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Effective theory: problem of couplings

• The theory is called effective if the corresponding Hamiltonian in the interaction
picture contains all the local monomials consistent with a given linear symmetry.

• For the renormalizability ET requires presence of all types of the counterterms
consistent with a given linear (algebraic) symmetry.

• Therefore in ET one needs to fix an infinite number of renormalization
prescriptions.

• If this is done the ET is renormalizible.

The effective scattering theory (EST) is nothing but the effective theory only designed
for S-matrix calculations. The finiteness of Green functions is not implied.
Parameters: essential and redundant.

• Essential: those defining the S-matrix elements on the mass shell.

• Redundant: all the other parameters that appear in the Green functions.

The EST only requires fixing the essential (on-shell) parameters.
Obvious problem: We need to know the 2-leg function off the mass shell!



Preliminaries.

Let us first consider the simplest effective theory: that containing only one real scalar
field φ(x):

φ(x) =
1

(2π)3

∫
d3p

2p 0
[a+(p) exp(ip x) +H.c.]. (1)

[a−(p), a+(q)]− = (2π)3 2p0 δ(p− q) .

The effective Hamiltonian:

H(x) =
∞∑
n=0

[Hn(x) + Cn] .

The counterterm series:

C(p2) =

[
C[log](p2) · logΛ +

∞∑
n=0

C[n](p2)Λ2n

]
. (2)

Here Λ is a cutoff parameter and

C[x](p2) =
∞∑
n=0

c
[x]
n p2n, (x = Log, 0, 1, 2, . . .).



General form of vertices.
General 3-field Hamiltonian:

H3 =
1

3!

∑
s=0

D̃jk;s : φ
(
∂[s]φj

)(
∂[s]φ

k
)

: (3)

General 3-leg vertex in momentum space:

V (κ1, κ2, κ3) = i(2π)4δ(k1 + k2 + k3)
∞∑

i,j,k=0

Dijk(κ1)i(κ2)j(κ3)k (4)

Here
κi = p2i −m2

and Dijk are certain functions of D̃jk;s and the mass m.
The most general 4-field Hamiltonian:

H4 =
1

4!

∞∑
ijk

∞∑
s1s2s3

D̃ ijk;s1s2s3 : φ
(
∂[s1]∂[s2]φi

)(
∂[s2]∂

[s3]φj
)(

∂[s3]∂[s1]φ
k
)

: .

φi
def
= K . . .K︸ ︷︷ ︸

i times

φ,

K
def
= −(∂µ∂µ +m2)



Reduction of a line

Line may be reduced:



Example: Tree graph constructed from two 3-line vertices.
From Eq. [4]:

V (κ1, κ2, κp) ∼
∞∑

i,j,k=0

Dijk(κ1)i(κ2)j(κp)k

V (κp, κ3, κ4) ∼
∞∑

i,j,k=0

Dijk(κ3)i(κ4)j(κp)k

Propagator: π(p) = 1
κp

Therefore the result for the graph (sum of graphs):

∞∑
i,j,l,m,=0

(κ1)i(κ2)j(κ3)l(κ4)m×

[
Gij0Glm0 1

κp
+
∞∑
r=1

κr−1
p

r∑
k=0

GijkGlm(r−k)

]
On the mass shell (S-matrix graph): i = j = k = l = 0. Therefore the contribution to
S matrix reads [

G000G000 1

κp
+
∞∑
r=1

κr−1
p

r∑
k=0

G00kG00(r−k)

]
The propagator line turns out reduced in all terms except the first one due to the
presence of nonminimal vertices.
The line is called minimal if it connects two minimal (with respect to this line!)
vertices.
Definition: Graph is minimal if all its lines are minimal (reduced).



Problem: what about the notion of one-particle reducibility (1PR)?
Two kinds of 1PR: graphical (G1PR) and analytical (A1PR).
The A1PI subgraphs only require the minimal counterterms.
Definition: Graph is minimal if all its lines are minimal (reduced).



The two-leg Green function in effective single-scalar theory.

