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1 Introduction

Seiberg and Witten 199/ : Abelian confinement in monopole vacuum of
N =2QCD
Cascade gauge symmetry breaking:
e SUN)— U(1)N1 VEV’s of adjoint scalars
e U(1) ! — 0 (or discrete subgroup) VEV’s of monopoles

At the last stage Abelian Abrikosov-Nielsen-Olesen flux tubes are

formed.
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Deformation: mass term 1 for adjoint matter

Monopole VEVs ~ /uApn—o

Seiberg-Witten scenario — Abelian
confinement

In both QCD or N = 1 supersymmetric QCD there are

no adjoint fields — no Abelianization

Idea:
Increase u — p-deformed theory flows to N =1 QCD

Problem:

Weak coupling condition in the infrared-free low energy theory

VAN —2 K Ap—s

Breaks down at large p



Our setup:
N =2 QCD with U(N) gauge group and N; > N fundamental flavors

(quarks) deformed by mass term for adjoint matter p.
N+1<Nf<3/2N

N =2 QCD: r-vacua where r quarks condense, r < N
We consider all r vacua

Weak coupling dual description at large p only in

e r = /N vacuum

e zero vacua at r < IV

~

N=N;—N

Reason: small or zero gaugino condensate



r = N Quark vacuum

Scalar quarks condense with VEV’s ~ /&, £ ~ um.
Large & — theory is at weak coupling

What happens if we reduce & and go to strong coupling?

Two steps:
e Reduce ¢ at small p ( Near N = 2 limit)

e Increase L.



2 r =N Vacuum at large &

N =2 QCD with gauge group U(N) = SU(N) x U(1) and
Ny flavors of fundamental matter — quarks

The field content:

U(1) gauge field A,

SU(N) gauge field A%, a=1,...,N* -1
complex scalar fields a, and a“

+ fermions

Complex scalar fields ¢®* and G4, (squarks) + fermions

k=1,...,N is the color index, A is the flavor index, A =1, ..

Mass term for the adjoint chiral field

Wir = 1t Tr &,

where .
(I) — 5 ./4 —|— Ta Aa.

LN



F-terms in the potential

awr 2
Gaq”t + V2 @@b o |(V20 4 ma)g?|
Adjoint fields:
1
<d1agq)> ~ _ﬁ [mla 7mN] ;
(s)Quark VEV’s
' ( V& .. 0 0
kA o =k A _
(@) = (q7) 7
L0 .. V& O

k= 1,...,N, A=1,.., Ny,
where quasiclassically

Ep =~ 2 ump, P=1,..N,




In the equal mass limit U(V)gauge X SU(N¢)favor

in r = /N vacuum 1s broken down to
SU(N)C+F X SU(N)F X U(l) ;

where N = Ny — N.
Quarks and gauge fields fill following representations of the global group:

~

(1,1) (N*—=1,1) (N,N) (N,N)



Non-Abelian strings confine monopoles

Example in U(2)

String tensions

monopole

U(1)

D

21_7132277'|€p‘7 P=1,..



3  r-Duality at small &

Small &
|\/ §P| < Ap=a, |mA — mB\ <K Apr—o

Use Seiberg-Witten curve on the Coulomb branch at © = 0

e r-dual theory with gauge group

Uv) x U1V, V= 4

and Ny quark-like dyons
(with weight-like electric charges)

e non-Abelian strings which
still confine monopoles

(with root-like electric charges)



~

For r = N vacuum v =N = Ny — N

Dual gauge group

U(N) x U1)NN

~

The non-Abelian gauge factor U(N) is not broken by adjoint VEV’s in
the equal mass limit because this theory is infrared-free and stays at

weak coupling.

Argyres Plesser Seiberyg:
SU(N) x U(1)™=N) was identified at the root of baryonic Higgs branch
in SU(N) theory with massless quarks and p = 0.



Vacuum I

Dyons

(D) = (D

(D7) = (D)

"Vacuum leap”

(Los N) ey
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Strong coupling I

gp:—Qﬂ,uep, le,...,N,
where ep are the double roots of the Seiberg—Witten curve,

=T (5) T (e ) = Tl ey

At small masses the double roots of the Seiberg—Witten curve are

271
\@61 — —MJI+N, \/§6J = Ay—2 exp ( J)

N - N

where

I=1,..N and J=N+1,...N.
The N first roots are determined by the masses of the last N quarks — a
reflection of the fact that the non-Abelian sector of the dual theory is

infrared-free and is at weak coupling in the domain.



