.

Note that each slot in Table II for given n, nD and nT
contains at most one element. In principle, for higher
n there are several possibilities to construct multiplets
within the same class but they are all identical up to
numerical factors. These possibilities are collected in
App. ??. An empty slot either means that (a) the re-
spective multiplet is forbidden by the construction rules
in Sec. III C, for example in the case n = 4: a doublet
and triplet cannot be combined to a singlet, doublet or
antisinglet; (b) the multiplet is allowed but vanishes, for
example D ∧ D = 0, T ∧ T = 0, T ∗ (T ∨ T ) = 0; or
(c) the multiplet is allowed, but by factorizing out sin-
glets it can be reduced to lower-dimensional ones, e.g.
D ∗ (D ∗ D) = (D · D)D.

Total:              136
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34
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• Triplets of type T + are obtained from

S T +, AT −,
T − ∨ D ,
T + ∧ D ,

T ± ∨ T ± ,
T ± ∧ T ∓ .

(19)

We defined the ’wedge’ and ’vee’ products for the
triplets

T ∧ T ′ :=




vw′ − wv′

wu′ − uw′

uv′ − vu′


 ,

T ∨ T ′ :=




vv′ + ww′ − 2uu′

uv′ + vu′ +
√

2 (vv′ − ww′)
uw′ + wu′ −

√
2 (vw′ + wv′)


 ,

(20)

and for the combination of triplet and doublet:

T ∧ D :=




vs + wa
us− 1√

2
(vs− wa)

ua + 1√
2

(va + ws)


 ,

T ∨ D :=




va− ws
ua− 1√

2
(va + ws)

−us− 1√
2

(vs− wa)


 .

(21)

The wedge product for the triplets is the usual vec-
tor product.

• Finally, triplets of type T − are obtained from

S T −, AT +,
T − ∧ D ,
T + ∨ D

T ± ∧ T ± ,
T ± ∨ T ∓ .

(22)

This list is exhaustive. As an example, suppose we want
to find all possible products of one triplet T + with itself.
The resulting six combinations u2, v2, w2, uv, uw, vw
can be rearranged in a symmetric singlet, a doublet, and
a triplet of type T +:

T + · T + = u2 + v2 + w2 ,

T + ∗ T + =

[
2w (v +

√
2u)

w2 − v2 + 2
√

2uv

]
,

T + ∨ T + =




v2 + w2 − 2u2

2uv +
√

2 (v2 − w2)

2w (u−
√

2 v)


 .

(23)

The triplet of type T − vanishes because T + ∧ T + = 0.

II. PHASE SPACE

A. Kinematics

The photon four-point function depends on the mo-
menta p1, p2, p3, p4, of which only three are inde-
pendent due to the momentum-conservation constraint
p1 + p2 + p3 + p4 = 0. The kinematics of the Bose-
symmetric photon four-point function are perhaps most
conveniently expressed in terms of s−, u− and t−channel
momenta:

p = p2 + p3 = −p1 − p4 ,

q = p3 + p1 = −p2 − p4 ,

k = p1 + p2 = −p3 − p4 ,

(24)

with the inverse relations

p1 = 1
2 (q − p + k) ,

p3 = 1
2 (q + p− k) ,

p2 = − 1
2 (q − p− k) ,

p4 = − 1
2 (q + p + k) .

(25)

The system is described by six independent Lorentz in-
variants. From the momenta above one can form the
three Mandelstam variables p2, q2, k2, and the angular
variables

ω1 = q · k, ω2 = p · k, ω3 = p · q (26)

which are related to the ’offshellness’ of the photons as
we shall see below.

As we explained in Sec. ??, for the practical calculation
of the photon four-point function it is not necessary to
compute all 24 permutations explicitly. It is sufficient to
retain only those three that transform the s−, u− and
t−channel among themselves:

t− channel : p1, p2, p3, p4 ⇔ p, q, k,

s− channel : p2, p3, p1, p4 ⇔ q, k, p, (27)

u− channel : p3, p1, p2, p4 ⇔ k, p, q.

