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Abstract 

 
  Due to the non-linearity involved in quantum chromodynamics (QCD), the required uncertainty in 

position of a transverse hard gluon, emitted in 3-jet event, is accommodated by allowing for the possibility that 

Gribov copies are created as virtual entities by quantum fluctuations of the transverse gluon energy over the 

brief intervals of time during which the special relativity theory and the quantum theory are merged together 

consistently in QCD. These Gribov copies can be ignored in perturbative sector due to asymptotic freedom of 

pure QCD empty space but their common characterstic i.e., zero value of Faddeev-popov operator, serves as a 

mathematical proof of mass-gap and color confinement properties on the boundary of the Gribov region, so-

called the Gribov horizon in the non-perturbative sector of pure QCD.  
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1. INTRODUCTION: 

    
   “The laws of quantum physics stand to the world of elementary particles in the 

way that Newton's laws of classical mechanics stand to the macroscopic world. In 1954, 

Yang and Mills introduced a remarkable new framework to describe elementary particles 

using structures that also occur in geometry. Quantum Yang-Mills theory is now the 

foundation of most of elementary particle theory, and its predictions have been tested at many 

experimental laboratories, but its mathematical foundation is still unclear. The successful use 

of Yang-Mills theory to describe the strong interactions of elementary particles depends on a 

subtle quantum mechanical property called the "mass gap”: the quantum particles have 

positive masses, even though the classical waves travel at the speed of light. This property 

has been discovered by physicists from experiment and confirmed by computer simulations, 

but it still has not been understood from a theoretical point of view. Progress in establishing 

the existence of Yang –Mills theory & mass-gap will require the introduction of fundamental 

new ideas both in physics and mathematics. Here in this paper the existence of the Quantum 



Yang-Mills theory & mass gap has been mathematically proved by introduction of two 

fundamental ideas.” [24]    

   Firstly, the fundamental idea of establishing Gribov copies as virtual entities is 

introduced. “Quantum mechanics and special relativity are two great theories of twentieth-

century physics. Both are very successful. But these two theories are based on entirely 

different ideas, which are not easy to reconcile. In particular, special relativity puts space and 

time on the same footing, but quantum mechanics treats them very differently. This leads to a 

creative tension: At the time of its emission in 3-jet event, imagine a transverse hard gluon 

particle moving on average at the speed of light in perturbative sector of pure QCD, but with 

an uncertainty in position, as required by quantum theory. Evidently it there will be some 

probability for observing this transverse gluon particle to move a little faster than average, 

and therefore faster than light, which special relativity won’t permit.”[Adapted from Ref. 1] 

  “Normally, in quantum electrodynamics (QED) the only known way to resolve this 

tension in italics involves introducing the idea of antiparticles. Very roughly speaking, the 

underlying linearity of QED accommodates the required uncertainty in photon position by 

allowing for the possibility that the act of measurement can involve the creation of several 

particles, each indistinguishable from the original, with different positions. To maintain the 

balance of conserved quantum numbers, the extra particles must be accompanied by an equal 

number of antiparticles. When special relativity is taken into account, quantum theory must 

allow for fluctuations in energy over brief intervals of time. This is a generalization of the 

complementarity between momentum and position that is fundamental for ordinary, non-

relativistic quantum mechanics. Loosely speaking, energy can be borrowed to make 

evanescent virtual particles, including particle-antiparticle pairs. Each pair passes away soon 

after it comes into being, but new pairs are constantly boiling up, to establish an equilibrium 

distribution. In this way the wave function of (superficially) empty space becomes densely 



populated with virtual particles, and the empty space comes to behave as a dynamical 

medium.”[Adapted from Ref. 1] “However, in case of QCD, the gluons are the quanta of 

Yang-mills field which obeys highly non-linear field equations. As a result, there is no known 

analytical approach for strong interaction physics for making predictions from first principles 

and developing a fundamental understanding of the theory.” [25]   

   In view of the aforesaid non-linearity, the aforesaid tension in italics has not 

been resolved in this paper by the introduction of the idea of antiparticles for a hard 

transverse gluon emitted in 3-jet event. Rather, the technical aspects of the Hamiltonian 

quantization in Coulomb gauge have been taken into account in this paper for the resolution 

of the aforesaid tension in case of a hard transverse gluon emitted in 3-jet event. Given the 

fact that the non-linearization of QCD theory is due to color-charged nature of its quanta 

called gluon, it has been shown in this paper that due to color charged nature, the stay of a 

transverse gluon on any gauge orbit in configuration space is only over brief intervals of time, 

say  and when special relativity is taken into account, quantum theory must allow for 

fluctuations in transverse gluon energy over these brief intervals  of time. This is a 

generalization of the complementarity between momentum and position and accordingly, has 

been used in overcoming the technical complication in the derivation of the Hamiltonian 

operator in the Equation (10b) of this paper. Loosely speaking, energy can be borrowed to 

make evanescent Gribov copies as virtual entities with different positions. These Gribov 

copies pass away soon after the exit of the transverse gluon from the particular gauge orbit in 

question but new sets of Gribov copies are constantly coming up at next gauge orbits.    

   Secondly, the fundamental idea of using the zero value of Faddeev-popov 

operator on the boundary of the Gribov region, so-called the Gribov horizon in the non-

perturbative sector of pure QCD as a mathematical proof of the existence of the Quantum 

Yang-Mills theory and Mass-gap & color confinement properties has been introduced. A high 



energy hard transverse gluon, at the time t0 of its emission, say in 3-jet event, lies somewhere 

in the vicinity of A = 0 in the fundamental modular region (FMR) of the configuration space 

where the Gribov copies can be easily ignored due to the asymptotic freedom property of 

pure QCD empty space. Theoretically speaking, this ignoring of Gribov copies in FMR is 

evident from the positive value of Faddeev – Popov (F.P.) operator in FMR as stated by 

Equation (16) in this paper. This positive value of F.P. operator is maintained so throughout 

the FMR with reference to high energy hard transverse gluon only. But on the boundary of 

the Gribov region, so-called the Gribov horizon, when the effective interaction strength 

(QCD coupling) becomes of the order of unity, the lowest eigenvalue of the F-P operator 

vanishes as stated by Equation (19) in this paper. For the transverse gluon stepping out of the 

FMR and on the boundary of the Gribov region, so-called the Gribov horizon, the vanishing 

of the lowest eigenvalue of the F-P operator in Equation (19) in this paper is, in-fact, an 

indication of replacement of the said hard transverse gluon by a set of Gribov copies 

pertaining to the gauge orbit on the boundary of the Gribov region, so-called the Gribov 

horizon in configuration space. Thus, the zero value of the F-P operator in Equation (19) in 

this paper refers to a set of Gribov copies pertaining to the gauge orbit on the boundary of the 

Gribov region, so-called the Gribov horizon in configuration space and accordingly, is a 

proof of ‘mass-gap’ property in the light of the Equation (20) in this paper. 