4 ’Instead-of-confinement’” mechanism

In the equal mass limit the global group is broken to
SU(N)p x SUN)cpr x U(1)
Now dyons and dual gauge fields fill following representations of the
global group:
small £: (1,1) (1,N2—1) (N,N) (N,N)
Recall that quarks and gauge bosons of the original theory are in

~

large ¢ : (1,1) (N?-1,1) (N,N) (N,N)
(N? —1) of SU(N) and (N? — 1) of SU(N)
are different states

CROSSOVER




What is the physical nature of (N — 1) adjoints at small £7

e Higgs-screened quarks and gauge bosons decay into

monopole-antimonopole pairs at CMS.

At & # 0 monopoles are confined and cannot move apart

monopole antimonopole

e

__—

In the region of small £ (N? — 1) of SU(N) are stringy mesons formed by

pairs of monopoles and antimonopoles connected by two strings



Crossover
Original theory, £ > A%, Dual theory, £ < A3,_,

Monopole mesons Monopole mesons

> >

Quarks Dyons

Screened quarks evolve into monopole-antimonopole mesons



These monopole-antimonopole mesons looks like mesons in QCD
e Correct flavor quantum numbers (adjoint + singlet)

e Lie on Regge tragectories



5 r-Duality at large p

€P ~ (gsmallj - gsmall) glarge) s Slarge)

gsmall ~ um, flarge ~ ,LLA/\/':2

Take p large and m 4 small.

[ => My,
and
‘ Ssmall| < AN—l
where
_ AN—N
N p

Infrared-free dual theory is weakly coupled



U(1)N=Y factors of the dual gauge group U(N) x U(1)N=N decouple
together with Abelian dyons D; and adjoint matter.

We are left at large p with

~

U(N)
gauge group and non-Abelian dyons D', [ =1, ..., N, A=1,.., Ny
Superpotential

1 - N i
W = o (D4D®)(DgD?) +my (DoD?)

Monopole confinement and ”instead-of-confinement” phase for

quarks/gauge bosons survive.



Seiberg’s duality and r-duality
match for r = N vacuum

Seiberg’s “dual quarks” are not monopoles as naive duality suggests.
Instead, they are quark-like dyons appearing in the r-dual theory below
crossover. Their condensation leads to confinement of monopoles and
“instead-of-confinement” phase for the quarks and gauge bosons of the

original theory.



6 Vacua with r < Ny/2

r Vacuum at large my I

First r (s)quarks condense, r < N

F-terms in the potential
2

_ OWh: 2
Gaq* + V2 aq)b : ‘(\[2<I> + mA)QA‘
Adjoint fields:
1
(diag®) ~ 5 m1,...,m.,0,...,0],

For » < N classically unbroken gauge group

UN —r) — U)N-r — U(1)

adjoints (N —r — 1) monopoles



Number of isolated vacua with »r < N

N—1 N—1 Nf'
M<N — 72 (N_T)CNf — 72} (N_T) T'(Nf—T)'

Low energy theory at small (m4 — mp)
U(r) x U)W — U(1)mbr

r quarks + (N — r — 1) monopoles.

. N
We consider r < Tf

Then U(r) x U(1)™=") is infrared-free and weakly coupled if

Ep < Ao



Suiversal formula for VEVs of quarks and monopoles:

2 1
‘SP — _2\/5/1\/6%3 — —Sa S = <TI‘ Wawa>7 P = L. (N_l)

1 3272
Quarks:
(V& ... 0 0 ... 0 )
kA k4, _ L
(@) (@) 7 S ,
\ 0 NV 0 )
]C = 1, s Ty AZl, ,Nf,
Monopoles:
(Mp(py1)) = (M p(py)) = e P=(r+1),..N



7 up-Duality in zero vacua

Gaugino condensate — 0 in the limit of small m

Nf—27"
m N—r 27rk,l: ~
S & e eV & um?, k=1,..,(N—r),
AvZs

VEVs

gP ~ _2/,L (mla ceey My 07 "'707 A/\/’:Q, "'7AN26N27F§V(N]\71))

~

U(N) gauge group with N; flavors of quark-like dyons
r dyons condense. Higgs/Coulomb phase

Quarks have color charges identical to quark-like dyons but differnt
chiral charges.
g+Gd—D+D+ A+



8 Phases of N =1QCD

3 ~
N+1<Nf<§N, (> Ay, \/g<<AN:1

Coulomb/Higgs phase

AD regime

Instead—of—confinement
phase

/A—-vacua




9 C(Conclusions

e There is no quark confinement phase in N' =1 SQCD in the domain

of small &.