Apparently these three transformations amount to cyclic
permutations of the variables p2, q2 k2 and also the ωi.
Because we would like to implement these permutations
with the smallest numerical effort, let us take a closer
look at the phase space that the above variables generate.
In particular we want to arrange these Lorentz invariants
in permutation-group multiplets.

Let us first find the multiplets for the four-momenta.
If we use the seed f1234 = k = p1 + p2 and perform the
steps in Eqs. (??–??), we find that only the triplet T +

is nonzero:

T + =
1

2




1√
3

(p + q + k)
1√
6

(p + q − 2k)
1√
2

(q − p)


 . (28)

These are just the three independent Jacobi momenta
of the system. When we now apply the three product
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FIG. 35 The light hadron spectrum of QCD. Horizontal
lines and bands are the experimental values with their decay
widths. The lattice results are shown by solid circles. Vertical
error bars represent the combined statistical and systematic
error estimates. π, K, and Ξ masses input quantities.

The idea is to link, via the analytic properties, the
perturbative domain of QCD, where calculations can be
done exactly, and the non-perturbative domain, which
can be described in terms of a few basic constants. These
can be adjusted forming a few physical quantities, which
can be used to calculate other quantities.

i. Lattice QCD Here, QCD is reformulated as a field the-
ory in a discretized phase-space and solved using very
astute and powerful techniques which require, however,
expensive computing means. In the domain of hadron
spectroscopy, the best-known applications of lattice QCD
are those dealing with glueballs and hybrid mesons, and
also scalar mesons, but recently the physics of baryons
has also been studied. Figure 35 shows the remark-
able achievements of lattice QCD. Pion masses down to
190MeV were used to extrapolate to the physical point
and lattice sizes of up to 6 fm (Dürr et al., 2008).

Lattice techniques have also been applied to single-
charm baryons (Lewis et al., 2001) and even to double-
charm baryons (Brambilla et al., 2004; Flynn et al.,
2003).

C. Phenomenology of ground-state baryons

1. Missing states

Almost all ground-state baryons containing light or
strange quarks and at most one heavy quark are now
identified. Still missing are the isospin partners Σ0

b and
Ξ0
b and the spin excitations (S = 3/2) of the recently

discovered Ξb and Ωb.
The existence of Ξ+

cc(3519) is uncertain. Its predicted
mass (Fleck and Richard, 1989; Körner et al., 1994) is
about 100MeV larger and recent calculations give even
larger mass values. As compared to a naive equal-spacing
for p(940), Λ+

c (2286) and Ξcc, the first correction is that
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FIG. 36 Comparison of the excitation energy single-charm
and single-beauty baryons above the Λc (Λb mass. The
quantum numbers are deduced from the quark model (Wohl,
2008a). For the Ωb both DØ (top) and CDF (bottom) results
ares shown as dotted lines.

Ξcc is shifted down by the heavy–heavy interaction in the
chromoelectric sector, see Eq. (26). However, both p and
Λc are shifted down by the favorable chromomagnetic
interaction among light quarks.

As the (bc̄) meson has been observed, one should be
able to detect (bcq) baryons with charm and beauty, with
two S = 1/2 states in the ground state, and one S =
3/2 state. Next will come the double-beauty sector, and
ultimately, baryons with three heavy quarks.

2. Regularities

The masses exhibit a smooth behavior in flavor space,
which is compatible with the expectation based on po-
tential models incorporating flavor independence. More-
over, “heavy quark symmetry implies that all of the mass
splittings are independent of the heavy quark flavor”,
to quote (Isgur and Wise, 1991). A comparison is made
on Fig. 36 of the known single-charm and single-beauty
baryons. The comparison suffers from the small number
of beauty baryons but it is clearly seen that the cost of
single-strangeness excitation ΞQ − ΛQ is very similar for
Q = c and Q = b.

For the double-strangeness excitations, the Ωb(6165)0

of DØ is problematic. Most models predict Ωb with
mass of about 6050MeV, 110–120MeV lower than the
observed mass. The measurement by CDF, 6054MeV, is
in better agreement with the expectations.

3. Hyperfine splittings

The hyperfine splitting is also varying smoothly from
one configuration to another. Again, this is compati-

Quark loop + all 2-photon poles from T-matrix (pion, scalar, axialvector, ...)  

