Hadrons in Medium

Gastão Krein Instituto de Física Teórica, São Paulo

th Quark Confinement and the Hadron Spectrum

> September 8-12, 2014 Saint-Petersburg State University, Russia

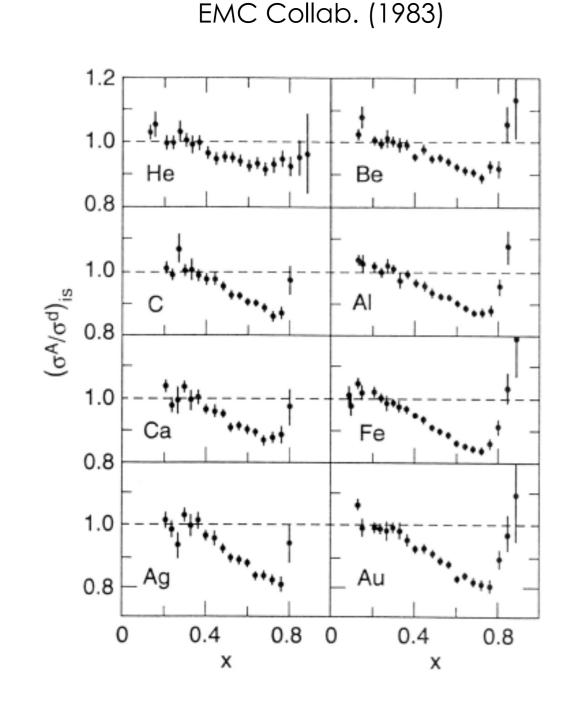
Outline

1. Motivations for studying hadrons in medium

- 2. Nucleon structure functions and e.m. form factors
- 3. Spectral properties of light vector mesons
- 4. Heavy flavor
 - D-mesic nuclei
 - J/ $\!\Psi$ nuclear bound states
 - Quarkonium in heavy-ion collisions (Vairo and others)
- 5. Perspectives

Left out:

- 1. Energy losses in heavy-ion collisions, jet quenching
- 2. Pionic & Kaonic atoms, pions in medium
- 3. n'(980) mesic nuclei, hyperons in medium (hypernuclei)
- 4. Color transparency
- 5. Chiral magnetic effects

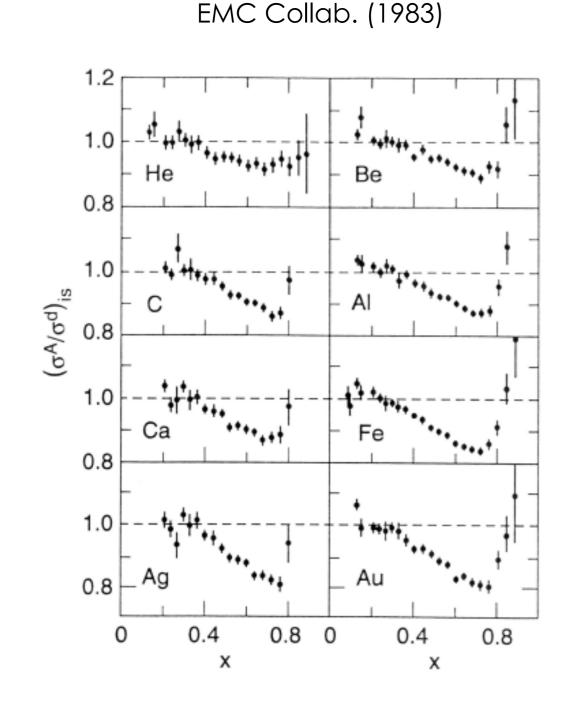

Motivations

— for studying hadrons in medium

- 1. Understanding ground state of many-hadron systems like nuclei and dense stars
- Change of intrinsic structure of hadrons — chiral symmetry & confinement
- 3. Production of new phases of QCD matter

Structure Functions

— of nucleons in nuclei


Ratio of nucleus A to deuterium A=2 DIS structure functions

$$\frac{\sigma_A}{\sigma_D} = \frac{F_2^A(x, Q^2)}{F_2^D(x, Q^2)} \frac{1 + R_D}{1 + R_A} \frac{1 + \epsilon R_A}{1 + \epsilon R_D} \approx \frac{F_2^A(x, Q^2)}{F_2^D(x, Q^2)}$$

Momentum fraction carried by quarks inside a nucleus is different from inside a free nucleon (beyond trivial Fermi motion)

Structure Functions

— of nucleons in nuclei

Ratio of nucleus A to deuterium A=2 DIS structure functions

$$\frac{\sigma_A}{\sigma_D} = \frac{F_2^A(x, Q^2)}{F_2^D(x, Q^2)} \frac{1 + R_D}{1 + R_A} \frac{1 + \epsilon R_A}{1 + \epsilon R_D} \approx \frac{F_2^A(x, Q^2)}{F_2^D(x, Q^2)}$$

Momentum fraction carried by quarks inside a nucleus is different from inside a free nucleon (beyond trivial Fermi motion)

