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Abstract: The Nakanishi perturbative integral representation of the Bethe-Salpeter (BS) amplitude in three-dimensions (2+1) is investigated in order to derive a workable framework for bound states in Minkowski space.
The projection onto the null-plane of the three-dimensional homogeneous BS amplitude is used to derive an equation for the Nakanishi weight function. The formal development is illustrated in detail and applied to the bound
system composed by two massive scalars interacting through the exchange of a massive scalar. The explicit forms of the integral equations are obtained in ladder approximation.

Introduction
The study of relativistic bound-states in hadronic physics is a topic
of constant research. One of the approaches to study this problem is
the covariant homogeneous BS equation [1]. It was recognized from
the very beginning that, when formulated in Minkowski space, the
BS equation has singularities due to the free propagators of the con-
stituent particles. To overcome this difficulty, Wick [2] formulated the
BS equation in the Euclidean space. However, the original BS ampli-
tude is lost and the rotated one can no longer be used in calculating
other physical observables,like, for instance, form factors.

On the other hand the Nakanishi perturbative integral representation
PTIR of the BS amplitude can be used to obtain solutions of the BS
equation in the Minkowski space [3], [4]. The method introduced by
Karmanov and Carbonell [5] for bound state problems in 3+1 dimen-
sions allied to the Nakanishi PTIR of the BS amplitude, has a starting
point the projection of the homogeneous BS equation onto the light-
front. Considerable simplifications in the algebraic manipulations for
bound and scattering states are found [6]. Furthermore, the singular-
ities of the BS equation present in Minkowski space are absent. This
process lead to equation for the Nakanishi weight function, which can
be solved numerically.

In our study we are motivated to study the solution of the Bethe-
Salpeter equation in 2+1 dimensions, because it may be applied to
bound states of electron-hole pairs on graphene sheets with defects
and their properties must be described within a the relativistic frame-
work. We start with the simpler problem of the bound state of two
spinless bosons with the interaction mediated by a spinless massive
boson, and using the ladder approximation for the interaction kernel.
However, this formalist must be extend to the study of fermion bound
state, which describe more interesting problems.

The Bethe-Salpeter equation in 2+1 dimen-
sions and PTIR
The BS equation in 2+1 dimensions for two interacting bosons of mass
m, total momentum p, relative momentum k, exchanging a boson mass
µ in the ladder approximation, is given by

Φ(k, p) =
i

(k + p
2)2 −m2 + iε

i

(k − p
2)2 −m2 + iε

×(ig)2
∫

d3k′

(2π)3

i

(k′ − k)2 − µ2 + iε
Φ(k′, p).

(1)

The BS amplitude for S-wave state within PTIR is

Φ(k, p) = −i
∫ 1

−1
dz′
∫ ∞
0

dγ′
g
(n)
B (γ′, z′;κ2)

(γ′ + m2 − p2

4 − k2 − p · kz′ − iε)n+2
, (2)

where g(n)
B is the Nakanishi weight function. The bound state mass

M =
√
p2 is introduced by means of

κ2 = m2 − p2

4
(> 0 for the bound state) (3)

In order to obtain an equation for g(n)
B , we introduce the Eq.(2) in the

both sides of Eq.(1). Then the projection onto the light-front is per-
formed. It is equivalent to integrate over k− = k0 + k3 on both sides
of the BS equation.

PTIR and Light-Front projection
The projection onto the light-front of the BS amplitude gives the va-
lence wave function as

Ψv(γ, z) =i

∫ 1

−1
dz′
∫ ∞

0
dγ′g(n)
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where we introduce γ = k2
⊥ and z = −2k+/M , in the rest frame of

the bound state. The right-hand side of the Eq.(1) after to the light
front projection is
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Now the BS equation takes the form Ψv(γ, z) = B(γ, z). The equa-
tion for the Nakanishi weight function for n = 1 can be written as∫ ∞

0
dγ′

gB(γ′, z′;κ2)

