

The muon g-2: DSE status on light-by-light

Gernot Eichmann University of Giessen, Germany

Quark Confinement and the Hadron Spectrum XI St. Petersburg, Russia Sep 9, 2014

1/14

Muon g-2

- Magnetic moment of a fermion due to its spin:
 - $\overrightarrow{\mu} = g \frac{e}{2m} \overrightarrow{S}$ Pointlike fermion: g = 2

Fermion with structure has **anomalous magnetic moment**: $a = \frac{g-2}{2}$

 Electron & muon anomalous magnetic moments among the most precisely measured & theoretically calculated quantities:

$$\int_{0}^{q} = ie \, \bar{u}(p') \Big[F_1(q^2) \gamma^{\mu} - F_2(q^2) \frac{\sigma^{\mu\nu}q_{\nu}}{2m} \Big] u(p)$$

$$F_2(0) = a_{e,\mu} = \underbrace{\frac{\alpha_{\text{QED}}}{2\pi}}_{\text{Schwinger 1948}} + \mathcal{O}(\alpha_{\text{QED}}^2) \approx 1\%$$

- measured with precision $10^{-12}\,$ for electron and $10^{-10}\,$ for muon

<ロト < 団 ト < 三 ト < 三 ト = 三 のへの</p>

Muon g-2

• **QED corrections:** overwhelming part, calculated up to O(*α*⁵):

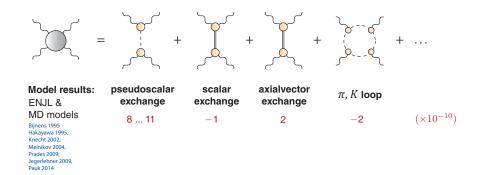
- Electroweak and QCD corrections very small: 10^{-12} for electron, 10^{-8} for muon
- · Electroweak corrections up to 2-loop:

• QCD:

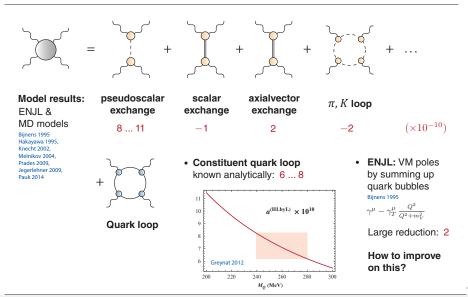
Hadronic vacuum polarization

Hadronic light-by-light scattering

 $a_{\mu} [10^{-10}]$


Jegerlehner, Nyffeler, Phys. Rept. 477 (2009)

Exp:	11 65	59 208.9	(6.3)
QED:	11 65	58 471.9	(0.0)
EW:		15.3	(0.2)
Hadronic:			
• VP (LO+H	IO)	685.1	(4.3)
• VP (LO+H • LBL	IO)	685.1 10.5	(4.3) (2.6)
	,		()


- Total SM prediction deviates from measured a_μ by ~3σ: new physics?
- Theory uncertainty dominated by **QCD!** Is QCD contribution under control?

イロト イロト イモト イモト

Light-by-light scattering

Light-by-light scattering

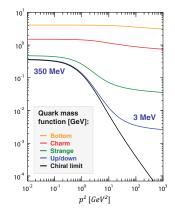
Quark loop

• Quark mass is not a constant: dressed quark propagator has nonperturbatively enhanced quark mass function (DSE, Lattice, ...)

$$S_0(p) = \frac{-i\not\!\!\!p + m}{p^2 + m^2} \quad \longrightarrow \quad S(p) = \frac{1}{A(p^2)} \frac{-i\not\!\!p + M(p^2)}{p^2 + M^2(p^2)}$$

· Quark-photon vertex is not bare!

$$\Gamma^{\mu}(k,Q) = \left[i\gamma^{\mu}\sum_{A} + 2k^{\mu}(i\not k \Delta_{A} + \Delta_{B})\right] + \left[i\sum_{i=1}^{8}f_{j}\tau_{j}^{\mu}(k,Q)\right]$$


Ball-Chiu vertex, depends only on quark propagator Ball, Chiu, PRD 22 (1980)

necessary for electromagnetic gauge invariance!

$$Q^{\mu}\,\Gamma^{\mu}(k,Q)=S^{-1}(k+\frac{Q}{2})-S^{-1}(k-\frac{Q}{2})$$

Transverse part: ρ -meson poles, vanishes at $Q \rightarrow 0$, no kin. singularities