Istead of Seiberg-Witten scenario of quark confinement based on

condensation of monopoles we have different scenarios:
e In zero r-vacua we have Higgs/Coulomb phase.

e In r = N vacuum we have
" Instead-of-confinement” phase

Higgs-screened quarks and gauge bosons evolve into

monopole-antimonopole stringy mesons.

e The phase most close to what we observe in the real-world QCD is

the “instead-of-confinement” phase present in the »r = N vacuum.



10 Connection to Seiberg’s duality

Seiberg’s duality is formulated for 7 = 0 (monopole) vacua. All other

r # 0 vacua are runaway vacua at 1 = oo
Original theory: integrate adjoint fields at large u

1 i i
o (Ga¢®)(GBg™) + ma (Gag™)

Carlino, Konishi, Murayama, 2000

Generalized Seiberg’s dual: U(N) gauge theory with superpotential

2 .
Wq = —,;— Tr (M2) +/£mA]\421 + hyh'P Mg,
[

where M% is the Seiberg neutral mesonic M field defined as

(Gaq”) =k M}



Integrating out the M fields we get

WEE — 2% (hah®)(hgh™) + %mA (hah?).

The change of variables
D4 = [-Epa =1 N, A=1,..N
K

brings this superpotential to the form

1 - . .
We" = 2 (DADP)(DgD?) —mu (DsD?).

This superpotential coincides with the superpotential of our r-dual

theory



11 r-Duality at large u

Now
Ml o m < A=y, > Aoy

where
ALY = N AN
't Hooft anomaly matching:
anomaly|y = anomaly|rg
UV energy should be Eyy > Apn—1, moreover, u > Eyy
UV global group:
SU(Ny)L x SU(Ng)r x U(1)R
At m < Erp < &small
IR global group:
SU(N) x SU(N) x U(1)y x U(1)p



The list of anomalies to be checked is

ymn ymn
U(l)R/ XSU(N)QI _7N|UV:_7N‘1R7
., 5P
U(l)g x SUN)*:  O|gy = 5 (=N + N)|rr,
U(l)R/ X U(l)%/ : O‘UV = O|IR7
U(l)R/Z —2N2—|—N2|UV:—N2:—Nz—N2‘|‘N2|IR7
U(I)SR/: —2N2—|—N2|UV:—N2:—NQ—N2‘|‘N2|IR>

(1)

We need light M% meson.

Its mass

myr ~ M



Interpretation of Seiberg’s M —meson'

Our r-dual gauge group

U(N) x U(1)N=N — U(N)

~

Scale of U(IV)

~

gsmall ~ m < A,/\/:l

Weak coupling

Scale of Abelian U(1)N¥ " is

Slarge ~ ,UA./\/':2

This sector is at strong coupling



Conjecture:

Seiberg’s M#% meson is one of monopole-antimonopole stringy mesons

from Abelian U(1)Y~ sector

monopole antimonopole

e

__—

Superpotential

/12

W= = Tr (M) — wma M + " DD MA
i i



Simplest example possible: SU(2) gauge theory with Ny =1

Three vacua:

monopole (1., n,,) = (0, 1), monopole (1,1), and quark (%, 0)

m — OO
O O
M M Q
(1,1) (0,1) (¥2,0)

o Q (%1)
40
M

(@)
-1/2.1) M 0.1
m =0

Quarks condense in the quark vacuum at any m



In the r < NN vacua there is a novel feature:
Ev =0

One ( N-th) Zy string is absent and the associated flux of the unbroken
U(1)ubr gauge factor is not squeezed into a flux tube. It is spread out in

space via the Coulomb law.

Strings become metastable. They can be broken by a
monopole-antimonopole pair creation of monopoles which are junctions
of one of the first r Zy-strings with the would-be N-th string (which is

in fact absent).




12 Appendix B: Generalized Seiberg’s

duality and exact chiral rings

Cachazo-Seiberg-Witten 2005

45
(QQ)A:H (mA+\/m?4——>, A=1,..r
2 v
_ 45
(QQ)A—% (mA_ \/mi— ?>, A=(r+1),...,Ny

Here gaugino condensate S is determined by matrix model

superpotential, namely:

N_ NyN-N (m 1 g_ﬁr m 1 2_§
e (54 (3

where we assume the equal-mass limit for simplicity.




This imply the following equation for quark condensate:

1 1 (detdq)¥
v A (dg)a

Cachazo—Seiberg—Witten exact solution produces the same equations for

the quark condensates as the continuation of the ADS superpotential to
Nf > .