   In a Yang – Mills theory, the variable conjugate to A0 of the gauge field A  (  

= 0,1,2,3) does not exist. This implies that not all the four components of A  are independent. 

Unlike the well-known Weyl gauge, where the condition A0 = 0 implies that the component 

A0 has been independently fixed to zero without any reference to other three spatial 

components (  = 1,2,3) of A , here the component A0 has been treated as a dependent variable 

while implementing the Gauss law identically (in principle) by construction at Lagrangian 

level in this paper. The generalized Coulomb gauge then modifies this Gauss law to express 



dependent variable A0 as a functional of the other three spatial components (  = 1,2,3) of A . 

During the quantization procedure, the transient nature of the generalized Coulomb gauge 

allows the direct imposition of the equal time canonical commutation relations [Ai
a

(x), 

j
b

(y)] = ij 
ab 3

(x – y) involving unconstrained, independent vector potential Ai
a

(x) and 

momenta variable j
b

(y) in operator form for a transverse gluon. Consequent upon the same, 

the required uncertainty in position of hard transverse gluon emitted in 3-jet event is 

accommodated by allowing for the possibility that Gribov copies are created as virtual 

entities with different positions by quantum fluctuation of the transverse gluon energy over 

the brief intervals of time coinciding with transient existence of the generalized Coulomb 

gauge in full accordance with the uncertainty principle. Over and above the creation of 

Gribov copies as virtual entities, the pure QCD empty space, being full of particle-antiparticle 

pairs of virtual gluons, shows asymptotic freedom property due to which these Gribov copies 

can be ignored in perturbative sector but their common characterstic i.e., zero value of 

Faddeev-popov operator, serves as a mathematical proof of mass-gap and color confinement 

properties on the boundary of the Gribov region, so-called the Gribov horizon in the non-

perturbative sector of pure QCD.   

2.  HAMILTONIAN FORMULATION:  

   Arthur Jaffe and Edward Witten in their paper [2] has mentioned that 

classically, by substituting the abelian group U(1) with a more general compact gauge group 

G = SU(3), the curvature is changed from F = dA  to F = dA+A A, and Maxwell’s 

equations,0 = dF = d*F, are transformed to the Yang-Mills equations, 0 = dAF = dA*F, 

where* is the Hodge duality operator, A is pure Yang-Mills gauge potential, F is pure Yang-

Mills gauge field and dA denotes the gauge-covariant extension of the exterior derivative. 

Further, these Yang-Mills equations can be validated by deriving them from the following 

pure Yang-Mills action L’ that is not assumed to satisfy any particular gauge-condition and is 



more conveniently expressed as an integral of a pure Yang-Mills Lagrangian L in an 

appropriate time interval (t0, t1) i.e.,   

                                                            t1 

  L’ = (-1/4)  d
4
x (F ,  , F

,
)    = dt L ____________________ (1)  

                         t0 

 

where F ,  = A (x) – A (x) – ig[A (x), A (x)] and ,  are denoting space-time   indices 

that take value in the range (0, 1, 2, 3) and  

L = (–1/2) V d
3
x ( k(Ak) A0 – Ák, 

k
(A

k
) A

0
 – Á

k
) – (1/4) V d

3
x(Fkl (Ak), F

kl
(A

k
))_______(2)  

where Fkl = kAl(x) – lAk(x) – ig[Ak(x), Al(x)]; k, l are denoting space indices ranging  from 1 

to 3; g is arbitrary non-vanishing real parameter; A0 denotes the time-component of the pure 

Yang-Mills gauge potential A  & the quantity V is closed domain in R
3
.  

   As a first step towards canonical quantization, we convert the classical 

Lagrangian L of Equation (2) into a Hamiltonian one. For this conversion, we follow the 

standard procedure by defining the canonical momenta a  as under: 

   a  = L
’’
/ Á

a
 = - Fa

0
 _________________ (3)    

 where A  are considered as independent quantities so that Á
a

 are the generalized 

velocities and L
’’ 

denotes the Lagrangian
 
density such that L = V d

3
x L

’’ 

It can easily observed that the canonical momenta a
0 

corresponding to the time index  = 0 

in the above Equation (3) vanishes due to antisymmetry of F  and accordingly, the Gauss 

law ( k(A) a
k
 = 0) is absent. Without the proper incorporation of the Gauss law into 

Hamiltonian formalism, no physical applications are possible. 

   So, for implementing the Gauss law identically (in principle) by construction 

at classical Lagrangian level as a constraint [7], first of all we solve the following non-abelian 

Gauss law,  

k(A)
k
(A)A

0
 − k(A) Á

k
 = 0 _______________________ (4)                   



where the space indices k = 1,2,3 and k(A) is ‘covariant gradient’, 

By treating the above Equation (4) as a system of linear, elliptic partial differential equations, 

the (matrix valued) potential component A0, for given value of the space components Ak & 

their time derivatives 0Ak, has been determined in [7] by assuming that the unique solution 

A0 as a functional of Ak & their time derivatives 0Ak does exist i.e.,   

A0 = A0{ Ak, 0Ak} __________________________ (5) 

Now, for implementing the Gauss law at classical Lagrangian level as a constraint [7] we 

substitute the above Equation (5) into the classical Lagrangian Equation (2) to get new 

Lagrangian L0, i.e., 

L0 = (–1/2) V d
3
x ( k(Ak) A0{Ak, 0Ak} –  Ák, 

k
(A

k
) A

0
{A

k
, 

0
A

k
} – Á

k
)  

            – (1/4) V d
3
x(Gkl (Ak), G

kl
(A

k
)) ___________________________________(6) 

 where Gkl = kAl(x) – lAk(x) – ig[Ak(x), Al(x)] and k, l are denoting space indices ranging 

from 1 to 3 & the quantity V is a finite closed volume. This new Lagrangian L0 must 

reproduce the Lagrange equations of motion for k = 1,2,3 when Hamilton’s action principle is 

invoked in the limit V → ∞.  

Now, we proceed to the Hamiltonian construction, for which the substitution of L0 of the 

Equation (6) into the Equation (3) above leads to  

  
k
 =  L0

’’
/ Á

k
 = (

k
(A) A

0
{A

k
, 

0
A

k
} – Á

k
) ___________________ (7) 

  where L0
’’
 denotes the Lagrangian density such that

 
L0 = V d

3
x L0

’’
 

From the above expression for canonical momentum 
k
, it seems impossible to find 

generalized velocity Á
k
 in terms of 

k
 and A

k
 because here A

0
 is a functional of A

k
 and their 

time derivatives Á
k
 = 

0
A

k
. To convert the aforesaid impossibility into possibility, we impose 

the generalized Coulomb gauge fixing condition at Lagrangian level on the non-abelian 

Gauss law of Equation (4) i.e., 



k(A) Á
k
 = 0 ______________________________________ (8) 

With the substitution of Equation (8) in equation (4), we get 

  ( k(A) a
k
) = k(A)

k
(A)A

0
 = 0 ___________________________ (9) 

The ‘covariant gradient’ term k(A) in Equation (8) above can be expanded as 

 ___(9a) 

Where is arbitrary non-vanishing real parameter.  