Full γγγγ amplitude at quark level, derived from gauge invariance:

= + 𝑇

GE, Fischer,  PRD 85 (2012),   Goecke, Fischer, Williams, PRD 87 (2013)

=

quark Compton vertex

Born terms

gauge artifacts in quark loop must be cancelled by offshell structure of T-matrix!
Quark Compton vertex already determined from nucleon Compton scattering:

no double-counting!

Born 
terms 1PI term

GE, Fischer, PRD 87 (2013),
PoS Conf. X (2012) � �

 = + +

𝑇
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Summary

Muon g-2: theory uncertainty dominated by QCD

Hadronic 
light-by-light 

scattering

Exp: 

SM: 

QED:

Diff:

EW:
Hadronic:

VP (LO+HO)
LBL

11 659 208.9

11 658 

11 659 182.8

15.3

685.1
10.5

26.1

(6.3)

(0.0)
(0.2)

(4.3)
(2.6) ?

(4.9)
(8.0)

471.9

]10−[10µa

Hadronic 
vacuum 

polarization

LBL: need to get QCD contribution under control!

γγγγ amplitude = quark loop + T-matrix,
no double counting, gauge invariant!

need to understand structure of γγγγ amplitude

dressed quarks & vertices have impact, 
QCD prediction for LBL may change!
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A. Fermion-photon vertex

We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity

Qµ Γµ(k,Q) = S−1(k+) − S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) + B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k,Q) = iγµ ΣA + 2kµ(i/k∆A + ∆B), (72)

where the functions

ΣA(k,Q) :=
A(k2+) + A(k2−)

2
,

∆A(k,Q) :=
A(k2+) −A(k2−)

k2+ − k2−
,

∆B(k,Q) :=
B(k2+) −B(k2−)

k2+ − k2−

(73)

are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k,Q) = Γµ
BC(k,Q) + Γµ

T(k,Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as

(+) γµ

(−) [γµ, /k]

(+) [γµ, /Q]

(+) [γµ, /k, /Q]

(+) kµ

(+) kµ/k

(−) kµ /Q

(+) kµ[/k, /Q]

(−) Qµ

(−) Qµ/k

(+) Qµ /Q

(−) Qµ[/k, /Q].

(75)

To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A,B,C] := [A,B]C + [B,C]A + [C,A]B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k ·Q, the full vertex satisfies

Γµ(k,Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k ·Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ

µ
T + g2 k ·Q i

2 [γµ
T , /k]

+ g3
i
2 [γµ, /Q] + g4

1
6 [γµ, /k, /Q]

+ kµT
(
ig5 + g6 /k + g7 k ·Q /Q + g8

i
2 [/k, /Q]

)
,

(79)

where

γµ
T = Tµν

Q γν , kµT = Tµν
Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k ·Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

−iΓµ
T = f1 Q

2 γµ
T + f2 k ·QQ2 i

2 [γµ
T , /k]

+ f3
i
2 [γµ, /Q] + f4

1
6 [γµ, /k, /Q]

+ if5 Q
2 kµT + f6 Q

2 kµT /k

+ f7 k ·Q (k ·Qγµ − kµ /Q)

+ f8
i
2 [k ·Qγµ − kµ /Q, /k].

(82)

It satisfies the requirements of Eq. (81) since

f1 Q
2 = g1 + (k ·Q)2g7 ,

f2 Q
2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q
2 = g5 ,

f6 Q
2 = g6 ,

−f7 = g7 ,

f8 = g8 .

(83)
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projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ

µ
T + g2 k ·Q i

2 [γµ
T , /k]

+ g3
i
2 [γµ, /Q] + g4

1
6 [γµ, /k, /Q]

+ kµT
(
ig5 + g6 /k + g7 k ·Q /Q + g8

i
2 [/k, /Q]

)
,

(79)

where

γµ
T = Tµν

Q γν , kµT = Tµν
Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k ·Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

−iΓµ
T = f1 Q

2 γµ
T + f2 k ·QQ2 i

2 [γµ
T , /k]

+ f3
i
2 [γµ, /Q] + f4

1
6 [γµ, /k, /Q]

+ if5 Q
2 kµT + f6 Q

2 kµT /k

+ f7 k ·Q (k ·Qγµ − kµ /Q)

+ f8
i
2 [k ·Qγµ − kµ /Q, /k].

