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INTRODUCTION

Hadronic vacuum polarization q q
function II(¢%) plays a central role

in various issues of QCD and

Standard Model. In particular, the theoretical description of
some strong interaction processes and of hadronic contribu-

tions to electroweak observables is inherently based on I1(¢°):
e electron—positron annihilation into hadrons
e inclusive 7 lepton hadronic decay
e muon anomalous magnetic moment

e running of the electromagnetic coupling
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GENERAL DISPERSION RELATIONS

Cross—section of e"¢~— hadrons: :
202 d
0O — 47-‘-2 % LMVA/LV, r
S (0]
where s = ¢° = (p1 +p2)2 > 0, ot n
1 S
Lyv =5 {Q,uqy — gua* — (p1 — p2)u(p1 — pz)u} ,
A/LV — <27T)4 Z 5(]71 T P2 — pF><O‘J,u(_Q)}F><F}JV<Q)’O>7
[

and J, =) f Qr:dvuq: 1s the electromagnetic quark current.

Kinematic restriction: the hadronic tensor A, (¢°) assumes
2

non—zero values only for ¢> > m?, since otherwise no hadron

state ' could be excited B Feynman (1972); Adler (1974).

A V.Nesterenko 11th Confinement Conference (Saint-Petersburg 2014)



The hadronic tensor can be represented as A, = 2ImlIl,,

9. 11 q2
HW(QQ) = z/ qu<0‘ T{Ju(z) J,(0)}]0) d*e = i(Quay — 99 2) 15772)'
Kinematic restriction: I1(¢°) has the only cut ¢ > m?
Dispersion relation for H(qQ): .
1 H(¢)
All(¢, q5) = 5= (¢" — qg)]{ d
omi C (€= )€ —qf) -3

= (7" — q7) / N Hls) ds,

m? (s —¢*)(s — ¢3)

where All(¢? q%) = I1(¢?) — H(q%) and R(s) denotes the measur-

able ratio of two cross—sections

R(s) = —— lim M1(s +ie) — T1(s — ic)| =

21 €—>O_|_

o(eTe” — hadrons; s)

olete” — ptp=;s)
2

Kinematic restriction: R(s) =0 for s <m
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For practical purposes it proves to be convenient to deal with
the Adler function (Q? = —¢> > 0)

dI1(—Q?) ) ) /OO R(s)
D(Q?) = — D(Q?) = d
(@) dlnQ? ’ (@) =¢ m2 (s +Q?%)? ’
B Adler (1974); De Rujula, Georgi (1976); Bjorken (1989).

This dispersion relation provides a link between experimen-

tally measurable and theoretically computable quantities.

The inverse relations between the 4Im¢

functions on hand read

1 S—1€ d
R(s) = —— lim / p(—0) % -
271 e—04 S+1e C
B Radyushkin (1982); Krasnikov, Pivovarov (1982) 0
Q° do
Al(-Q =Qp) == [, Do)~
o o

B Nesterenko (2013).
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The complete set of relations between I1(¢?), R(s), and D(Q?):

o0 R B d
All(q*, q7) = (4" — q) / » (o = q2)(2 — @) do = - 2 D( ) cj
m 40
. 1 S—1€ d
R(s) = %612& [H(S + 1€) — H(s — 28)} = %61&1& /SH.8 D(_C)?Cv

AT(—Q
D@ =~ dan2 N /m a+Q2) ‘o

Derivation of these relations requires only the location of cut

of I1(¢°) and its UV asymptotic. Neither additional approxi-

mations nor phenomenological assumptions are involved.

Nonperturbative constraints:

e I1(¢°): has the only cut ¢*> > m?;

e R(s): embodies ﬂz—terms, vanishes for s < m2;

e D(Q?): has the only cut Q° < —m?, vanishes at Q? — 0.
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DISPERSIVE APPROACH TO QCD

Functions on hand in terms of the common spectral density:

- 2,2 92
2 9 An(0).2 2 o—q-m”—qj\do
A, qf) = At )+ | | p<“)1“<a—q3m2—q2 2
o d
R(s) = R(s) + 6(s — m?) / plo) =,
< o
2 00 —m?do
D(Q?) = D(Q? e / ———
(Q) (Q>+Q2+m2 2 p(0)0_+Q2 0_7
1 d . . d?“(J) 1 . -
SR —ig) = — = —Im lim a(—o —
plo) wd Ino mgg&p(a 2 dlno mei{]&r( 7 )

where AI0)(42, ), RO)(s), DU)(Q?) denote the leading—order

terms and p(¢?), r(s), d(Q?) stand for the strong corrections
B Nesterenko, Papavassiliou (2005-2007); Nesterenko (2007-2014).
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Derivation of obtained representations involves neither ad-
ditional approximations nor model-dependent assumptions,

with all the nonperturbative constraints being embodied.