In above Equation (9a), the first term  is exclusively responsible for 

changes in components of the time derivative of vector potential and the second 

term is exclusively responsible for ‘twisting’ the co-ordinate 

system with respect to the co-ordinate derivative. Consequent upon the forgoing exclusive 

acts, both of these ‘first term’ and ‘second term’ in Equation (9a) above are individually also 

equal to zero, i.e., 

_____________________ (9b) 

After integration with respect to time, the zero value of the first term in 

above Equation (9b) implies that the spatial divergence of the vector potential  

remains equal to an arbitrary constant with passage of time and by taking this arbitrary 

constant equal to zero, we get the standard Coulomb gauge. Thus, the zero value of the 

spatial covariant derivative of the vector potential  is same as the zero value of the 

spatial divergence of the vector potential  as in standard Coulomb gauge. As such, 

we are left only with transversal component Ak
a┴

 and
 
correspondingly, the transversal part of 

the momentum a
k
 (i.e., a

k┴
) is exclusively focused upon.  



Further, the longitudinal momentum component a
k

 arises from the resolution of the Gauss 

law in the Equation (9) above i.e., 

  ( k(A) a
k
) = k(A) [ a

k
 + a

k┴
] = 0 ___________________________ (9c) 

Since, in 3-jet event, the single hard transverse gluon is experimentally observed to be 

emitted from a color-singlet point source (i.e., quark – antiquark pair) in overall color-singlet 

manner [3], so, the color charge of the aforesaid single hard transverse gluon at the time t0 of 

its emission from a color-singlet point source in 3-jet event must be momentarily taken to be 

equal to zero. As such, the longitudinal momentum component a
k

 in the above Equation 

(9c) is momentarily equal to zero for the aforesaid single hard transverse gluon lying 

somewhere in the vicinity of A = 0 in the fundamental modular region (FMR) of the 

configuration space at the time t0 of its emission in 3-jet event i.e.,   

( k(A) a
k
) = k(A) [ a

k
 + a

k┴
] = k(A) [0 + a

k┴
] = ( k(A) a

k┴
) = 0 _____________ (9d) 

Further, in view of Equations (8) & (9), the equation (5) is accordingly modified as  

    A0 = A0{Ak
┴
} ___________________________________ (9e)  

   As such, one can now straightforwardly express the generalized velocity Á
k┴

 

in terms of generalized co-ordinate and momenta variables by using A0 = A0{Ak
┴
} in the 

Equation (7) i.e., Á
k┴

 = (
k
(A) A

0
{A

k┴
} –

k┴
). Therefore, the use of Á

k┴
 = (

k
(A) A

0
{A

k┴
} –

k┴
) and substitution of L = L0 from the Equation (6) & substitution of the Gauss law 

constraint ( k(A) a
k┴

) = 0 from Equation (9d) in the mathematical construction [H = V ( a
k┴

, 

Ák
a┴

) d
3
x – L] of the Hamiltonian H through Legendre transformation yields  

H = (-1/2) V d
3
x J

-1
[Ak

┴
]{( k(Ak) A0{Ak

┴
}– Ák

┴
}, J[Ak

┴
]{

k
(A

k
) A

0
{A

k┴
} – Á

k┴
)} + (1/4) V 

d
3
x(Fkl (Ak

┴
), F

kl
(A

k┴
)) _______________________________ (10) 

Where J[Ak
┴
] is the Faddeev-Popov determinant, interpreted as the Jacobian of the 

transformation.  



   “A transition to the quantum version of the Hamiltonian H in the Equation 

(10) above, by means of the substitution of the fixed time Schrodinger quantization rule, 

     ___________________ (10a) 

in the Equation (10) yields the Hamiltonian operator  for the hard transverse gluon at the 

time t0 of its emission in the 3-jet event and in the limit V → ∞ in Equation (10), one is then 

invited to consider the following eigenvalue equation, in self-explanatory notation, 

     ___________________ (10b)” [17] 

   However, the above derivation of the Hamiltonian operator in the Equation 

(10b) is plagued by a technical complication [4] i.e., when the above generalized coulomb 

gauge fixing condition of the Equation (8) is in force for straightforwardly expressing the 

generalized velocity in terms of generalized co-ordinate and momenta variables, one cannot 

define canonical momentas by Equation (3) above for  = 1,2,3 as these generalized 

velocities are no longer independent quantities. In order to solve this technical complication, 

we have derived below the transient nature of the generalized coulomb gauge fixing 

condition of the Equation (8).  

  In the Yang – Mills theory, gauge transformation  is not global one. In figure 

1, the general gauge potential Ak, valid at some time instant t0 , transforms as a connection in 

the adjoint representation under local gauge transformation  to A1k, say valid at some later 

time instant t1 ,[4] i.e., 

  Alk = 
 
Ak

-1
 – (i/g)( k )

-1
 ____________________________ (11) 

 

 

 



 

 

 

 

 

 

Differentiating above Equation (11) with respect to time t and then, applying ‘covariant 

gradient’ k(A) on both sides [7], we get  

 k(A) 0 Alk = [ k(A) 0A 
k
 – k(A)

k
(A) X0 )]

-1
 __________________________ (11a)  

where X0 = (i/g)(
-1

)( 0 )  

Thus, when the condition of equation (8) is imposed on the final potential Alk by equating 

right hand side of the above equation to zero [4], we get 

     k(A)
k
(A) X0 =  k(A) 0A 

k
 __________________________ (12)  

If we consider any time slice at some in-between time instant ti such that (t0  ti  t1), then the 

above elliptic linear partial differential equation (12), in-general, pertains to some in-between 

value of Aki at the time instant ti along the dotted gauge transformation path on the gauge 

orbit in above Figure 1. In other words, the Lie-algebra valued quantity X0 = (i/g)(
-1

)( 0 ) 

of the elliptic linear partial differential Equation (12) is exclusively defined at some in-

between time instant ti such that (t0  ti  t1) and remains non-zero along the dotted gauge 

transformation path on the gauge orbit in Figure.1 during the time–period  = (t1 – t0) only. 