The conventional procedure:

G2 = π + πS2π + πS2πS2π + . . . =
π

1− πS2

In momentum space:

G2(k) =
1

k2 −m2 − S2(k)

This procedure is only correct if

|πS2| < 1, ∀p2 : 0 6 p2 6∞.

In effective theories this is not the case!



The one loop two-leg function in effective theory

From the relation [3] it follows

S2(p, q) = δ(p+ q)
∞∑

ijklmn=0

DijkDlmnκipκ
l
qJikmn(p2) + C(p2,Λ),

where

Jikmn(p2) =

∫
dr dt δ(p+ r − t) δ(q + t− r)κj+n−1

t κk+m−1
r .

The only meaningful finite contribution corresponds to

J(p2) ≡ J0000(p2) = −δ(p+ q)

∫
dr

p2 + 2rp

(r2 −m2)2 · [(r + p)2 −m2]
.

The others are absorbed by counterterms.
So we have:

S(p2) =
∞∑
il=0

Di00Dl00κipκ
l
pJ(p2) +

∞∑
n=0

cn(p2)
n
.



So we have:

S(p2) =
∞∑
il=0

Di00Dl00κipκ
l
pJ(p2) +

∞∑
n=0

cn(p2)
n
.

With

Gi =
i∑

k=0

Dk00D(i−k)00

we obtain

S(p2) =
∞∑
i=0

GiJ(p2)κp
i +

∞∑
i=0

d̃iκp
i .

The unknown constants d̃i are to be fixed by the corresponding RP’s.
Problem: there are only two physically motivated RP’s while the number of d̃i is
actually infinite.
So, S(p2) cannot be reasonably fixed.
The solution to this problem is simple: To calculate the S matrix in renormalized
perturbation scheme one does not need to formulate the RP’s for the constants d̃i.
with i > 2.



The true self-energy function

The physically acceptable form of the two-point Green function reads:

G2(p2) =
1

p2 −m2 − Σ(p2)
+Q(p2).

Here it is implied that

Q(m2) = 0; Σ(m2) = Σ′(m2) = 0,

and (the essential requirement of spectral representation)

Σ(p2)

p2

∣∣∣∣∣
p2→∞

→ const.

Such Σ(p2) may be called the true self energy function.



Let us rewrite:

S(κp) = Σ(κp) +
∞∑
j=1

κjpR
j(κp) +

∞∑
j=2

κjpdj . (5)

Here
J(κp) ≡ J(p2)− J(m2) , Rj(κp) ≡ GjJ(κp) ,

and
Σ(κp) ≡ G0

(
J(κp)− κpJ

′
(κp)

)
.

Σ(κp) is the true SEF (TSEF).
It meets all axiomatic requirements and contains no redundant parameters. At the
same time when calculating the S-matrix graphs one has to use S(κp), the parameters
di with i > 2 being unfixed!
In what follows I will show that these parameters only appear in the A1PI graphs with
n > 3 legs; they can be fixed at the next steps of renormalization of one-loop graphs.
Note that in external lines the contribution from S(κ) may be just neglected.



Internal lines.

This is G1PR graph. It contains the A1PI parts. Indeed, the
corresponding analytical expression reads

Γ(p1, . . . , pm; q1, . . . , qn) = V1(p1, . . . , pm, r)
1

κr
S(r)

1

κr
V2(q1, . . . , qn, r) .



Let us rewrite this expression as follows:

Γ(p, q) = V1(p, r)
1

κr

Σ(κr) +
∞∑
j=1

κjrR
j(κr) +

∞∑
j=2

κjrdj

 1

κr
V2(q, r) =

= V1(p, r)
1

κr
Σ(κr)

1

κr
V2(q, r) +

∞∑
j=2

dj
[
V1(p, r)κj−2

r V2(q, r)
]

+

+
∞∑
j=2

GjJ(κr)
[
V1(p, r)κj−2

r V2(q, r)
]

+

+ 2D000D100
[
V1(p, r)J(κr)V2(q, r)

] 1

κr
.