(82)

It satisfies the requirements of Eq. (81) since

f1 Q
2 = g1 + (k ·Q)2g7 ,

f2 Q
2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q
2 = g5 ,

f6 Q
2 = g6 ,

−f7 = g7 ,

f8 = g8 .

(83)
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Apart from global factors k ·Q, the four tensor structures
corresponding to f3,4,7,8 are linear and the remaining four
are quadratic in the photon momentum.

The question remains whether Eq. (82) can be ob-
tained from a systematic construction principle. To this
end we define the quantities

tµνab := a · b δµν − bµaν ,

εµνab := γ5 ε
µναβaαbβ ,

(84)

with aµ, bµ ∈ {kµ, Qµ}. They are both regular in the
limits a → 0 or b → 0. tµνab is transverse to aµ and bν ,

aµ tµνab = 0 , tµνab bν = 0 , (85)

whereas εµνab is transverse to a and b in both Lorentz in-
dices. The usual transverse projectors can thus be writ-

ten as Tµν
Q = tµνQQ/Q

2 and Tµν
Q′ = tµνQ′Q′/Q′2.

With the help of these definitions one can generate the
basis (82) as follows. Take the four tensor structures that
are independent of the photon momentum:

γν , [γν , /k] , kν , kν/k . (86)

Contract them with tµνQQ, tµνQk and εµνQk to generate eight
transverse basis elements that are kinematically indepen-
dent and linear or quadratic in the four-momentum Qµ:

tµνQQ





γν

[γν , /k]

kν

kν/k





= Q2





γµ
T

[γµ
T , /k]

kµT
kµT /k





,

tµνQk

{
γν

[γν , /k]

}
=

{
k ·Qγµ − kµ /Q

[k ·Qγµ − kµ /Q, /k]

}
,

εµνQk

{
γν

[γν , /k]

}
=

{
1
6 [γµ, /k, /Q]

tµνQk [γν , /k] − k2 [γµ, /Q]

}
.

(87)

Instead of using tµνQk and εµνQk, one could contract the four

elements in Eq. (86) also with tµνQγ = /Q δµν − γµQν and
use commutators where necessary. However, this does
not generate any new elements:

1
2

[
tµνQγ , γ

ν
]

= − [γµ, /Q] ,

1
2

[
tµνQγ , γ

ν , /k
]

= [γµ, /k, /Q] ,

tµνQγ k
ν = −4 tµνQk γ

ν ,
[
tµνQγ k

ν , /k
]

= −tµνQk [γν , /k] .

(88)

Finally, attach appropriate factors k ·Q to ensure charge-
conjugation invariance of the dressing functions.

We will henceforth use Eq. (82) as our reference basis
for the transverse part of the fermion-photon vertex. We
write it in a compact way:

τµ1 = tµνQQ γν ,

τµ2 = tµνQQ k ·Q i
2 [γν , /k] ,

τµ3 = i
2 [γµ, /Q] ,

τµ4 = 1
6 [γµ, /k, /Q] ,

τµ5 = tµνQQ ikν ,

τµ6 = tµνQQ kν/k ,

τµ7 = tµνQk k ·Qγν ,

τµ8 = tµνQk
i
2 [γν , /k] .

(89)

The full vertex is thus given by Eq. (74), with the trans-
verse part

− iΓµ
T (k,Q) =

8∑

i=1

fi(k
2, k ·Q,Q2) τµi (k,Q) . (90)

The dimensionful dressing functions fi(k
2, k ·Q, Q2) are

again even in k ·Q. They are kinematically independent
and can remain constant at vanishing photon momen-
tum. The basis (89) is essentially identical to Eq. (A.8)
in Ref. [53] and Eq. (A2) in Ref. [55]. The relations be-
tween our τµi and the transverse tensor structures Tµ

i in
those papers are

τ1 = −T3 ,

τ2 = − 1
2 k ·QT4 ,

τ3 = T5 ,

τ4 = T8 ,

τ5 = T1 ,

τ6 = 1
2 T2 ,

τ7 = − 1
2 k ·QT6 ,

τ8 = 1
2 T7 .