Accordingly, this gauge transform  is uniquely determined in [4] at some fixed spatial point 

x by the following exponential time-integral. [4] 

                                 t1                                   

 (x, t1) = [T exp. (ig) dt X0(t)] (x, t0) where T indicates time-ordering. _________ (12a) 

                                 t0 

 



Again, when the condition of equation (8) is imposed on the final potential Alk by equating 

left hand side of the above Equation (11a) to zero [4], we get 

  k(A) 0 Alk = 0 _______________________________________________ (12b) 

Changing the order of time-derivative and spatial covariant derivative in above Equation 

(12b), we get 

  0 k(A) Alk = 0 ________________________________________________ (12c) 

The above Equation (12c) can be rewritten as 

  { [ k(A) Alk] / }{  / t} = 0 ____________________________________ (12d) 

Clearly, the second term {  / t} in the above Equation (12d) is non-zero keeping in view 

the Equation (12a) above and accordingly, the above Equation (12d) can be rewritten as  

  { [ k(A) Alk] / } = 0 ___________________________________________ (12e) 

 Further, as per already drawn inference from Equation (9b) above, the zero value of the 

spatial covariant derivative of the vector potential Alk is same as the zero value for the spatial 

divergence of the vector potential Alk as in standard Coulomb gauge. As such, the above 

Equation (12e) can be rewritten as 

  { [ kAlk] / } = 0 ___________________________________________ (12f) 

The above Equation (12f) is nothing but temporal zero-modes of the Faddeev – Popov 

determinant that has been expressed in terms of standard Coulomb gauge on the concerned 

gauge-orbit. The aforesaid temporal zero-modes of the Faddeev – Popov determinant in 

Equation (12f) above are solely responsible for the validity of chromo-static condition A0 = 

A0{Ak
┴
} in the above Equation (9e) that plays a decisive role while making a Legendre 

transform of the classical Lagrange density to the classical Hamilton density in Equation (10) 

above. Thus, the Faddeev – Popov determinant, which otherwise arises when considering 

gauge-fixing in quantum path-functional integral, gets implicitly introduced in gauge-fixing 

condition of Equation (8) above while making a Legendre transform of the classical Lagrange 



density to the classical Hamilton density in Equation (10) above because the above Equation 

(12f) has been ultimately derived from gauge-fixing condition of Equation (8).  

   Further, unlike the standard Coulomb gauge which is valid for all time & 

hence, is incomplete one – the gauge is only partially fixed [8, 9, 10] and where even after 

applying the standard Coulomb gauge, we can still perform time-dependent (spatially 

independent) gauge transformations, the generalized Coulomb gauge in the Equation (8) 

above is valid only for the time-period during which the temporal zero-modes of the Faddeev 

– Popov determinant in the above Equation (12f) exist because the zero value of the Equation 

(12d) above is solely dependent upon the time-existence of the temporal zero-modes of the 

Faddeev – Popov determinant in the above Equation (12f). Thus, after applying the 

generalized Coulomb gauge, we can still solely perform time-dependent (spatially 

independent) infinitesimal gauge transformations, as shown in above Equation (12a), that 

generate temporal zero-modes of the Faddeev – Popov operator on the gauge-orbit as shown 

in Equation (12f) above. This infinitesimal nature the time-dependent gauge transformation 

Ak  A1k, as illustrated in Figure.1 above, implies that the integration limits t1 and t0 of above 

time-integral, in Equation (12a), correspond to infinitesimal time–period  = (t1 – t0). It is this 

infinitesimal nature of the time–period  that leads to transient existence of X0 in Equation 

(12) and hence, leads to the transient existence of k(A) 0Ak = 0 as hypersurface in 

configuration space. Thus, the transitory nature of k(A) 0Ak = 0 of Equation (8) has been 

derived from the time-dependent (spatially independent) infinitesimal gauge transformations, 

that generate temporal zero-modes of the Faddeev – Popov operator on the gauge-orbit. It is 

pertinent to mention here that Gauge tranforms are not necessarily infinitesimal – there exists 

non-temporal zero-modes of the Faddeev – Popov operator on the gauge-orbit called Gribov 

copies that have been considered elsewhere in this paper for implementing the causality for 



gluons. Let us now explain why the aforesaid transitory gauge-fixing condition k(A) 0Ak = 0 

of Equation (8) on the gauge orbit is needed a priori.  

   Since, the transverse gluon in generalized Coulomb gauge [4] evidently carries 

its own color charge [5, 6] and emits virtual longitudinal coulomb gluons to develop an 

accompanying non-abelian coulomb field at the expense of its own energy with passage of 

time, so, the eigenvalue E of the Hamiltonian operator in the Equation (10b) above for the 

transverse gluon propagating in pure Yang-Mills gauge field is constant only for an 

infinitesimal time period that elapses between two consecutive emissions of virtual 

longitudinal coulomb gluons by the said transverse gluon. As such, the evaluation of the 

Hamiltonian operator in the Equation (10b) above by considering the time-dependent 

(spatially independent) gauge transformation during the integration of the integrand [X0(t)] 

(x, t0)], in the above Equation (12a), over time is meaningful if and only if the time period 

(t1 - t0) in Equation (12a) is taken to be infinitesimal one. In other words, we can say that the 

association of any transverse gluon with a particular gauge orbit is for the aforesaid 

infinitesimal time period (t1 - t0) only as the Lagrangian action L’ in Equation (1) is constant 

around the gauge orbit and hence, serves as a parameter for the identification of the gauge 

orbits. This explains why the transient gauge fixing condition of the Equation (8) is needed a 

priori. 

   In-fact, the aforesaid infinitesimal time period (t1 - t0) expresses the 

uncertainty (t1 - t0) in the time, at which the measurement of the eigenvalue E of the 

Hamiltonian operator in the Equation (10b) above is made for a transverse gluon and 

accordingly introduces an uncertainty E in the energy measurement of the transverse gluon 

in accordance with the uncertainty principle and this uncertainty E when divided by speed 

of light ‘c’ in vacuum yields corresponding uncertainty p in momentum measurement of the 



massless transverse gluon. In accordance with the uncertainty principle, a transverse gluon 

with uncertainty p in momentum measurement may be assumed to be present at some space 

point with uncertainty x in position at some point of time in some inertial reference frame in 

which the Schrodinger formalism is manifestly valid for the transverse gluon in question. 

This is nothing but the imposition of the equal time canonical commutation relations [Ai
a

(x), 

j
b

(y)] = ij 
ab 3

(x – y) for a transverse gluon such that the vector potential Ai
a

(x) and 

momenta variable j
b

(y) are in operator form, the latter being given by the Equation (10a) 

above. 

   Thus, the transient existence of covariant derivative null vector (i.e., 

k(A) 0Ak = 0) allows the imposition of the equal time canonical commutation relations 

[Ai
a

(x), j
b

(y)] = ij 
ab 3

(x – y) involving unconstrained, independent pure Yang-Mills 

vector potential Ai
a

(x) and momenta variable j
b

(y) in operator form for a transverse gluon 

and as such, this imposition of the aforesaid canonical commutation relations leads to the 

treatment of the generalized velocities 0Ak as independent quantities for all intent & purpose 

during the transient existence of k(A) 0 A1k = 0. Thus, the transitory nature of k(A) 0Ak = 0 

of Equation (8) provides solution to the aforesaid technical complication, that plagues the 

derivation of the Hamiltonian operator in the Equation (10b) above. Thus, the 

Hamiltonian operator in the Equation (10b) above is fully valid one.   