(6)

Here the first term in the RHS is just a familiar A1PR graph with 1-loop insertion, the
loop being constructed from two minimal vertices of the type φ3.
The second one is the sum of local vertices with the loop index l = 1 and (m+ n)
lines; they can be absorbed by the corresponding one-loop counterterms and fixed at
the next steps of renormalization.



The third item in the RHS of (6) presents a new element which has no analog in
conventional renormalizable theories. It can be treated as the nonlocal vertex
(“countervertex” or “ counter-graph) with loop index l = 1 and (m+ n) > 4 lines.
At last, the 4th and 5th item together show that it emerges one more type of
counter-vertices with n > 3 legs.
Important: the TSEF Σ(k2) only depends on minimal parameter D000; it does not
require introducing the additional RP’s.
If we rely upon the G1PR concept we would need to fix all the nonminimal
counterterms for which we have no physical RP’s. When using of A1PR concept we
avoid this problem.
So, the one-loop renormalization of 2-leg graphs in effective theory is done. The
problem of fixing the non-minimal parameters turned out shifted to the next step of
renormalization procedure (renormalization of n−leg graphs with n > 3). It can be
shown that the same phenomenon happens in renormalization of 3-leg graphs.



The diagonalization problem (mixing).

Let us now discuss another problem that occurs in multi-component effective scalar
theory: mixing. Let us consider the effective theory that contains a set (possibly
infinite) of real scalar fields φk (k = 1, 2, . . .):

φc(x) =
1

(2π)3

∫
d3p

2p 0
[a+c (p) exp(ip x) +H.c.],

with the conventional commutation relations

[a−r (p), a+k (q)]− = (2π)3 2p0 δrkδ(p− q)

(p 0 =
√

p 2 +m2
k). Here ma stands for the mass parameter of the particle a; this

parameter is just the real part of the pole position of the full propagator. It is implied
that mk > mp when k > p.

H(x) =
∞∑
n=0

[Hn(x) + Cn] ,

where Hn(x) is (just as above) an infinite sum of all Lorentz-invariant monomials
constructed from the fields and their derivatives of arbitrary orders, and Cn stand for
the counterterms.



The most general triple interaction Hamiltonian density may be written as follows:

H3 =
1

3!

∑
abc

∑
s=0

D̃jk;sabc : φa
(
∂[s]φjb

)(
∂[s]φ

k
c

)
: , (7)

where : . . . : denotes the normal product,

φia
def
= Ki

aφa ,

Ka
def
= −(∂µ∂µ +m2

a) ,

Ki
a

def
= Ka . . .Ka︸ ︷︷ ︸

i times

,

and D̃jk;sabc are real (dimensional) coupling constants. The symbol
∑
abc is used for the

sum over the whole set of particles under consideration.
In momentum space the Feynman rules needed to write down the 2-leg graphs are
constructed from the elements of bare propagator which is the diagonal matrix π:

πab(k) = δab
1

κa
≡ δab

1

k2 −m2
a

,

and the vertices of the form

Vabc(κa, κb, κc) = i(2π)4δ(ka + kb + kc)
∞∑

i,j,k=0

Dijkabc(κa)i(κb)
j(κc)

k . (8)

Here
κx = κx(k) ≡ k2 −m2

x ,

and Dijkabc are certain sums constructed from the coupling constants D̃jk;sabc and masses.



The most general expression for the one-loop two point function reads (both lines a
and b are considered incoming):

Sab(k
2
a) =

∑
ef

[∫
dkedkf δ(ka + ke − kf )δ(kb + kf − ke)×

×
∞∑

ijk=0
lmn=0

DijkaefD
lmn
bfe

κiaκ
j
eκ
k
fκ
l
bκ
m
f κ

n
e

κeκf
+ Cabef δ(ka + kb)

 .
Here the summation

∑
ef is done over the whole set of particles that create the loop

and Cabef stands for the counterterm series:

Cabef (q2) =

[
C

[log]
abef (q2) · logΛ +

∞∑
n=0

C
[n]
abef (q2)Λ2n

]
, (9)

where Λ is the cutoff parameter and every C
[x]
abef (q2) (x = log, 0, 1, . . .) is just a

power series in q2.
The finite expressions for the individual items read:

Sabef (q2) =
∞∑
i,l=0

κiaκ
l
bD

i00
aefD

l00
bfeJef (q2) +

∞∑
p=0

C̃pabef (q2)p . (10)



Here

Jef (k2;m2
e,m

2
f )

def
=

1

2

[
Fef + Ffe

]
, (11)

and

Ffe(k
2;m2

f ,m
2
e) = −

∫
dq

k2 + 2qk

(q2 −m2
f )(q2 −m2

e)[(q + k)2 −m2
e]
. (12)

Let us present the series of finite counterterms in the equivalent (though more
complex) form that is most suitable for subsequent calculations:

∞∑
p=0

C̃pabef (q2)p = q2 Cabef +
∞∑
i,l=0

Silabefκ
i
aκ
l
b. (13)

Now the expression (10) can be rewritten as follows:

S
[R]
abef (q2) =Σab(ef |q2) +

∞∑
i,l>1

∑
ef

κiaκ
l
b{G

il
abefJef (q2) + Silabef}+

+
∞∑
i=1

∞∑
i=1

{[
κia(Gi0abefJef (q2) + Si0abef

]
+
[
κib(G

0i
abefJef (q2) + S0i

abef

]} (14)



Here it is defined the object Σab(ef |q2), hereafter referred to as the self-energy matrix
(SEM):

Σab(ef |q2)
def
= G00

abefJef (q2) + S00
abef + q2Cabef . (15)

Below it will be shown that the diagonal elements of this matrix play the role of TSE
functions for the corresponding particles. To proceed further one needs to fix the
unknown coefficients in (14). The above-obtained results suggest that perhaps not all
the coefficients are needed for the renormalization of 2-leg insertion in the lines of
S-matrix graphs. So, first we need to understand what very coefficients should be
fixed. For this we should turn to the physical interpretation of the external lines of
Green function graphs. The interpretation is based on the LSZ formula. In short, the
external line a with the momentum q corresponds to the particle with the mass
parameter ma if the relevant Green function develops the only (simple) pole at
q2 = m2

a. Once there is another pole, say, at q2 = m2
b , (or the pole at q2 = m2

a is not
simple) the interpretation becomes ambiguous. Let us consider the one-loop level of a
certain Green function graph with a given external line which we would like to
interpret as that corresponding to the particle with mass ma. The interpretation
problem appears when this graph is one-particle-reducible (1PR) and the line in
question (the a-line with momentum q) contains the one-loop self energy insertion
Sabef (q2). The analytical expression for the Green function graph (in fact, this is a
sum of individual graphs) under consideration reads:

Ga... =
1

q2 −m2
a

∑
bef

S
[R]
abef (q2)

1

q2 −m2
b

Γb... , (16)

where Γb... stands for the remaining (loopless) part of the graph (ellipsis stands for
the indices corresponding to another external lines). The summation indices b, e, f run
over the whole set of particles.



The form (16) (with (10) taken into account) clearly demonstrates the presence of
many poles in addition to that at q2 = m2

a. The extra poles arise from the terms with
l = 0 and arbitrary i in the first item of (10). Moreover, when i = l = 0 the pole at
p2 = m2

a is of the second order! This means that in contrast to initially suggested
identification we cannot uniquely associate the dressed external line (that with 2-leg
insertion S(q2)) with any concrete particle.
In the framework of the renormalized perturbation scheme the solution to this problem
consists of imposing the following set of limitations on the non-diagonal elements
(a 6= b) : 

lim
q2→m2

a

Sabef (q2) = O

lim
q2→m2

b

Sabef (q2) = O
(17)

and 
lim

q2→m2
a

Saa,ef (q2) = O

lim
q2→m2

a

∂

∂q2
Saa,ef (q2) = O

(18)



on the diagonal ones. These conditions present the diagonalizability requirements. In
the case of unstable particles these limitations should be imposed on the real parts.
The restrictions (17) ensure that the graph (16) does describe the interaction of the
field φa associated with the particle ma. The first one of the restrictions (18) is
nothing but the conventional RP that fixes the value ma of the particle a mass
parameter. The second provides a guarantee that the wave function is properly
normalized. The prescriptions (18) are also suitable when there is only one particle in
a theory. The RP’s (17) and (18) are necessary to assign meaning to the effective
scattering theory.
The shortened notation:

Gilabef = Di00aefD
l00
bfe.

