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Conformal bootstrap: 
Basics objects in a CFT

Conformal group:
Poincare (      ) + Dilatations ( D ) + Special conformal (      )

                                           Basic objects of the CFT:

Primary operators (elementary fields):     

Kµ

KµO(0) = 0

Descendant operators (composite fields):  Pµ1 ...PµnO(0) = 0

All dynamics of the descendants 
fixed by those of primaries

Pµ



Conformal bootstrap: 
CFT spectrum and OPE

CFT is specified by spectrum (dimensions and spins) of the 
primary operators:

Basic property of a CFT is an existence of the operator 
product expansion (OPE): 

{Oi} = (∆i, li)

Inside correlations functions, product on the LHS can be 
replaced by the sum on the RHS, as long as there are no 
other operators at smaller distances from y than |x-y|

Oi(x)Oj(y) =
�

k=Prim+Desc

ckij(x− y)Mk(y)



Conformal bootstrap: OPE
OPE can be simplified by imposing conformal invariance : 

Oi(x)Oj(y) =
�

k=Prim

Ck
ij Lk(x− y, ∂y)Ok(y)

1

|x− y|∆i+∆j−∆k

the differential operator Lk  that encodes descendants contribution depends on the 
dimensions and spins of the primaries Ok and not on the dynamics of the CFT.

(∆i, li, C
k
ij) this data fixes all correlators in a CFT

• Start with n-point function and replace two operators with OPE.          
The n-point function is now an (infinite) sum over (n-1)-point functions.

• The (n-1)-point functions can be reduced by an OPE to sums over (n-2)-
point functions and so on...

• Repeat until you get to the basic 2- and 3-point functions

�Oi(x)Oj(y)� =
δij

|x− y|2∆i
�Oi(x1)Oj(x2)Ok(x3)� =

Ck
ij

|x12|
∆1+∆2−∆3 |x13|

∆1+∆3−∆2 |x23|
∆2+∆3−∆1



Conformal bootstrap: 
Crossing symmetry

  This procedure has ambiguity. 
Consider,  4-point function in the, e.g. (12)-(34) channel :

�O1(x1)O2(x2)� �� �O3(x3)O4(x4)� �� �� =
�

k

Ck
12C

k
34Lk(x12, ∂x2)Lk(x34, ∂x4)�Ok(x2)Ok(x4)�

|x12|
∆1+∆2−∆k |x34|

∆3+∆4−∆k

Consistency requires that (12)-(34) = (14)-(23)  

�
O

� �
O

Φ

Φ

Φ

Φ

O

OPE OPE



Conformal bootstrap: 
Crossing symmetry constraint

G12,34
k (x1, x2, x3, x4) ≡

1

|x12|
∆1+∆2−∆k

1

|x34|
∆3+∆4−∆k

Lk(x12, ∂x2)Lk(x34, ∂x4)�Ok(x2)Ok(x4)�

Introduce conformal blocks (kinematical info):

�

k

Ck
12C

k
34 G12,34

k (x1, x2, x3, x4) =
�

k

Ck
14C

k
23 G14,23

k (x1, x4, x2, x3)

(12)-(34) = (14)-(23) 

This is non-perturbative constraint on the CFT data

(∆i, li, C
k
ij)

known
Dolan,Osborn ‘00,’03



Conformal bootstrap: 
Constraint in lower dimensions 

Rychkov,Vichi’ 09

El-Showk, et.al ’ 12

2D minimal unitary models: In 2D and 3D bound exhibit 
singular points which select 

the known CFT models



Conformal bootstrap: Constraint in 4D

�O1(x1)O2(x2)O3(x3)O4(x4)� =
�

k

Ck
12C

k
34 G12,34

k (x1, x2, x3, x4)

≡
�
|x24|

|x14|

�∆1−∆2
�
|x14|

|x13|

�∆3−∆4 g(u, v)

|x12|
∆1+∆2 |x34|

∆3+∆4

u =
x2
12x

2
34

x2
13x

2
24

, v =
x2
14x

2
23

x2
13x

2
24

For all Δ equal:

Dolan,Osborn ‘00,’03

Crossing 
constraint :

In an arbitrary 4D unitary CFT conformal symmetry implies 4-pt function:

Sum rule 



Conformal bootstrap: Constraint in 4D
Sum rule 

Need to have Δc < 3.6
otherwise sum rule cannot 

be satisfied

Strategy: look for differential operator that gives 0 on the LHS 
but stays positive when applied to the F-functions on the RHS