    Let us assume that a high energy hard transverse gluon, at the time t0 of its 

emission from a color-singlet point source (i.e., quark – antiquark pair) in 3-jet event, lies 

somewhere in the vicinity of A = 0 in the fundamental modular region (FMR) of the 

configuration space. Further, in 3-jet event, the gluon jets are identified by the particles in the 

hemisphere opposite to the hemisphere that is containing tagged quark & antiquark jets and is 

defined by a plane perpendicular to the principle event axis in the 3-jet event [3]. Consequent 



upon the same, in the aforesaid first hemisphere the Hamiltonian operator in the Equation 

(10b) governs the time-development of wave-function of the aforesaid hard transverse gluon 

for infinitesimal time period  = (t1 – t0) during which it undergoes time-dependent but space-

independent infinitesimal gauge transformation as explained above. It is pertinent to mention 

here that for implementing the causality for the hard transverse gluon, Gribov copies are also 

generated as virtual entities with different positions by quantum fluctuations of gluon energy 

during the infinitesimal time period  = (t1 – t0). At some time instant t1, a virtual longitudinal 

coulomb gluon is emitted by the said hard transverse gluon (& also by its Gribov copies). 

Consequent upon this emission, the longitudinal momentum component a
k

 of the 

transverse gluon arises from the resolution of the Gauss law i.e., 

  ( k(A) a
k
) = k(A) [ a

k
 + a

k┴
] = 0 ________________________ (13a)   

and the Lagrangian L0, in the right hand side of the Equation (6), now contains an additional 

potential energy term due to the longitudinal momentum component a
k

. 
 
Accordingly, the 

Hamiltonian operator in the Equation (10b) can be again derived, by making a Legendre 

transform of the classical Lagrange density to the classical Hamiltonian density in the light of 

the above Equation (13a), as 

  ____________________ (13) 

where the additional coulomb term 

 _______ (14) 

arises from the Gauss law & is necessary to maintain gauge invariance such 

that  is the color charge density induced by the hard transverse gluon 



(& its Gribov copies) inside FMR and the Coulomb energy propagator  produces, inside 

FMR, an instantaneous interaction  

 ___________________ (15) 

It is pertinent to mention here that the sum of individual color charges 1, 2, ------------  

induced by the hard transverse gluon and its Gribov copies individually inside FMR is equal 

to zero because the aforesaid high energy hard transverse gluon is experimentally observed to 

be emitted from a color-singlet point source (i.e., quark – antiquark pair) in 3-jet event  i.e., 

   1 2 ----------- ____________________________________ (15a) 

  Further, the Hamiltonian operator is same in both Equations (10b) and (13) 

because firstly, it is a constant of motion and secondly, the emission of the virtual 

longitudinal coulomb gluon, to develop an accompanying non-abelian coulomb field, at time 

t1 takes place at the expense of the energy of the transverse gluon itself. Consequent upon the 

aforesaid constancy of the Hamiltonian operator , the first term , in the 

right hand side of the Equation (13), that describe the hard transverse gluon (& also its 

Gribov copies), now refer to a different gauge orbit as compared to the corresponding terms 

in Equation (10b).  Thus, the Gauss law constraint of the Equation (13a) is satisfied again 

identically (in principle) by construction to obtain the Hamiltonian Operator Equation (13) 

for the aforesaid different gauge orbit and accordingly, the uncertainty in gluon position is 

once again referred to the uncertainty ’ = (t2 – t1) in the time, at which the energy 

measurement of the transverse gluon is made for the imposition of the equal time canonical 

commutation relations [Ai
a

(x), j
b

(y)] = ij 
ab 3

(x – y) on the aforesaid different gauge 

orbit. This cycle goes on repeating itself uninterruptedly with passage of time throughout the 

FMR as a result of which, as experimentally observed in running coupling constant of QCD, 



the additional coulomb term in Equation (13) gets stronger and stronger with the 

addition of more and more emitted virtual longitudinal coulomb gluons into the 

accompanying non-abelian coulomb field and the transverse gluon (i.e., the first term 

, in the right hand side of the Equation (13)), with decreasing energy, 

approaches the common boundary, called Gribov horizon, of FMR and the Gribov region. In 

the next paras, we discuss the fact that on the boundary of Gribov region, so-called Gribov 

horizon, any instantaneous eigenvalue of the Hamiltonian operator , in above Equation 

(13), represents more than one identical particles viz. the non-temporal zero-modes of the 

Faddeev – Popov operator called Gribov copies as virtual entities, with different positions, 

that can be used as a proof of the ‘mass-gap’ property in non-perturbative regime of QCD. 

   Since, it has already been concluded shortly after Equation (9b) above that the 

zero value of the spatial covariant derivative of the vector potential  is same as the 

zero value of the spatial divergence of the vector potential  as in standard Coulomb 

gauge, so, the standard Coulomb gauge is automatically satisfied when the generalized 

Coulomb gauge condition of the Equation (8) above is satisfied. In this regard, as Gribov 

discussed, the standard Coulomb gauge does not fix a gauge completely, and there are 

equivalent gauge configurations called Gribov copies that can be ignored in FMR due to 

asymptotic freedom property and accordingly, the Faddeev-Popov (F-P) ghost operator  

 is positive [19] for the hard transverse gluon in FMR such 

that 

 ________________ (16) 



where is the longitudinal momentum component, obtained from the 

resolution of the Gauss law and is the color-Coulomb potential. 

Thus, in the interior of Fundamental Modular Region (FMR) the F-P ghost operator  

is strictly positive, so the inverse that appears in is well-defined 

except possibly at some points on the boundary of FMR where  may have a zero 

eigenvalue. 

   “In view of the above well-defined definition of the inverse of F-P operator in 

, the additional coulomb term in the Equation (13) can be 

expressed in the interior of FMR as 

  _______(17) 

Where  is the color charge density induced by the hard transverse 

gluon (& its Gribov copies) and the Coulomb energy propagator  produces an 

instantaneous interaction such that 

 _____________ (18) ”[18] 

At this juncture, it is worthwhile to mention that during the infinitesimal time-period  of the 

transient generalized Coulomb gauge, these Gribov copies are created as virtual entities with 

different positions by quantum fluctuations of the transverse gluon energy during the 

aforesaid infinitesimal time-period  for accommodating the required uncertainty in hard 

transverse gluon position in accordance with the uncertainty principle. In other words, the 

wave-character of the hard transverse gluon, defined inside FMR, is implemented in term of 



its Gribov copies. This means that the Equations (10b) and (13) above has got additional 

multiple eigen-values in the form of Gribov copies and also, the time-development of wave-

function    as outlined above starting from the last para “Let us assume that ……” 

at page 15 to the Equation (18) above for transverse gluon defined inside FMR, is equally 

valid for the Gribov copies that are defined in 2
nd 

, 3
rd

 , 4
th

 , …….  Gribov regions in the 

hyperspace [ k(A) Á
k
 = 0] of configuration space as depicted below. 