Kizilersu et al, PRD 92 (1995); GE, Fischer, PRD 87 (2013)

Quark loop

• Quark mass is not a constant: dressed quark propagator has nonperturbatively enhanced quark mass function (DSE, Lattice, ...)

$$S_0(p) = \frac{-i\not\!\!p + m}{p^2 + m^2} \quad \longrightarrow \quad S(p) = \frac{1}{A(p^2)} \frac{-i\not\!\!p + M(p^2)}{p^2 + M^2(p^2)}$$

· Quark-photon vertex is not bare!

$$\Gamma^{\mu}(k,Q) = \left[i\gamma^{\mu}\sum_{A} + 2k^{\mu}(i\not k \Delta_{A} + \Delta_{B})\right] + \left[i\sum_{i=1}^{8} f_{j}\tau_{j}^{\mu}(k,Q)\right]$$

Ball-Chiu vertex, depends only on quark propagator Ball, Chiu, PRD 22 (1980)

necessary for electromagnetic gauge invariance!

$$Q^{\mu}\,\Gamma^{\mu}(k,Q)=S^{-1}(k+\tfrac{Q}{2})-S^{-1}(k-\tfrac{Q}{2})$$

Transverse part:

vanishes at $Q \rightarrow 0$,

no kin, singularities

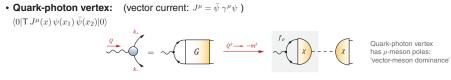
GE, Fischer, PRD 87 (2013)

Kizilersu et al. PRD 92 (1995):

p-meson poles.

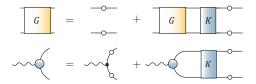
Goecke, Fischer, Williams, PRD 87 (2013)

$A(p^2)$	$M(p^2)$	γ^{μ}	Γ^{μ}_{T}	$a_{\mu} \left[10^{-10} \right]$
1	0.2 GeV	1	0	10
1	$M(p^2)$	1	0	10
$A(p^2)$	$M(p^2)$	1	0	5
$A(p^2)$	$M(p^2)$	Σ_A	0	10
$A(p^2)$	$M(p^2)$	Σ_A	k = 0	4
$A(p^2)$	$M(p^2)$	Σ_A	Full	10


• DSE result for quark loop (including strange & charm):

$$a_{\mu} = 10.7 \times 10^{-10}$$

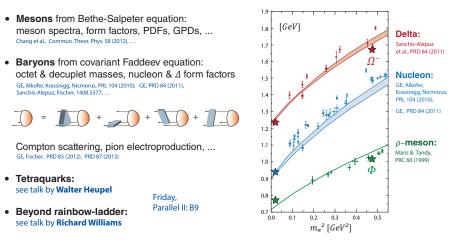
イロト イポト イヨト イヨト


· full Ball-Chiu vertex problematic

Quark-photon vertex

- Hadronic vacuum polarization = vector current correlator $\langle 0|{\rm T}\,J^{\mu}(x)\,J^{\nu}(y)|0\rangle$

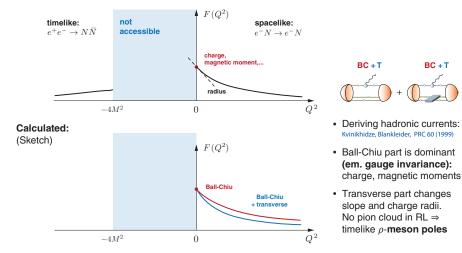
· BSE for quark four-point function & quark photon vertex:


determine vertex dynamically from a given $q\bar{q}$ kernel, e.g. **rainbow-ladder** (= gluon exchange)

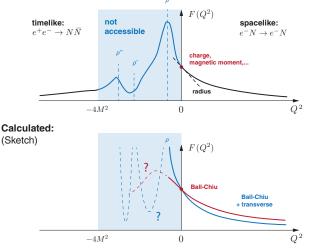
Maris & Tandy, PRC 61 (2000)

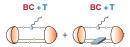
イロト イロト イヨト イヨト

Context matters

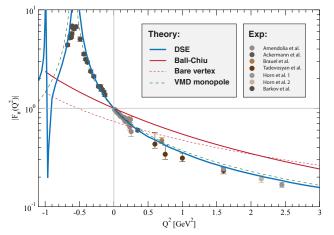

Hadron physics from QCD's Dyson-Schwinger & bound-state equations

< ロ ト < 同 ト < 三 ト < 三 ト


Quark-photon vertex


Structure of quark-photon vertex is reflected in hadron form factors GE, PRD 84 (2011) Experimentally (sketch):

