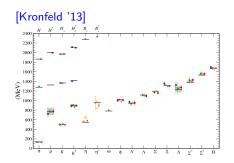
The neutron-proton mass difference

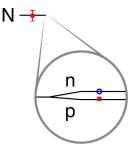
Kalman Szabo Forschungszentrum Jülich - Universität Wuppertal

Budapest-Marseille-Wuppertal collaboration

Hadron spectrum

several lattice QCD groups calculated the nucleon mass (and many more) to a few % accuracy SU(2) isospin symmetry: u↔d





SU(2) is violated by - quark mass difference - electric charge difference on the per mil level $\Delta M_N/M_N = 0.14\%$

 \Rightarrow Can we calculate it?

Fine structure of the spectrum

arXiv:1406:4088

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Novelties

First full dynamical calculation of QCD+QED with non-degenerate u, d, s, c quarks.

All systematics on $m_n - m_p$ are taken into account upto $\mathcal{O}(\alpha^2)$.

Addressed several issues in QED:

- zero-mode subtraction
- finite volume corrections
- large noise/signal
- large autocorrelation

Challenging: **unprecedented precision** is required (x1000 more statistics for $m_n - m_p$ than for m_N)

Zero-mode subtraction

$$A_{\mu}(k=0)$$

Zero-mode of photon field is troublesome:

• in finite volume perturbative calculations are not well defined

$$\frac{lpha}{V}\sum_k rac{1}{k^2}\ldots \longrightarrow$$
 contains a straight 1/0 !

• HMC algorithm is ineffective in updating the zero mode **Removing zero mode** does not change infinite volume physics.

Many possible schemes, we study two choices:

• **QED_TL**:
$$A_{\mu}(k = 0) = 0$$
 [Duncan et al '96]

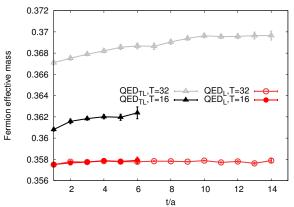
• QED_L: $A_{\mu}(k_0, \vec{k} = 0) = 0$ for all k_0 [Hayakawa,Uno '08]

Zero-mode subtraction

Most previous studies used QED_TL.

It violates reflection positivity!

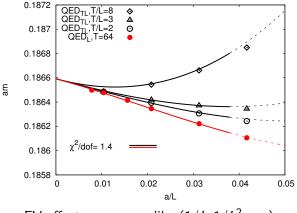
 \rightarrow no clear mass plateux \rightarrow mass increases with T Numerical study in pure QED:



QED_L does not have this problem, T independent masses.

Finite volume effects in pure QED

The different schemes give the same infinite volume result.



FV effects are power like $(1/L, 1/L^2, ...)$

(日)、

Finite volume effects in general

Proton is a composite particle, what are the FV effects?

- point particle in QED [BMWc '14]
- mesons in SU(3) PQ χ -PT [Hayakawa,Uno '08]
- meson/baryons in non-rel. eff. field theory [Davoudi,Savage '14] universal 1/L and 1/L² behaviour

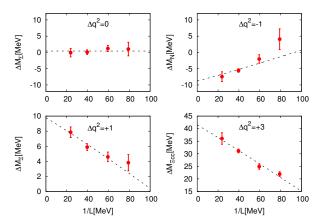
$$m(T,L)/m = 1 - q^2 \alpha \frac{\kappa}{2mL} \left[1 + \frac{2}{mL} \right] + \mathcal{O}\left(\frac{\alpha}{L^3}\right)$$

holds in a general field theory (using Ward's identities [BMWc '14])

large FV effects can be removed analytically

FV dependence of baryon masses

dedicated FV study: L=2.5...8.0 fm at the same parameters



 Σ splitting shows no volume dependence (cancels). analysis strategy: include analytic corrections for the two universal orders and fit coefficient of $1/L^3$ (almost always insignificant) We are concerned with the QED interaction of quarks. An isospin splitting can be calculated as:

$$\langle \Delta
angle_e = \int [dA][dU] \exp(-S_{\gamma}[A] + S_g[U]) \det D[eA, U] \Delta[eA, U]$$

Electro-quenched approximation

$$\det D[eA, U] \to \det D[0, U]$$

Used in most previous studies on isospin splittings.

Probably small error (SU3 suppressed), but it is still $O(e^2)$, so it has to be eliminated in a full calculation.