Conformal bootstrap: 
Constraint in 4D

For the lowest dimension scalar primary operator ϕ in the OPE :

∆ ≤ ∆max = 2 + 3.006(d− 1) + 0.16(1− e−20(d−1))

φ(x)φ(0) =
1

x2d
(1 + Cφφ|x|∆φ2(0) + . . . ) , d ≡ ∆φ, ∆ = d[φ2]

the bound on Δ was derived : Rattazzi, Rychkov, Tonni, Vichi ’08
 Poland, Simmons-Duffin, Vichi ‘11
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CFT with a global symmetry: SU(N)x SU(N)

Basic objects:

Basic OPE :

H
α∗

a = (Nf ,N
∗
f ) and H

β
b∗ = (N∗

f ,Nf )

Hiα(x)×H
†
βj(0) ∼

1

|x|2dH�
δijδαβ

�
1 + cS |x|∆STr[HH

†](0)
�
+ cL|x|∆LMiiαβ(0)+cR|x|∆RMijαα(0)+cA|x|∆AMijαβ(0)

�

�
(1,1) + (1,Adj) + (Adj,1) + (Adj,Adj)

�
×
�
(1,1) + (1,Adj) + (Adj,1) + (Adj,Adj)

�
=

GS(1,1) +GL(1,1AA) +GR(1AA,1) +GA(1AA,1AA)

Performing OPE twice we decompose a 4-pt function into conformal blocks

OPE OPE

�H(x1)H
†(x2)� �� �H(x3)H

†(x4)� �� �� =

(Nf ,N
∗
f )× (N∗

f ,Nf ) = (1,1) + (1,Adj) + (Adj,1) + (Adj,Adj)



CFT with a global symmetry: 
SU(N)xSU(N)

Requiring crossing symmetry : (12)-(34) = (14)-(23)

�H(x1)H
†(x2)H(x3)H

†(x4)� = �H(x1)H
†(x4)H(x3)H

†(x2)�

�G ≡ G(u ↔ v)

where4 equations 
for 4 

unknowns



Example: QCD + mesons + gluinos

QCD+gluino “Higgs”-sector

Hij =
φ+ iη�
2Nf

δij +

N2
f−1�

a=1

(ha + iπa)T a
ij

(1,1) = δijδαβHiαH
†
βj = Tr[HH

†]

(Adj,1) = HiαH
†
αj = (HH

†)ij

(1,Adj) = HiαH
†
βi = (HH

†)αβ

Notice that there is no mass term for the “H” field so that the model is 
classically conformal at the tree level

O.A, Mojaza, Sannino’ 11See also E. Molgaard talk



L = LK(Fµν ,λ,ψ, H; g) + yH ψ̄Hψ − u1

�
TrH†

H
�2 − u2Tr

�
H

†
H
�2

Veneziano limit :
Nc →∞, Nf →∞
x = Nf /Nc fixed

Symmetries

Model contains QCD SU(Nf) x SU(Nf)
global symmetry

Rescaled couplings :

External parameters: (x, number of gluions)



Our goal

• We have to check that this theory has a fixed point i.e. it is conformal. 
As we will see this fixed point will be perturbative Banks-Zaks fixed 
point.

• At the fixed point we need to calculate the conformal dimensions of 
the operators that enter the basic OPE 

• Compare these conformal dimensions with the bounds from numerical 
solutions to the bootstrap system 

To test the numerical bootstrap solutions within this 
explicit model

To achieve this:

Unfortunately, the bootstrap bound exploiting the full SU(N)xSU(N) global symmetry has not been 
obtained yet and we have to resort to the currently available bounds. 

To achieve this, we will simplify the bootstrap system by using  Veneziano limit...



Perturbative Bank-Zaks CFT
Proper perturbative truncation has to respect the Weyl consistency 

conditions (WCC) obeyed by different beta functions across the 
different loop orders.  At the LO :

∂(χjkβk)

∂gi
=

∂(χimβm)

∂gj
,χij ≡ diag[χagag

,χaHaH
,χz1z1 ,χz2z2 ] =

�
N2

c

128π2a2
g

,
N2

f

384π2aH
, 0 ,

N2
f

192π2

�

Beta 
functions 

in the 
321

scheme

Solution to this system of equations defines our perturbative CFT

O.A., Gillioz, et al. ’13
and Gillioz talk

WCC-related terms 
are color-coded



Comparison with the bootstrap bound
The bootstrap bound exploiting the full SU(N)xSU(N) global symmetry has not 

been obtained yet and we have to resort to the currently available bounds...