(91)

The dressing functions associated with τ3 and τ4 con-
tribute to the onshell anomalous magnetic moment,
cf. Ref. [48] and Eq. (96) below, and τ7 constitutes the
transverse part of the Curtis-Pennington vertex [56].

Finally, to obtain a connection with the nucleon’s on-
shell current, we investigate the limit where the incoming
and outgoing fermion lines are taken on the mass shell,
i.e., k2± = −m2 or

k2 = −m2 −Q2/4 , k ·Q = 0 . (92)

The onshell vertex

Jµ(k,Q) = Λf
+ Γµ(k,Q) Λi

+

∣∣∣
Eq. (92)

(93)

is sandwiched between Dirac spinors that are eigenvec-
tors of the positive-energy projectors

Λf
+ = Λ+(k+),

Λi
+ = Λ+(k−),

Λ+(p) =
1+ /̂p

2
. (94)

By virtue of the projectors, only two of the basis elements
in Eq. (89) remain independent, and the vertex can be
written in the standard form

Jµ(k,Q) = iΛf
+

(
F1 γ

µ +
iF2

4m
[γµ, /Q]

)
Λi
+ , (95)

where F1, F2 are dimensionless functions of Q2 only. Via
Eq. (74) they consist of Ball-Chiu parts and transverse
components which are related to the functions ΣA, ∆A,
∆B and fj in the onshell limit:

F1(Q
2) = A(−m2) + 2m

[
B′(−m2) −mA′(−m2)

]

+ Q2

[
f1 −m (f5 + mf6) −

f4 −mf8
2

] ∣∣∣∣∣
Eq. (92)

,

F2(Q
2)

2m
= f3 −mf4 −

[
B′(−m2) −mA′(−m2)

]

+
Q2

2

[
f5 + mf6 −

f8
2

] ∣∣∣∣∣
Eq. (92)

.

(96)
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A. Fermion-photon vertex

We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity

Qµ Γµ(k,Q) = S−1(k+) − S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) + B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k,Q) = iγµ ΣA + 2kµ(i/k∆A + ∆B), (72)

where the functions

ΣA(k,Q) :=
A(k2+) + A(k2−)

2
,

∆A(k,Q) :=
A(k2+) −A(k2−)

k2+ − k2−
,

∆B(k,Q) :=
B(k2+) −B(k2−)

k2+ − k2−

(73)

are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k,Q) = Γµ
BC(k,Q) + Γµ

T(k,Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as

(+) γµ

(−) [γµ, /k]

(+) [γµ, /Q]

(+) [γµ, /k, /Q]

(+) kµ

(+) kµ/k

(−) kµ /Q

(+) kµ[/k, /Q]

(−) Qµ

(−) Qµ/k

(+) Qµ /Q

(−) Qµ[/k, /Q].

(75)

To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A,B,C] := [A,B]C + [B,C]A + [C,A]B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k ·Q, the full vertex satisfies

Γµ(k,Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k ·Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ

µ
T + g2 k ·Q i

2 [γµ
T , /k]

+ g3
i
2 [γµ, /Q] + g4

1
6 [γµ, /k, /Q]

+ kµT
(
ig5 + g6 /k + g7 k ·Q /Q + g8

i
2 [/k, /Q]

)
,

(79)

where

γµ
T = Tµν

Q γν , kµT = Tµν
Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k ·Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

−iΓµ
T = f1 Q

2 γµ
T + f2 k ·QQ2 i

2 [γµ
T , /k]

+ f3
i
2 [γµ, /Q] + f4

1
6 [γµ, /k, /Q]

+ if5 Q
2 kµT + f6 Q

2 kµT /k

+ f7 k ·Q (k ·Qγµ − kµ /Q)

+ f8
i
2 [k ·Qγµ − kµ /Q, /k].

(82)

It satisfies the requirements of Eq. (81) since

f1 Q
2 = g1 + (k ·Q)2g7 ,

f2 Q
2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q
2 = g5 ,

f6 Q
2 = g6 ,

−f7 = g7 ,

f8 = g8 .