Quark-photon vertex


Structure of quark-photon vertex is reflected in hadron form factors GE, PRD 84 (2011) Experimentally (sketch):

- Deriving hadronic currents: Kvinikhidze, Blankleider, PRC 60 (1999)
- Ball-Chiu part is dominant
 (em. gauge invariance):
 charge, magnetic moments
- Transverse part changes slope and charge radii.
 No pion cloud in RL ⇒ timelike *p*-meson poles

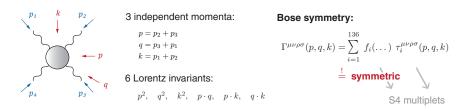
Pion form factor

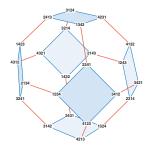
Spacelike and timelike region:


A. Krassnigg (Schladming 2010) extension of Maris & Tandy, Nucl. Phys. Proc. Suppl. 161 (2006)

Include **pion cloud:** Kubrak et al., in preparation

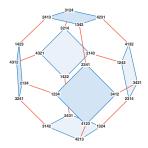
Gernot Eichmann (Uni Giessen)


Sep 9, 2014 7 / 14

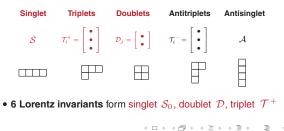

Structure of the YYYY amplitude

▲□▶▲□▶▲□▶▲□▶ □ のへで

Structure of the YYYY amplitude

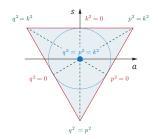

- Arrange the 24 permutations of ψ_{1234} into **multiplets:**

Singlet	Triplets	Doublets	Antitriplets	Antisinglet
S	$\mathcal{T}_i^+ = \left[\begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} \right]$	$\mathcal{D}_j = \left[\begin{array}{c} \bullet \\ \bullet \end{array} \right]$	$\mathcal{T}_i^- = \left[\begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} \right]$	\mathcal{A}


イロト イポト イヨト イヨト

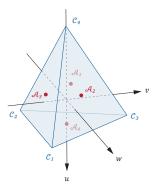
Structure of the YYYY amplitude

- Arrange the 24 permutations of ψ_{1234} into **multiplets:**

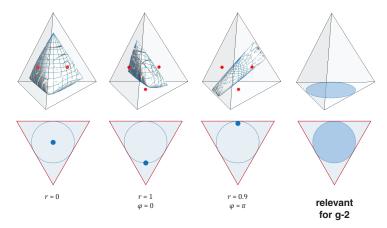

Phase space

• **Singlet:** symmetric variable, carries overall scale:

$$\mathcal{S}_0 = \frac{p^2 + q^2 + k^2}{4} = \frac{p_1^2 + p_2^2 + p_3^2 + p_4^2}{4}$$


• Doublet: $\mathcal{D} = \begin{bmatrix} a \\ s \end{bmatrix}$

Mandelstam triangle, 2-photon poles (pion, scalar, axialvector, ...)


• **Triplet:** $T = \begin{bmatrix} u \\ v \\ w \end{bmatrix}$

tetrahedron bounded by $p_i^2=0\,\mathrm{,}$ vector-meson poles

Phase space

• fixed doublet variables \Rightarrow complicated geometric object inside tetrahedron:

Tensor basis I

- construct all possible multiplets from generic seed elements: 138 elements, but only 136 independent
- removing the "wrong ones" leads to kinematic singularities!
- Dressing functions form multiplets too
 ⇒ expand them into singlets:

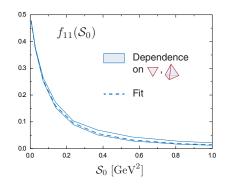
 $\begin{bmatrix} f_1 \left(\mathcal{S}_0, \mathcal{D}_0, \mathcal{T}_0 \right) \\ f_2 \left(\mathcal{S}_0, \mathcal{D}_0, \mathcal{T}_0 \right) \end{bmatrix} = c_1(\mathcal{S}_0) \begin{bmatrix} \bullet \\ \bullet \end{bmatrix}_1 + c_2(\mathcal{S}_0) \begin{bmatrix} \bullet \\ \bullet \end{bmatrix}_2 + \dots$