We need to calculate the conformal dimensions of the composite operators:

Hiα(x)×H
†
βj(0) ∼

1

|x|2dH

�
δijδαβ

�
1 + cS |x|∆STr[HH

†](0)
�
+ cA|x|∆AMijαβ(0) + · · ·

�

(1,1) : ∆S = 2 + γS (Adj, Adj) : ∆A = 2 + γA

γS = γTr[HH†] ≡ ∆S − 2 = 2aH + 4(z1 + 2z2)− 8aH(z1 + 2z2)− 20z22 − 3xa2
H
+ 5agaH

γA = γTr[TaHTaH†] ≡ ∆A − 2 = 2aH + 4z22 − 3xa2
H
+ 5agaH

To the two-loop order and in Veneziano limit we find:

Conformal dimension of the H: γH ≡ dH − 1 , γA = 2γH !



Comparison with the bootstrap bound

implies:

Hiα(x)×H
†
βj(0) ∼

1

|x|2dH

�
δijδαβ

�
1 + cS |x|∆STr[HH

†](0)
�
+ cA|x|∆AMijαβ(0) + · · ·

�

γH ≡ dH − 1 , γA = 2γH Mijαβ(0) ∼ : HiαH
†
βj : (0)

This leads to the ”generalized free scalar theory” :

�Hiα(x1)H
†
βj(x2)Mijαβ(y)� = �Hiα(x1)H

†
αi(y)� �Hjβ(y)H

†
βj(x2)�

completely specified by 
2-point function:

�Hiα(x)H
†
αi(0)� =

1

|x|2dH

From the 3-point function:

�Hiα(x1)H
†
βj(x2)Mijαβ(y)� =

cA

|x12|∆1+∆2−∆y |x1y|∆1+∆y−∆2 |x2y|∆2+∆y−∆1
=

cA

|x1y|2dH |x2y|2dH

cA = 1



Solving the bootstrap in Veneziano limit

Recall the 
system

Solve in the 
large Nf 

expansion:

Disconnected 
diagrams are leading 
in the large N limit

Gdisc
A =

�
u

v

�dH

we found on the previous slide



Solving the bootstrap in Veneziano limit 

Structure of the 4-pt function:



Solving the bootstrap in Veneziano limit 

after additional 
considerations 

(with some caveats)



Numerical results
Banks-Zaks FP exists when 1-loop coefficient of the gauge beta function 

is small and the signs of the 1- and 2 -loop coefficients are opposite:

Comparison with the bootstrap bound strategy:

∆ ≤ ∆max = 2 + 3.006(d− 1) + 0.16(1− e−20(d−1))



Numerical results ( QCD in the Veneziano limit)
in the WCC (321) scheme

singlets (              )            

4D bound

γS

γA

Earlier 4D 
bound

The functional form of the strongest 4D bound 
was chosen somewhat arbitrary and might not be 
the best approximation in the perturbative region



Numerical results ( QCD in the Veneziano limit
with one gluino ) in the WCC (321) scheme

4D bound

γS

γA

Earlier 4D 
bound



Numerical results ( QCD in the Veneziano limit
with five gluinos ) in the WCC (321) scheme

4D bound

γS
γA

Earlier 4D 
bound



Conclusions
• We reviewed the 4D bound on the lowest dimension scalar in the 

arbitrary 4D CFT from the bootstrap equation

• We derived the crossing symmetry constraints for the QCD-like theories

• We considered the QCD in the Veneziano limit and computed anomalous 
dimensions appearing in the basic OPE to the 2-loop level.  We found that 
anomalous dimension of the singlet is bigger than of the adjoint

• We showed that the OPE contains a “double trace” operator leading to 
disconnected correlators of  “generalized free scalar field” 

• We solved the QCD-bootstrap system analytically in the large-N 
expansion and argued that there is a part of the conformal block for 
singlet operator satisfying the bootstrap condition without global 
symmetry

Future: Solve the bootsrap system for QCD numerically and 
compare with the perturbative results in our perturbative model



CFT with a global symmetry: 
SU(N)xSU(N)

u−d [1 +GS +GA] = v−d
�
1 + �GS + �GA

�
u−d [GL +GR] = v−d

�
�GL + �GR

�

requiring : (12)-(34) = (14)-(23)

In the large Nf limit :

(12)-(34)

(14)-(23)