(83)
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are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:
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T consists of eight independent tensor structures. An-
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T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
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to express Γµ
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photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.
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To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A,B,C] := [A,B]C + [B,C]A + [C,A]B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k ·Q, the full vertex satisfies

Γµ(k,Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k ·Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
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µ
T + g2 k ·Q i

2 [γµ
T , /k]

+ g3
i
2 [γµ, /Q] + g4

1
6 [γµ, /k, /Q]

+ kµT
(
ig5 + g6 /k + g7 k ·Q /Q + g8

i
2 [/k, /Q]

)
,

(79)

where

γµ
T = Tµν

Q γν , kµT = Tµν
Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k ·Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

−iΓµ
T = f1 Q

2 γµ
T + f2 k ·QQ2 i

2 [γµ
T , /k]

+ f3
i
2 [γµ, /Q] + f4

1
6 [γµ, /k, /Q]

+ if5 Q
2 kµT + f6 Q

2 kµT /k

+ f7 k ·Q (k ·Qγµ − kµ /Q)

+ f8
i
2 [k ·Qγµ − kµ /Q, /k].

(82)

It satisfies the requirements of Eq. (81) since

f1 Q
2 = g1 + (k ·Q)2g7 ,

f2 Q
2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q
2 = g5 ,

f6 Q
2 = g6 ,

−f7 = g7 ,
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(83)
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A. Fermion-photon vertex

We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity
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momenta. The inverse dressed quark propagator reads
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and the renormalization-point independent mass func-
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are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
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Γµ(k,Q) = Γµ
BC(k,Q) + Γµ

T(k,Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.
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numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as
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It satisfies the Ward-Takahashi identity

Qµ Γµ(k,Q) = S−1(k+) − S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) + B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k,Q) = iγµ ΣA + 2kµ(i/k∆A + ∆B), (72)

where the functions

ΣA(k,Q) :=
A(k2+) + A(k2−)

2
,

∆A(k,Q) :=
A(k2+) −A(k2−)

k2+ − k2−
,

∆B(k,Q) :=
B(k2+) −B(k2−)

k2+ − k2−

(73)

are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k,Q) = Γµ
BC(k,Q) + Γµ

T(k,Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as

(+) γµ

(−) [γµ, /k]

(+) [γµ, /Q]

(+) [γµ, /k, /Q]

(+) kµ

(+) kµ/k

(−) kµ /Q

(+) kµ[/k, /Q]

(−) Qµ

(−) Qµ/k

(+) Qµ /Q

(−) Qµ[/k, /Q].

(75)

To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A,B,C] := [A,B]C + [B,C]A + [C,A]B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k ·Q, the full vertex satisfies

Γµ(k,Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k ·Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ

µ
T + g2 k ·Q i

2 [γµ
T , /k]

+ g3
i
2 [γµ, /Q] + g4

1
6 [γµ, /k, /Q]

+ kµT
(
ig5 + g6 /k + g7 k ·Q /Q + g8

i
2 [/k, /Q]

)
,

(79)

where

γµ
T = Tµν

Q γν , kµT = Tµν
Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k ·Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

−iΓµ
T = f1 Q

2 γµ
T + f2 k ·QQ2 i

2 [γµ
T , /k]

+ f3
i
2 [γµ, /Q] + f4

1
6 [γµ, /k, /Q]

+ if5 Q
2 kµT + f6 Q

2 kµT /k

+ f7 k ·Q (k ·Qγµ − kµ /Q)

+ f8
i
2 [k ·Qγµ − kµ /Q, /k].

(82)

It satisfies the requirements of Eq. (81) since

f1 Q
2 = g1 + (k ·Q)2g7 ,

f2 Q
2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q
2 = g5 ,

f6 Q
2 = g6 ,

−f7 = g7 ,

f8 = g8 .

(83)
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sates the problem since g1, g2, g7, g8 do not need to vanish
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Apart from global factors k ·Q, the four tensor structures
corresponding to f3,4,7,8 are linear and the remaining four
are quadratic in the photon momentum.