[γ′ + γ + z2m2 + (1− z2)κ2]2
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This integral equation for gB is solved, with the potential term

V (z, z′, γ, γ′) =
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P (p, z′, k, γ′, κ2) is obtained as an integral over Feynman parameters
and after the integration over k− is done analytically .
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where a, b, c are the following expressions
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Euclidean BS amplitude in PTIR
The Euclidean BS is found from turning k0 → ik0

E in Eq.(2) and in
the rest frame one obtains
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with k2
E = (k0

E)2 + ~k2. The symmetry property of Nakanishi weight

function g(n)
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(n)
B (γ,−z;κ2) leads to

Φ(kE, p) =− i
∫ 1

−1
dz′
∫ ∞

0
dγ′g(n)

B (γ′, z′;κ2)

×<

[
1

(γ′ + m2 − M 2

4 + k2
E − iMk0

Ez
′)n+2

] (13)

Euclidean BS equation
By performing the Wick-rotation to the Minkowski form Eq.(1),
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After partial wave projection to L=0, we have
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This equation can be solved numerically by Gauss-Legendre quadra-
ture and it will be an eigenvalue equation with the eigenvalue g2 for a
given binding energy.

Numerical results
To solve the integral equations numerically, we added a small param-
eter (here ε = 10−6) to the integral operator to achieve good stability

1

α
Φ = B(M)Φ Bij → Bij + εδij. (16)

For the solution of the Eq.(6), we choose a proper basis, which al-
lows us to expand the weight function taking into account the symme-
try property of g(n)

B (γ, z;κ2) in respect to z, the constrain g(n)
B (γ, z =

±1;κ2) = 0 and the fall-off in γ:

g
(n)
B (γ, z;κ2) =

Nz∑
`=0

Ng∑
j=0

A`jG`(z)Lj(γ) (17)

The G`(z) are given in terms of the even Gegenbauer polynomials,

C
5
2

2`(z), for the z-dependence

G`(z) = 4 (1− z2) Γ(5/2)

√
(2` + 5/2) (2`)!

πΓ(2` + 5)
C

(5/2)
2` (z) (18)

while the functions Lj(γ) are expressed in terms of Laguerre polyno-
mials adopted for the γ-dependence

Lj(γ) =
√
a Lj(aγ) e−aγ/2. (19)

In order to speed up the convergence, the parameter values a=24.0 and
a=2.0 have been adopted for the cases µ=0.1 and µ=0.5 respectively.
Also, the variable γ has been rescaled according to γ → 2γ/a0 with
a0=12. The Eq.(6) can be written symbolically as

1

α
D(M)gL = AL(M)gL. (20)

To solve this equation as the eigenvalue equation, one relies in the
existence of the inverse of the integral operator D(M).

The kernel contain a highly non-linear dependence upon the mass
M , but a linear dependence upon the coupling constant α, given the
adopted ladder approximation. Then, we choose the value of the bind-
ing energy in the interval

0 <
B

m
= 2−M

m
≤ 2. (21)

After that, we should look for the minimal value of the coupling con-
stant that allows a binding energy. In order to compare the results of
the two methods, in the next Table we show a comparison between the
eigenvalues obtained from the Eqs.(6) and (15).

Table 1: Values of g2

m3 calculated by two methods for different binding energies B
and exchange boson mass.

B/m (µ = 0.1) PTIR EUCL B/m (µ = 0.5) PTIR EUCL
0.01 0.82 0.79 0.01 5.33 5.31
0.1 4.26 4.26 0.1 14.88 14.88
0.2 8.07 8.06 0.2 22.67 22.67
0.5 19.5 19.51 0.5 42.33 42.33
1 36.06 36.03 1 67.38 67.39
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Figure 1: Euclidean BS amplitude calculated by means of Eqs. (15) (upper frame)
and (13) (lower frame), for the values µ = 0.5 and B = 0.5

For the calculated wave function, we have the following

Figure 2: Wave function calculated by means of the Eq.(4) for the values µ = 0.5
and B = 0.5
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