Dynamical QED eliminates this error. How to do?

Dynamical QED

Two strategies:

• reweight e = 0 gluon+free photon configurations

$$\langle \Delta \rangle_e = \left\langle \Delta \frac{\det D(e)}{\det D(0)} \right\rangle_0$$

 \rightarrow exponentially expensive in the volume, needs sophisticated techniques to estimate the det D ratio [Aoki et al '12][Ishikawa et al '12]

- generate gluon+photon configurations with the correct weight
 - \rightarrow no issue with going to large volumes
 - \rightarrow there is a **noise/signal problem**:

$$\langle \Delta
angle_e = e \cdot \mathsf{noise} + e^2 \cdot \mathsf{signal} + \dots$$

Simulate at larger than physical couplings, where signal outweighs noise. [QCDSF '13][BMWc '14]

Dynamical QED

long range QED \rightarrow huge autocorrelation in standard HMC problem is already present in the free case (uncoupled oscillators):

$$\mathcal{H} = rac{1}{V}\sum_{k,\mu}rac{P_{k,\mu}^2}{2} + rac{k^2 A_{k,\mu}^2}{2}$$

small *k* oscillators are practically unchanged after a unit trajectory **Solution:** update small/large *k* modes using a long/short trajectory length, achieved by **changing kinetic term in HMC dynamics**

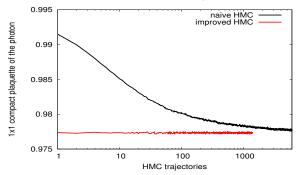
$$\mathcal{H} = rac{1}{V} \sum_{k,\mu} rac{P_{k,\mu}^2}{2M_k} + rac{k^2 A_{k,\mu}^2}{2} \quad ext{with} \quad M_k = 4k^2/\pi^2$$

all modes forget initial condition after a unit trajectory ⇒ improved HMC has no autocorrelation in the free case

Dynamical QED

$$\mathcal{H} = rac{1}{V}\sum_{k,\mu}rac{P_{k,\mu}^2\pi^2}{4k^2} + rac{k^2A_{k,\mu}^2}{2}$$

only works with zero mode subtraction (like QED_TL or QED_L)



requires an FFT in every HMC step in the interacting case

Sketch of simulations

- four lattice spacings a = 0.102...0.064 fm (insensitive)
- pion masses $M_{\pi} = 195 \dots 490$ MeV (insensitive)
- 27 neutral ensembles with $m_u \neq m_d$
- 14 charged ensembles including
 - finite volume scan $L = 2.4 \dots 8.2$ fm
 - electric charge scan $e = 0 \dots 1.41$
- parameter tuning with QCDSF strategy $m_u + m_d + m_s$ const
- \$\mathcal{O}(10k)\$ trajectory long ensembles, \$\mathcal{O}(500)\$ source positions on each configuration using 2-level multigrid inverter [Frommer et al '13] and variance reduction technique [Blum,Izubuchi,Shintani '13]

Sketch of analysis

mass splittings on 41 ensembles are modelled by functions like

$$\Delta M_X = F_X(\pi^+, K^0, D^0) \cdot lpha + G_X(\pi^+, K^0, D^0) \cdot \Delta M_K^2$$

- to get the results at the physical point set π⁺, K⁰, D⁰, ΔM²_K and α to their physical values; scale is set by Ω mass
- separating QED and QCD contributions to isospin splittings
- systematic error estimation:

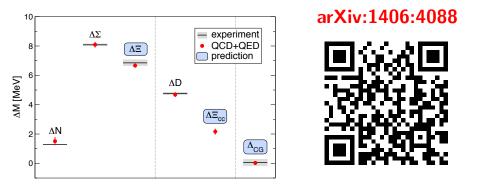
- carrying out several equally plausible fits differing in functional form of F_X/G_X

- weight different models by Akaike's information criterion: prefers fits with lower χ^2 values, but punishes with too many fit parameters

$$AIC = \chi^2 + 2 \cdot \#$$
parameters

- systematic error is the width of the weighted histogram

Final results



- 5σ signal for neutron-proton mass difference
- three predictions + calculation of QCD/QED contributions
- $\Delta_{CG} = \Delta M_N \Delta M_{\Sigma} + \Delta M_{\Xi}$ (Coleman-Glashow relation)
- full calculation all systematics are estimated