The question remains whether Eq. (82) can be ob-
tained from a systematic construction principle. To this
end we define the quantities

tµνab := a · b δµν − bµaν ,

εµνab := γ5 ε
µναβaαbβ ,

(84)

with aµ, bµ ∈ {kµ, Qµ}. They are both regular in the
limits a → 0 or b → 0. tµνab is transverse to aµ and bν ,

aµ tµνab = 0 , tµνab bν = 0 , (85)

whereas εµνab is transverse to a and b in both Lorentz in-
dices. The usual transverse projectors can thus be writ-

ten as Tµν
Q = tµνQQ/Q

2 and Tµν
Q′ = tµνQ′Q′/Q′2.

With the help of these definitions one can generate the
basis (82) as follows. Take the four tensor structures that
are independent of the photon momentum:

γν , [γν , /k] , kν , kν/k . (86)

Contract them with tµνQQ, tµνQk and εµνQk to generate eight
transverse basis elements that are kinematically indepen-
dent and linear or quadratic in the four-momentum Qµ:

tµνQQ





γν

[γν , /k]

kν

kν/k





= Q2





γµ
T

[γµ
T , /k]

kµT
kµT /k





,

tµνQk

{
γν

[γν , /k]

}
=

{
k ·Qγµ − kµ /Q

[k ·Qγµ − kµ /Q, /k]

}
,

εµνQk

{
γν

[γν , /k]

}
=

{
1
6 [γµ, /k, /Q]

tµνQk [γν , /k] − k2 [γµ, /Q]

}
.

(87)

Instead of using tµνQk and εµνQk, one could contract the four

elements in Eq. (86) also with tµνQγ = /Q δµν − γµQν and
use commutators where necessary. However, this does
not generate any new elements:

1
2

[
tµνQγ , γ

ν
]

= − [γµ, /Q] ,

1
2

[
tµνQγ , γ

ν , /k
]

= [γµ, /k, /Q] ,

tµνQγ k
ν = −4 tµνQk γ

ν ,
[
tµνQγ k

ν , /k
]

= −tµνQk [γν , /k] .

(88)

Finally, attach appropriate factors k ·Q to ensure charge-
conjugation invariance of the dressing functions.

We will henceforth use Eq. (82) as our reference basis
for the transverse part of the fermion-photon vertex. We
write it in a compact way:

τµ1 = tµνQQ γν ,

τµ2 = tµνQQ k ·Q i
2 [γν , /k] ,

τµ3 = i
2 [γµ, /Q] ,

τµ4 = 1
6 [γµ, /k, /Q] ,

τµ5 = tµνQQ ikν ,

τµ6 = tµνQQ kν/k ,

τµ7 = tµνQk k ·Qγν ,

τµ8 = tµνQk
i
2 [γν , /k] .

(89)

The full vertex is thus given by Eq. (74), with the trans-
verse part

− iΓµ
T (k,Q) =

8∑

i=1

fi(k
2, k ·Q,Q2) τµi (k,Q) . (90)

The dimensionful dressing functions fi(k
2, k ·Q, Q2) are

again even in k ·Q. They are kinematically independent
and can remain constant at vanishing photon momen-
tum. The basis (89) is essentially identical to Eq. (A.8)
in Ref. [53] and Eq. (A2) in Ref. [55]. The relations be-
tween our τµi and the transverse tensor structures Tµ

i in
those papers are

τ1 = −T3 ,

τ2 = − 1
2 k ·QT4 ,

τ3 = T5 ,

τ4 = T8 ,

τ5 = T1 ,

τ6 = 1
2 T2 ,

τ7 = − 1
2 k ·QT6 ,

τ8 = 1
2 T7 .

(91)

The dressing functions associated with τ3 and τ4 con-
tribute to the onshell anomalous magnetic moment,
cf. Ref. [48] and Eq. (96) below, and τ7 constitutes the
transverse part of the Curtis-Pennington vertex [56].