 

Figure 2: Different Gribov  regions , 2, 3, ….  in hyperspace  [ k(A) Á
k
 = 0] of  

               Configuration space [31]                                                                             

  

In view of the above, it is obvious that for implementing the wave-character, the outward 

journey of the transverse gluon, defined inside FMR, is simultaneously accompanied by the 

outward journey of the Gribov copies that are defined inside their respective Gribov regions 

2, 3, --------  in Figure 2 above. For implementing the wave-character, the time instant, at 

which the transverse gluon approaches the common boundary , called Gribov Horizon, of 

FMR and the first Gribov region, coincides with the time instants at which 1
st
, 2

nd
, 3

rd
, 4

th
, 



…………. Gribov copies individually approaches their respective boundaries  2, 3, 4, 

5 …….. of the subsequent Gribov regions 2, 3, --------  in Figure 2.                                                                                                                                               

    “On the boundary of the Gribov region, so-called the Gribov horizon, when 

the effective interaction strength (QCD coupling) becomes of the order of unity, the Gribov 

copies cannot be ignored. During aforesaid infinitesimal time-period of the transient 

generalized Coulomb gauge, the creation of Gribov copies as virtual entities with different 

positions is necessary for accommodating the required uncertainty in transverse gluon 

position. In other words, the wave-character of the transverse gluon is accommodated in term 

of Gribov copies. But there is wave-particle duality for the transverse gluon: the wave-

character and particle character complement each other i.e., both are never exhibited 

simultaneously[30]. Consequent upon the same, the eigenvalue of the F-P operator for each 

and every Gribov copy vanishes on the boundary of the Gribov region, so-called the Gribov 

horizon i.e., 

  _____________________________ (19) 

In other words, the eigen-value of the Faddeev – Popov operator in Equation (19) becomes 

zero for transverse gluon and all Gribov copies at the same time instant when they reach their 

respective Gribov boundaries , 2, 3, 4, 5 …….. of the Gribov regions  

, 2, 3, ………..  in Figure 2 above simultaneously. 

   It was argued by Zwanziger that entropy favors gauge configurations near the 

Gribov horizon and the eigenvalue distribution of the F-P operator gets concentrated near the 

vanishing eigenvalue compared to that in the abelian gauge theory [20]. Such an 

enhancement has been observed by the recent lattice simulations [21, 22]. In other words, 

there is concentration of the aforesaid non-temporal zero modes of  near its 

vanishing lowest eigenvalue.”[23] This implies that any instantaneous eigenvalue of the 



Hamiltonian operator , given by the above Equation (13), represents more than one 

identical particles viz. the non-temporal zero-modes of the Faddeev – Popov operator called 

Gribov copies corresponding to the gauge orbit on the boundary of the Gribov region, so-

called the Gribov horizon in the configuration space and so, the single hard transverse gluon 

at the time of last emission cycle of virtual longitudinal gluon in FMR is substituted by more 

than one non-temporal zero modes of  on the boundary of the Gribov region, so-

called the Gribov horizon. These non-temporal zero modes of  called Gribov copies 

are created as virtual entities with different positions on the boundary of the Gribov region, 

so-called the Gribov horizon in the non-perturbative sector of pure QCD by the quantum 

fluctuation of the transverse gluon energy during aforesaid infinitesimal time-period of the 

transient generalized Coulomb gauge in full accordance with the uncertainty principle.  

   Since, these short-lived Gribov copies as representatives of the same physical 

configuration cannot be detected individually at the same time instant due to aforesaid duality 

between wave-character & particle-character and accordingly, must present same combined 

physics to the outside world, so, on the boundary of the Gribov region, so-called the Gribov 

horizon, the common characteristic of all the Gribov copies  the zero color charge on the 

right hand side of the Equation (19) above  is, in-fact, the zero sum, in the Equation (15a), 

of individual color charges 1, 2, ------------  induced by these Gribov copies 

individually i.e., 

   1 2 ----------- ________________ (20) 

and consequently, the instantaneous Coulomb energy propagator  in the Equation (18) does 

become singular, for each and every Gribov copy, on the boundary of the Gribov region, so-

called the Gribov horizon. As such, the first term in Equation (13) vanishes on 



the boundary of the Gribov region, so-called the Gribov horizon because the Kinetic energy 

of each Gribov copy, with infinite instantaneous Coulomb interaction energy, must approach 

zero value. As such, on the boundary of the Gribov region, so-called the Gribov horizon, only 

the additional coulomb term given by Equation (17) is left in the spectrum of the 

eigenvalue Equation (13) i.e., 

     _________________________ (21)  

which should now describe the massive gluon spectrum in the light of singular nature of the 

instantaneous Coulomb energy propagator  on the boundary of the Gribov region, so-called 

the Gribov horizon in non-perturbative regime. 

   Since, in Equation (17) valid inside FMR, the left hand side additional 

coulomb term has got the dimensions of energy, so, on the right hand side of 

Equation (17), the color charge density  is a dimensionless coupling 

constant inside FMR because the Coulomb energy propagator  has got the dimensions of 

energy density inside FMR. As such, the aforesaid vanishing of the first term 

in Equation (13), on the boundary of the Gribov region, so-called the Gribov 

horizon, implies that the color charges 1, 2, ------------  induced by these Gribov copies 

individually, lost their meaning as dimensionless coupling constants or color charges. Instead, 

on the boundary of the Gribov region, so-called the Gribov horizon the product term 

 , in the sole left out additional coulomb term in Equation 

(21), become a dimensionful quantity, having dimension of energy density because the 

Coulomb energy propagator , otherwise known as a term producing instantaneous 

interaction between Gribov copies, also serves as an instantaneous position indicator for the 



Gribov copies & thus, destroys the wave-character of the transverse gluon on the boundary of 

the Gribov region, so-called the Gribov horizon.  