Singlets depend (almost) only on \mathcal{S}_0 , dependence on $\bigtriangledown, \diamondsuit$ absorbed in basis

This works extremely well!

n	Seed	#	Multiplet type
0	$\delta^{\mu\nu}\delta^{\rho\sigma}$	3	$\mathcal{S}, \mathcal{D}_1$
2	$\delta^{\mu\nu} k^{\rho} k^{\sigma}$	6	$\mathcal{S}, \mathcal{D}_1, \mathcal{T}_1^+$
	$\delta^{\mu\nu}p^{\rho}p^{\sigma}$	12	$\mathcal{S}, \mathcal{D}_1, \mathcal{D}_2, \mathcal{T}_1^{\pm}, \mathcal{A}$
	$\delta^{\mu u} p^{ ho} q^{\sigma}$	12	$\mathcal{S},\mathcal{D}_1,\mathcal{T}_1^+,\mathcal{T}_2^\pm$
	$\delta^{\mu\nu}p^{\rho}k^{\sigma}$	24	$\mathcal{S},\mathcal{D}_1,\mathcal{D}_2,\mathcal{T}_1^\pm,\mathcal{T}_2^\pm,\mathcal{T}_3^\pm,\mathcal{A}$
4	$p^{\mu} p^{\nu} p^{\rho} p^{\sigma}$	3	$\mathcal{S}, \mathcal{D}_1$
	$p^\mup^\nuq^\rhoq^\sigma$	6	$\mathcal{S},\mathcal{D}_1,\mathcal{T}_1^-$
	$p^{\mu} p^{\nu} k^{\rho} k^{\sigma}$	10	$\mathcal{S}, \left(\mathcal{D}_{1}, ight) \mathcal{D}_{2}, \mathcal{T}_{1}^{\pm}, \mathcal{A}$
	$p^{\mu} q^{\nu} k^{\rho} k^{\sigma}$	12	$\mathcal{S}, \mathcal{D}_1, \mathcal{T}_1^+, \mathcal{T}_2^\pm$
	$p^{\mu} p^{\nu} p^{\rho} k^{\sigma}$	24	$\mathcal{S},\mathcal{D}_1,\mathcal{D}_2,\mathcal{T}_1^\pm,\mathcal{T}_2^\pm,\mathcal{T}_3^\pm,\mathcal{A}$
	$p^\mu p^\nu q^\rho \; k^\sigma$	24	$\mathcal{S},\mathcal{D}_1,\mathcal{D}_2,\mathcal{T}_1^\pm,\mathcal{T}_2^\pm,\mathcal{T}_3^\pm,\mathcal{A}$

Tensor basis I

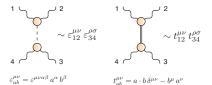

- construct all possible multiplets from generic seed elements: 138 elements, but only 136 independent
- removing the "wrong ones" leads to kinematic singularities!
- Dressing functions form multiplets too
 ⇒ expand them into singlets:

$$\left[\begin{array}{c}f_1\left(\mathcal{S}_0,\mathcal{D}_0,\mathcal{T}_0\right)\\f_2\left(\mathcal{S}_0,\mathcal{D}_0,\mathcal{T}_0\right)\end{array}\right]=c_1(\mathcal{S}_0)\left[\begin{array}{c}\bullet\\\bullet\end{array}\right]_1+\ c_2(\mathcal{S}_0)\left[\begin{array}{c}\bullet\\\bullet\end{array}\right]_2+\ \ldots$$

Singlets depend (almost) only on \mathcal{S}_0 , dependence on $\bigtriangledown, \diamondsuit$ absorbed in basis

This works extremely well!

 reproduces previous DSE results for g-2, but complete Ball-Chiu vertex still erratic... ?

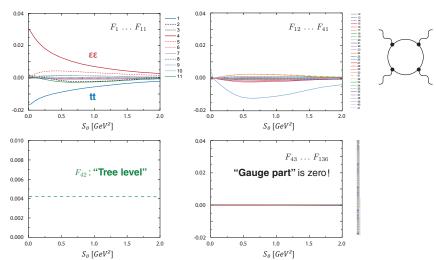

→ γγγγ amplitude calculated in full kinematics!