Finally, to obtain a connection with the nucleon’s on-
shell current, we investigate the limit where the incoming
and outgoing fermion lines are taken on the mass shell,
i.e., k2± = −m2 or

k2 = −m2 −Q2/4 , k ·Q = 0 . (92)

The onshell vertex

Jµ(k,Q) = Λf
+ Γµ(k,Q) Λi

+

∣∣∣
Eq. (92)

(93)

is sandwiched between Dirac spinors that are eigenvec-
tors of the positive-energy projectors

Λf
+ = Λ+(k+),

Λi
+ = Λ+(k−),

Λ+(p) =
1+ /̂p

2
. (94)

By virtue of the projectors, only two of the basis elements
in Eq. (89) remain independent, and the vertex can be
written in the standard form

Jµ(k,Q) = iΛf
+

(
F1 γ

µ +
iF2

4m
[γµ, /Q]

)
Λi
+ , (95)

where F1, F2 are dimensionless functions of Q2 only. Via
Eq. (74) they consist of Ball-Chiu parts and transverse
components which are related to the functions ΣA, ∆A,
∆B and fj in the onshell limit:

F1(Q
2) = A(−m2) + 2m

[
B′(−m2) −mA′(−m2)

]

+ Q2

[
f1 −m (f5 + mf6) −

f4 −mf8
2

] ∣∣∣∣∣
Eq. (92)

,

F2(Q
2)

2m
= f3 −mf4 −

[
B′(−m2) −mA′(−m2)

]

+
Q2

2

[
f5 + mf6 −

f8
2

] ∣∣∣∣∣
Eq. (92)

.

(96)
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A. Fermion-photon vertex

We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity

Qµ Γµ(k,Q) = S−1(k+) − S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) + B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k,Q) = iγµ ΣA + 2kµ(i/k∆A + ∆B), (72)

where the functions

ΣA(k,Q) :=
A(k2+) + A(k2−)

2
,

∆A(k,Q) :=
A(k2+) −A(k2−)

k2+ − k2−
,

∆B(k,Q) :=
B(k2+) −B(k2−)

k2+ − k2−

(73)

are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k,Q) = Γµ
BC(k,Q) + Γµ

T(k,Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as

(+) γµ

(−) [γµ, /k]

(+) [γµ, /Q]

(+) [γµ, /k, /Q]

(+) kµ

(+) kµ/k

(−) kµ /Q

(+) kµ[/k, /Q]

(−) Qµ

(−) Qµ/k

(+) Qµ /Q

(−) Qµ[/k, /Q].

(75)

To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A,B,C] := [A,B]C + [B,C]A + [C,A]B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k ·Q, the full vertex satisfies

Γµ(k,Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k ·Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ

µ
T + g2 k ·Q i

2 [γµ
T , /k]

+ g3
i
2 [γµ, /Q] + g4

1
6 [γµ, /k, /Q]

+ kµT
(
ig5 + g6 /k + g7 k ·Q /Q + g8

i
2 [/k, /Q]

)
,

(79)

where

γµ
T = Tµν

Q γν , kµT = Tµν
Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k ·Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

−iΓµ
T = f1 Q

2 γµ
T + f2 k ·QQ2 i

2 [γµ
T , /k]

+ f3
i
2 [γµ, /Q] + f4

1
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+ if5 Q
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+ f8
i
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(82)

It satisfies the requirements of Eq. (81) since

f1 Q
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f2 Q
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To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination
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for three γ matrices. If the odd basis tensors are multi-
plied with a factor k ·Q, the full vertex satisfies
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to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ

µ
T + g2 k ·Q i

2 [γµ
T , /k]

+ g3
i
2 [γµ, /Q] + g4

1
6 [γµ, /k, /Q]

+ kµT
(
ig5 + g6 /k + g7 k ·Q /Q + g8

i
2 [/k, /Q]

)
,

(79)

where

γµ
T = Tµν

Q γν , kµT = Tµν
Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k ·Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

−iΓµ
T = f1 Q

2 γµ
T + f2 k ·QQ2 i

2 [γµ
T , /k]

+ f3
i
2 [γµ, /Q] + f4

1
6 [γµ, /k, /Q]

+ if5 Q
2 kµT + f6 Q

2 kµT /k

+ f7 k ·Q (k ·Qγµ − kµ /Q)

+ f8
i
2 [k ·Qγµ − kµ /Q, /k].

(82)

It satisfies the requirements of Eq. (81) since

f1 Q
2 = g1 + (k ·Q)2g7 ,

f2 Q
2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q
2 = g5 ,

f6 Q
2 = g6 ,

−f7 = g7 ,

f8 = g8 .

(83)
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