Now let us turn to the expression (14) and see what very coefficients are fixed by the
conditions (17) and (18). The conditions (17) give:

S00
abef =−G00

abef

m2
bJef (m2

a)−m2
aJef (m2

b)

m2
b −m2

a

,

Cabef =−G00
abef

Jef (m2
a)− Jef (m2

b)

m2
a −m2

b

,

S0i
abef =−G0i

abefJef (m2
a),

Si0abef =−Gi0abefJef (m2
b).

(19)

Similarly, the conditions (18) give:

S00
aaef =−G00

aaef

[
Jef (m2

a)−m2
aJ

′
ef (m2

a)
]
,

Caaef =−G00
aaefJ

′
ef (m2

a) .
(20)



It can be easily shown that (20) follows from the two upper lines of (19) in the limit
ma → mb. This means that the diagonal elements of MSE, indeed, play the role of the
safe energy functions corresponding to individual particles. The above-obtained results
allow one to state that the insertion S(q2) in external line of S-matrix graph makes no
influence on the amplitudes of physical processes. One can simply neglect them.
The influence of Silabef on the internal line of S-matrix graph can be analyzed

precisely in the same way as in the case of the single-component theory.
It is obvious that the terms in the last line of (14) are insensitive to the constraints
(17) and (18). Clearly these terms play a role which is quite similar to that of
corresponding terms in the last line of (6). The finite 2-leg counterterms Silabef with

i, l > 1 should be dropped because they are absorbed by the n-leg counterterms with
n > 4 that will be fixed at the next steps of the renormalization procedure. In
contrast, the terms

∞∑
i=1

{[
κia(Gi0abefJef (q2) + Si0abef

]
+
[
κib(G

0i
abefJef (q2) + S0i

abef

]}
must be taken into account because they define the nonlocal counter-vertices with
three legs. Similarly, the terms

κiaκ
l
bG

il
abefJef (q2)

with i, l > 1 define the nonlocal counter-vertices with n > 4 legs.



Thus the renormalization of 2-leg insertions in the lines of S-matrix graph of the
single- and multi- component effective scalar theories is completed. The result of
one-loop dressing of a line is finite and only depends on minimal parameters. It is
important to stress that the problem of dependence on non-minimal parameters turns
out shifted to the next step of renormalization procedure.



Conclusions.

The attractive features of effective field theories have been demonstrated already in
many papers1. Unfortunately, the phenomenological advantage of such theories turns
out strongly limited by the “problem of couplings”: the number of unknown
phenomenological constants catastrophically increases with the number of loops taken
into account.
Meanwhile the relations obtained in [1-4] clearly demonstrate that the concept of the
effective scattering theory together with the quasi-particle method result in quite
reasonable sum rules (bootstrap relations) connecting among themselves the values of
hadron masses and on-shell coupling constants which are nothing but the right sides
of the renormalization prescriptions. This means that the solution to the problem of
couplings requires developing the suitable renormalization procedure. The very first
step on this way is done in the paper [1]. This talk presents just a review of the results
obtained in that paper.
The main result obtained above is that there is no need in attracting the
renormalization prescriptions for the higher derivatives of 2-leg graph; it turns out
quite sufficient to rely upon the requirements of finiteness and diagonalizability.
Another – no less interesting – result is the demonstration of the difference between
the notions of graphical and analytical irreducibility. In fact this result shows that until
the complete reduction of a given graph is done there is no sense to single out the 1PI
subgraphs. This, in particular, allows one to avoid the contradiction with limitations
imposed by Källen-Leman representation. Of course, this preserves the correct loop
counting.

1The excellent review can be found in [12].
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