   Evidently, the transverse gluon has a dual character: the wave-character and 

particle character complement each other. Either character by itself is only part of the storey 

and can provide explanation for only certain effects [30]. In a specific event, the transverse 

gluon exhibits either a wave nature or a particle nature, never both simultaneously [30]. Due 

to this duality between particle-character and wave-character, the aforesaid destruction of the 

wave-character, by the Coulomb energy propagator  on the boundary of the Gribov region, 

so-called the Gribov horizon, is simultaneously accompanied by the sudden exhibition of the 

particle-character in the form of appearance of the massive single transverse gluon that is at 

rest in some moving inertial reference frame. This massive nature of the transverse gluon 

arises from the infinite value of the term  in the Equation (21) because this term , 

otherwise having dimensions of energy density as the Coulomb energy propagator for the 

ensemble of Gribov copies inside FMR, transforms suddenly into singular infinite term 

when the zero eigenvalue of the operator  in the Equation (19) is substituted in the 

denominator of the  for the aforesaid single massive gluon on the boundary of the Gribov 

region, so-called the Gribov horizon. As such, on the boundary of the Gribov region, so-

called the Gribov horizon, there is change in the dimensions of the product term  

, in the sole left out additional coulomb term in Equation (21), from 

dimensionless coupling constant to becoming a dimensionful quantity, having dimension of 

energy density because the aforesaid singular term being infinite cannot have the 

dimensions of energy density with reference to the aforesaid single massive transverse gluon. 

   Then, via this phenomenon of dimensional transmutation 1) one can calculate 

all the observables of QCD in terms of dynamically generated mass scale and there remains 



no adjustable parameter in QCD and 2) one can introduce a physical scale QCD at which 

‘mass-gap’ property is demonstrated for each transverse gluon. Since, there is change in the 

dimensions of the product term  , in the sole left out additional coulomb 

term in Equation (21), from dimensionless coupling constant or ‘color charge’ to 

becoming a dimensionful quantity, having dimension of energy density with reference to the 

aforesaid single massive transverse gluon, so, the color confinement for the aforesaid 

massive transverse gluon also occurs at the aforesaid physical scale QCD on the boundary of 

the Gribov region, so-called the Gribov horizon in non-perturbative regime of QCD. It is 

pertinent to mention here that the causal propagation (i.e., the wave nature) of this massive 

transverse gluon, that is created in overall color singlet & electrically neutral manner on the 

boundary of the Gribov region, so-called the Gribov horizon and is at rest in some moving 

inertial reference frame, could no longer be dependent upon the Gribov copies and gauge-

fixing and in-fact, the fragmentation of this massive transverse gluon occurs in laboratory 

reference frame shortly after its creation in overall color singlet & electrically neutral manner 

on the boundary of the Gribov region, so-called the Gribov horizon. 

   “In general, because the Gauge transformations contain arbitrary function of 

time, so, the usual canonical quantization procedure can only be carried out in a specific 

gauge. It is natural to inquire whether there are rules to ensure that quantum theories in 

different gauges are indeed the same. This question is closely connected with the ordering 

problem of operators especially in non-Aeblian Yang – Mills theory because of the non-linear 

nature of the Interaction”[29]. However, in the present case, the Gauge transformation does 

not contain arbitrary function of time but instead, as shown in above Equation (12a), is 

essentially time-dependent (spatially independent) infinitesimal gauge transformation that 

generate temporal zero modes of the Faddeev – Popov determinant, and as such, the usual 



canonical quantization procedure has been exclusively carried out in the transitory gauge-

fixing condition k(A) 0Ak = 0 of Equation (8) on the gauge orbit as a priori case keeping in 

view the color charged nature of the quanta of non-Aeblian Quantum Yang – Mills theory. As 

such, the aforesaid question “whether there are rules to ensure that quantum theories in 

different gauges are indeed the same” does not arise in the present case due to the color 

charged nature of the quanta of non-Aeblian Quantum Yang – Mills theory and accordingly, 

there is no operator ordering ambiguity in present case. Also, the axial gauge, where there is 

no Gribov problem, is simply non-applicable for the time-dependent (spatially independent) 

infinitesimal gauge transformations in present case. Further, the causal propagation of the 

photons in QED (where there is no Gribov problem) is implemented by the idea of 

antiparticles as already stated above in ‘Introduction’ section of this paper.  

3.  EXPERIMENTAL VERIFICATION: 

    “A gauge field describes two dynamical degrees of freedom of a massless 

spin-1 particle. A most economic description would have been using a two component field. 

However, to have Lorentz symmetry, one has to imbed the two degrees of freedom into a 

four-vector field , thereby introducing the gauge degrees of freedom. To ensure the gauge 

part do not contribute to physical observables, manifest gauge symmetry under 

 is required. The gauge degrees of freedom seem to be a nuisance, it 

would be nice to get rid of them in actual calculations. However, this can only be done by 

first formulating a Lorentz-invariant theory and then imposing gauge conditions. The order of 

the procedure here is critically important and cannot be reversed: one cannot construct 

physical observables directly in term of “physical” degrees of freedom after imposing the 

gauge conditions. Reversely-engineered gauge symmetry is not guaranteed physical because 

1) observables generally do not have proper Lorentz transformation, 2) they generally are 

non-local, 3) they generally have no physical measurements.”[32] 



   In this paper, a pure Yang-Mills gauge theory has been completely defined in 

Hamiltonian formulation with the help of the generalized Coulomb gauge – a null covariant 

derivative which not only has Lorentz symmetry (i.e., by definition, in terms of a co-ordinate 

system the covariant derivative of a ‘vector’ transforms under a change of co-ordinate system 

‘in the same way’ as the ‘vector’ itself) at the first instance but also, at the same time, 

imposes gauge fixing condition in Equation (8) above. Thus, the aforesaid order of procedure 

has been strictly followed in the Hamiltonian formulation of this paper. Consequent upon the 

same, Ak
┴
, the two “physical” degrees of freedom in the Hamiltonian formulation of this 

paper, are physical enough in the laboratory inertial reference frame such that any thing made 

out of it is ‘directly’ physical. The simplest gauge-invariant ‘physical observable’ to be made 

out of Ak
┴
, the two “physical” degrees of freedom, is gluon helicity, defined as the projection 

of gluon spin operator along the direction of the momentum.  

   In the Hamiltonian formulation of pure Yang-Mills gauge theory completely  

derived in this paper, the generalized Coulomb gauge fixing condition as a hyperspace in 

configuration space ‘explicitly’ breaks the gauge symmetry at the point of its intersection 

with the gauge orbit, so, the construction of the aforesaid gauge-invariant ‘physical 

observable’ (i.e., gluon helicity) during the transient existence of the generalized Coulomb 

gauge by using Ak
┴
, the two “physical” degrees of freedom, corresponding to any such 

aforesaid point of intersection is nothing but exhibition of particle character of gluon. 

Theoretically speaking, there are infinite number of such points of intersection called ‘Gribov 

copies’ for an arbitrary gauge orbit in configuration space such that  in Equation 

(10b) or Equation (13) above gives the probability of any Gribov copy being selected  for the 

construction of the aforesaid gauge-invariant ‘physical observable’ (i.e., gluon helicity) 

during the transient existence of the generalized Coulomb gauge by using Ak
┴
, the two 

“physical” degrees of freedom corresponding to that Gribov copy.  