The leading—order terms of the functions on hand read

—tany  _@o—tangg . o g
ATI() 2, % :290 — 2 Sin“p = —
", 4) tansy tandpy v m?’
2\3/2 2
RO(s) = 4(s — m?) (1 - ﬁ) - sinfipg = 22,
S m
3 2
DY@ =1+2]1- \/1+§—1 sinh—l(gl/Q), g:Q—Q
§ m
B Feynman (1972); Akhiezer, Berestetsky (1965).
Perturbative contribution to the spectral density:
1 dlmp ert(a _ ZO_|_) dr ert(0-> 1 :
ppert<0) - _ : = —— = —Im dpert(_a R ’LO_|_),

T dIno dIno 0
namely, at the one—loop level pggm(a) = (4/Bp)In’(c /A?) + 72~ L.
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Note on the massless limit

In the limit m = 0 the obtained integral representations read

AL, q) = —ln(_—QQ) +/Ooop(0) m_l (o)) do

—d 1—(o/qp)] o
Rs) =0(s) |1+ [ o) 57|
D(Q2> =1+ /Oooapffggz do.

For p(0) = p,.:(0) two highlighted massless equations become

identical to those of the APT  m Shirkov, Solovtsov, Milton (1997-2007).

But it is essential to keep the threshold m? nonvanishing:

e massless limit loses some of nonperturbative constraints

e effects due to m # 0 become substantial at low energies
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HADRONIC VACUUM POLARIZATION FUNCTION

Comparison of obtained results with lattice simulation data:

Q) = AI(0, —Q?)

|||||
&
LE5a0s 11

1.0}

0.5F

// /' QQ, GGVQ
0.0 0.5 1.0 1.5

B Della Morte, Jager, Juttner, Wittig (2011-2013); Nesterenko (2013, 2014).

unphysical singularities | agreement with lattice
PT contains disagrees
APT free disagrees
DPT free agrees
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ADLER FUNCTION

massless limit (m = 0) realistic case (m # 0)
15 D(Q?) 1 N 1.5_— D(Q?) N
_ | T e
1.0 R

I /] 234
0.5} APT 05F [/ DPT
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B Nesterenko, Papavassiliou (2006); Nesterenko (2007-2009).

unphysical singularities | agreement with data
PT contains disagrees
APT free disagrees
DPT free agrees
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INCLUSIVE 7T LEPTON HADRONIC DECAY

The interest to this process is due to
e The only lepton with hadronic decays
e Precise experimental data
e No need in phenomenological models

e Probes infrared hadron dynamics

The experimentally measurable quantity:

['(77— — hadrons™ v;)

RT:

— RT,V =+ RT,A + RT,87

(7= — e Devy)

Rryv = RI0+ RIE = 1.782 £ 0.000, hadrons

Rr = R+ Ry = 1.694 £ 0.010.

B ALEPH Collaboration (1997-2005); Davier, Hocker, Malaescu, Yuan, Zhang (2014).

A V.Nesterenko 11th Confinement Conference (Saint-Petersburg 2014) 11



The theoretical prediction for the quantities on hand reads
_ N,
Ri’_\}/A = o ’%d’Q Skw (Agé% T 5],EW)7

N.=3, Vi =0.973820.0005, Sgw=1.0194=0.0050, &% =0.0010,

]V[Q
T S ds
s =2 [ () R

m2,, M7 Mz
where M, = 1.777GeV, f(z) = (1 —z)? (1 + 2z),
1 1
RV (s)==—— lim {HV/A(SJrie)—HV/A(S—ZE)}:—Im lim ITY/4(s+i¢)
271 e—04 s e—04
B Braaten, Narison, Pich (1992); Pivovarov (1992).
Integration by parts leads to
1 G dg
_ 2 2
Sao = 90RO — g00R() + 5 [ o553 PO
C1+CH

where y = m?/M? and ¢(z) = z(2 — 22° + ).
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Continuous deformation of the integration contour:

A A
fmg Only if D(Q?) possesses Im¢
correct properties in )?
. \
2
Cl I’:MT C3
- Re (i . /\ Re (i

1 S dg
2 2
Baer = 9RO = g0 R + 5 [ 9552 ) DO
Cs+CY
In the massless limit (m = 0) this equation acquires the form
1 m—E& . .
Aqgep = 5 lim / {1 — g(—ew)} D(Mgew) do.