Tensor basis II

To make **gauge invariance** explicit, split yyyy amplitude into

 $\Gamma = \Gamma_{\text{Gauge}} + \Gamma_{\text{Transverse}}$

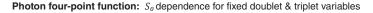
 Transverse part: 41 tensors, at least quartic in photon momenta, dominant tensors ~ pion + scalar exchange

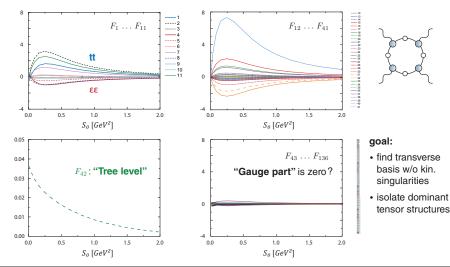


 'Gauge part': 95 tensors, must vanish if yyyy amplitude gauge invariant!

... but is it?

n	Seed element	#	Multiplets
4	$t_{12}^{\mu\nu} t_{34}^{\rho\sigma}$	3	$\mathcal{S}, \mathcal{D}_1$
	$\varepsilon_{12}^{\mu\nu}\varepsilon_{34}^{\rho\sigma}$	3	$\mathcal{S},\mathcal{D}_1$
6			
8			
0	$\delta^{\mu u}\delta^{\rho\sigma}$	3	$\mathcal{S}, \mathcal{D}_1$
2			
4			
	Total:	136	

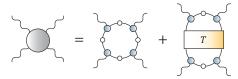

Results: quark loop with m_q = const



Photon four-point function: So dependence for fixed doublet & triplet variables

Gernot Eichmann (Uni Giessen)

Results: quark loop from DSE

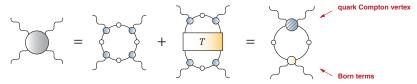


Gernot Eichmann (Uni Giessen)

Gauge invariance

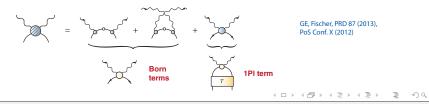
Full YYYY amplitude at quark level, derived from gauge invariance:

GE, Fischer, PRD 85 (2012), Goecke, Fischer, Williams, PRD 87 (2013)


Quark loop + all 2-photon poles from T-matrix (pion, scalar, axialvector, ...)

- no double-counting!
- gauge artifacts in quark loop must be cancelled by offshell structure of T-matrix!

Gauge invariance


Full yyyy amplitude at quark level, derived from gauge invariance:

GE, Fischer, PRD 85 (2012), Goecke, Fischer, Williams, PRD 87 (2013)

Quark loop + all 2-photon poles from T-matrix (pion, scalar, axialvector, ...)

- no double-counting!
- gauge artifacts in quark loop must be cancelled by offshell structure of T-matrix!
- Quark Compton vertex already determined from nucleon Compton scattering:

Summary

Muon g-2: theory uncertainty dominated by QCD

Hadronic vacuum polarization

Hadronic light-by-light scattering

LBL: need to get QCD contribution under control!

- yyyy amplitude = quark loop + T-matrix, no double counting, gauge invariant!
- need to understand structure of YYYY amplitude
- dressed quarks & vertices have impact, QCD prediction for LBL may change!

 $a_{\mu} [10^{-10}]$

Exp:	11	659	208.9)	(6.3)	_
QED:	11	658	471.9)	(0.0)	_
EW:			15.3	3	(0.2)	
Hadronic:						
• VP (LO+H	O)		685.1		(4.3)	
• LBL			10.5	5	(2.6)	?
SM:	11	659	182.8	3	(4.9)	
Diff:			26.1		(8.0)	

イロト イポト イヨト イヨト

Electron vs. muon g-2

 $a_e \ [10^{-10}]$

Exp:	11 596 521.81		
QED:	11 596 521.71 .81	(0.09) (0.08)	Cs Rb
EW:	0.00		
Hadron	ic: 0.02		
SM:	11 596 521.73 .83	(0.09) (0.08)	Cs Rb

 $a_{\mu} [10^{-10}]$

Exp:	11 65	9 208.9	(6.3)
QED:	11 65	8 471.9	(0.0)
EW:		15.3	(0.2)
Hadronic:			
• VP (LO+H	HO)	685.1	(4.3)
• LBL		10.5	(2.6)
SM:	11 65	9 182.8	(4.9)
Diff:		26.1	(8.0)

Bijnens, Prades, Mod. Phys. Lett. A22 (2007) Jegerlehner, Nyffeler, Phys. Rept. 477 (2009) Hagiwara et al., J. Phys. G 38 (2011)

<ロト <回ト < 注ト < 注ト

990