   This is nothing but exhibition of wave-character of gluon. As such, the 

aforesaid statement “the generalized Coulomb gauge fixing condition as a hyperspace in 

configuration space ‘explicitly’ breaks the gauge symmetry at the point of its intersection 

with the gauge orbit” is nothing but wave-particle duality i.e., gluon has a dual character: the 

aforesaid wave character and particle character of gluon complement each other and in a 

specific event, gluon exhibits either a wave nature or particle nature, never both 

simultaneously. In other words, the Gribov copies, as special realization of a gluon, are 

simultaneously created as physical entities, with different positions, by quantum fluctuations 

of energy during the transient existence of the generalized Coulomb gauge in full accordance 

with the uncertainty principle such that the wave-character of a transverse gluon is 

implemented in term of its Gribov copies. 

   In Ref. [33], “Three-jet variables constructed from multi-hadronic events 

produced by  decays are compared to theoretical calculations assuming a vector gluon or 

a hypothetical scalar gluon. The data yield conclusive direct evidence for the former case. 

The distributions of the reduced energy of the second-most energetic jet and of the cosine of 

the Ellis-Karliner angle are chosen to demonstrate this effect.”[33] In this regard, it is quite 

obvious that the aforesaid Ellis-Karliner angle is produced by the scattering of the emitted 

hard gluon color charge by the color charge of the most energetic quark (or antiquark) in 3-jet 

events produced by  decays.  

   Accordingly, the hard gluon in 1
st
 Gribov region  would demonstrate the 

cosine of the Ellis-Karliner angle near unit value and Gribov copies in higher Gribov  regions 

2, 3, ….  in hyperspace  [ k(A) Á
k
 = 0] of Configuration space (see Fig. 2 above) would 

demonstrate their respective values of the cosine of the Ellis-Karliner angle in decreasing 

order because at the time of emission in 3-jet event, the color charge of the hard gluon in 1
st
 

Gribov region  approaches zero value and goes on increasing for the Gribov copies in 



higher Gribov  regions 2, 3, ….  in hyperspace  [ k(A) Á
k
 = 0] of Configuration space (see 

Fig. 2 above). Since, the probability  in Equation (10b) or Equation (13) above is 

highest for the hard gluon in 1
st
 Gribov region  and goes on decreasing for the Gribov 

copies in higher Gribov  regions 2, 3, ….  in hyperspace  [ k(A) Á
k
 = 0] of Configuration 

space (see Fig. 2 above), so, it is theoretically predicted that the distribution of the cosine of 

the Ellis-Karliner angle would be peaked near unit value. In Figure 3 of Ref. [33], the data 

yield conclusive direct evidence for the aforesaid theoretical prediction. This provides us the 

experimental verification that the Gribov copies are indeed physical entities which can be 

selected  for the construction of the aforesaid gauge-invariant ‘physical observable’ (i.e., 

gluon helicity) during the transient existence of the generalized Coulomb gauge by using Ak
┴
, 

the two “physical” degrees of freedom corresponding to that Gribov copy. 

    Also, the lack of the clear experimental evidence for the existence of Glueballs 

as the leading object in the gluon jet of 3-jet event [26] experimentally verifies the 

postdiction that the emitted hard transverse gluon in the 3-jet event becomes a color-singlet 

massive transverse gluon on the boundary of the Gribov region, so-called the Gribov horizon 

in non-perturbative regime of QCD.  

4.  DISCUSSION: 

      The distribution of charge and invariant mass of the leading cluster Qlead and 

Mlead in gluon jets beyond a rapidity gap reflect the color neutralization mechanism and with 

increasing rapidity gaps, the leading charges would be closer to their asymptotic distribution 

[26]. As per results from LEP on leading clusters as obtained by OPAL [27] and DELPHI 

[28], there is excess of gluon jets with Qlead  = 0 and Mlead ≤ 2.5 GeV [26]. A natural 

explanation would be a leading gluonic system or glueball [26]. But the clear evidence for the 

existence of Glueballs as the leading object in the gluon jet of 3-jet event is still missing [26]. 



In this regard, the fragmentation of the aforesaid massive transverse gluon, that is created in 

overall color singlet & electrically neutral manner on the boundary of the Gribov region, so-

called the Gribov horizon and is at rest in some moving inertial reference frame, easily 

provides explanation for the aforesaid excess of gluon jets with Qlead  = 0 and Mlead ≤ 2.5 

GeV. It is pertinent to mention here that the early QCD prediction of massive Glueball arises 

out of the ability of the self-interacting gluons to bind themselves to give rise to new 

spectroscopy of gluonic matter [26]. Bur in view of the emitted hard transverse gluon in the 

3-jet event becoming a color-singlet electrically neutral massive transverse gluon on the 

boundary of the Gribov region, so-called the Gribov horizon in non-perturbative regime of 

QCD, there can be no new spectroscopy of gluonic matter or Glueballs. As on date, only the 

quantitative predictions of Glueballs are derived from the lattice QCD & from QCD sum 

rules, but the experimental verification of these Glueballs is still in doubt [26].  

5.  CONCLUSION: 

   Since, any attempt to naturally complete the all-time valid Coulomb gauge by 

supplying a further (spatially independent) gauge constraint leads to a contradiction with the 

perturbative renormalizability of the theory [8, 12, 13, 14, 15, 16], so, we cut short the all-

time validity of the Coulomb gauge by using the transient generalized Coulomb gauge [4] 

that is valid for infinitesimal time period (t1 - t0) only and implicitly includes the standard 

Coulomb gauge also. In the process of quantizing pure QCD in this transient generalized 

Coulomb gauge, we can solely perform time-dependent (spatially independent) infinitesimal 

gauge transformations, as shown in above Equation (12a), that generate temporal zero-modes 

of the Faddeev – Popov operator on the gauge-orbit as shown in Equation (12f) above. At the 

same time, the non-temporal zero modes of the Faddeev-Popov determinant called the Gribov 

copies also implicitly gets introduced during the canonical quantization because the transient 

generalized Coulomb gauge [4] during the infinitesimal time period (t1 - t0) implicitly 



includes the standard Coulomb gauge also. As such, the required uncertainty in position of a 

transverse gluon is accommodated by allowing for the possibility that Gribov copies are 

created as virtual entities by quantum fluctuation of the transverse gluon energy over the brief 

intervals of time coinciding with transient existence of the generalized Coulomb gauge in full 

accordance with the uncertainty principle. These Gribov copies can be ignored in perturbative 

sector due to asymptotic freedom of pure QCD empty space but their common characterstic 

i.e., zero value of Faddeev-popov operator in Equation (20) above, serves as a mathematical 

proof of mass-gap and color confinement properties on the boundary of the Gribov region, 

so-called the Gribov horizon in the non-perturbative sector of pure QCD.  
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