Te—04 ) —m4e
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Inclusive 7 decay within perturbative approach:

Commonly, perturbative D(Q?) is directly employed here

DQY) = D@ =1+ 3 di[ain@]' @ =
with ozse’m(@?) = 4m /[By (Q*/A%)], By = 11 — 2n,/3, and d; = 1/7.

In what follows the one—loop level (¢ = 1) with n, = 3 active

flavors will be assumed.

The one—loop perturbative expression for AQCD reads

AA1(0) + 0 A5(6)
AV/A / 1 d@
pert ﬁO ()\2 n (92) 9

where \ = ln(MTQ/AZ), A1(0) = 1+ 2cos(f) — 2cos(30) — cos(46),
Ag(0) = 2sin(f) — 2sin(36) — sin(40).
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Perturbative approach gives A} = A’ , however A} # Al
OPAL (update 2012): A} = 1.22940.088, A} = 0.741 £ 0.058

B OPAL Collaboration (1999); Boito, Golterman, Jamin et al. (2012).

ALEPH (update 2014): AY = 1.227 +0.047, AL, = 0.749 = 0.032

exp
B ALEPH Collaboration (2005); Davier, Hocker, Malaescu, Yuan, Zhang (2014).

16 AV 161 AA

[ Agep ALEPH (update 2014) ALEPH (update 2014)
12F 12}

NN D S
0.8] 081
04l 0.4l

N | A, GeV : A, GeV

00 05 10 15 20 25 30 00 05 10 15 20 25 30

A= (430739) MeV| A = (165172) MeV no solution

V—channel: PT gives two equally justified solutions for A

A—channel: PT fails to describe data on 7 lepton decay
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Inclusive 7 decay within APT:

Description of the inclusive 7 lepton hadronic decay within

APT leads to a qualitatively similar result:

16 AV 16 AA
- 2QCD ALEPH (update 2014) L £2QCD ALEPH (update 2014)
12F \\\\\ \\ 1.2 //
0.8 \\ 0.8
04| 04|
N\ & ........ A, Gev I A, Gev
00 05 10 15 20 25 30 00 05 10 15 20 25 30
A = (867753) MeV no solution

V—channel: APT gives one solution for A

A—channel: APT f{fails to describe data on 7 lepton decay

Both PT and APT leave out the effects due to hadronization.
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Inclusive 7 decay within dispersive approach:

Description of the inclusive 7 lepton hadronic decay within

dispersive approach enables one to properly account for
e nonperturbative constraints on the functions on hand

e effects due to hadronic production threshold

In the framework of dispersive approach the initial expres-

sion for Agff]\_ﬁ) eventually acquires the following form

-V/A- 53 2 E; 3 o0 0] CZC7
ZX(QCI)::‘\//lf__<;V/A_ ]_‘+'(3<;J/A___ EgC;J/A__% i}§<;V/A' -+ 7712 H }E%;? /)(CT) —E;—

V/A

—3Cv/a (1 + CV/A SQCV/A> ln[CV/A (1 + /1 - CV/A> — 117

with vy = mi, /M7, H(z) = g(x)0(1 — )+ g(1) 0z — 1) — g(Gvja)
B Nesterenko (2011-2014)
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Comparison of the obtained result with ALEPH-14 data:

16 AV s 1.6+ AA
: AQCD ALEPH (update 2014) L 2AQCD ALEPH (update 2014)
12F 121
0847 ] - 0.8}
041 04f T N\
I \ A, GeV . A, GeV
000 025 050 075 000 025 050 075
A = (409 £ 28) MeV A = (419 £ 33) MeV

OPAL-12 data: A = (409+53) MeV [V], A= (409 £61) MeV [A]

B Nesterenko (2011-2014)

unphysical singularities | description of R,y and Rr 4
PT contains fails
APT free fails
DPT free describes
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SUMMARY

@® The integral representations for I1(¢*), R(s), and D(Q?) are
derived within dispersive approach to QCD

® These representations embody the nonperturbative con-

straints and account for the effects due to hadronization

@® The obtained results are in a good agreement with relevant

lattice data and low—energy experimental predictions

@® The developed approach proves to be capable of describing
experimental data on inclusive 7 lepton hadronic decay in

vector and axial-vector channels in a self—consistent way
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