An unexpected discovery

EMC effect — an unexpected discovery

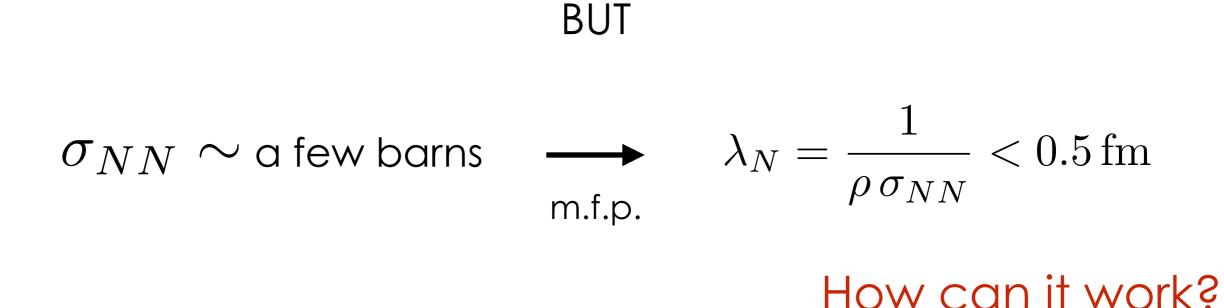
Why unexpected?

A good deal of nuclear physics is understood with nucleons in nuclei moving <u>independently</u> in mean fields (shell model)

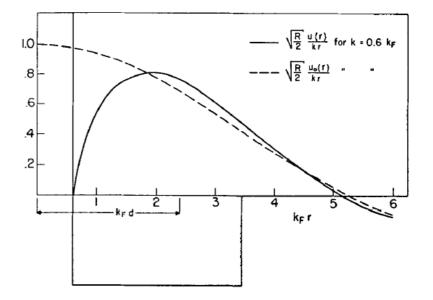
Why does the shell model work?

Shells ~ definite angular momentum

A nucleon must travel a distance comparable to the <u>diameter</u> of the nucleus



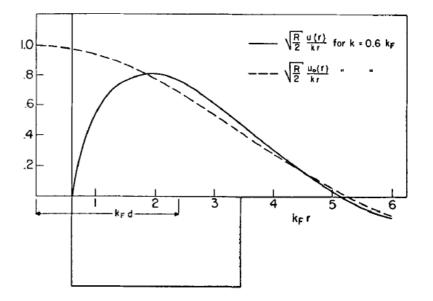
Why does the shell model work?


Shells ~ definite angular momentum

A nucleon must travel a distance comparable to the <u>diameter</u> of the nucleus

Answer

- Gomes, Walecka & Weisskopf (1958)



Interplay between the hard core of the nuclear force and the Pauli exclusion principle

Pauli principle at the level <u>of the nucleons</u>: Superposition of the quark structures in nuclei <u>must be small</u>

Answer

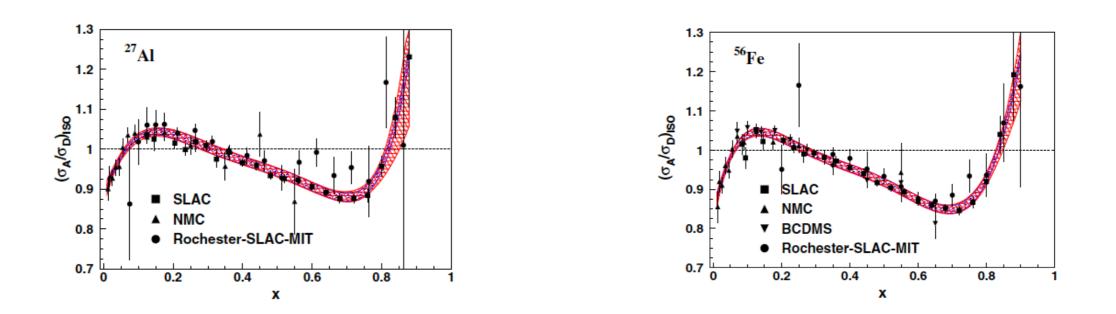
— Gomes, Walecka & Weisskopf (1958)

Interplay between the hard core of the nuclear force and the Pauli exclusion principle

Pauli principle at the level <u>of the nucleons</u>: Superposition of the quark structures in nuclei <u>must be small</u>

How small? Answer*: r.m.s. radius < 0.6 fm Plenty of room for quark exchange & multiquark clusters

*GK & Th.A.J. Maris


Many new experiments after the 1983 EMC discovery

	Collaboration/			Energy	Point-to-point	Norm.
Target	Laboratory	Ref.	Beam	(GeV)	uncert. (%)	uncert. (%)
³ He	JLab	11	e	6	1.1-2.4	1.84
	HERMES	20	e	27	1.1-2.5	1.4
⁴ He	JLab	11	e	6	1.1-2.3	1.5
	SLAC	7	e	8,24.5	1.8-12.4	2.42
	NMC	9	µ	200	1-8.1	0.4
⁶ Li	NMC	21	μ	90	0.9-13.6	0.4
⁹ Be	JLab	11	e	6	1.2-2.1	1.7
	SLAC	7	e	8,24.5	0.94-10.4	1.22
	NMC	9, 22	µ	200	1.5-8	0.45
¹² C	JLab	11	е	6	1.2-2.2	1.6
	SLAC	7	е	8,24.5	1-4.5	1.22
	NMC	9	µ	200	1-7.4	0.4
	EMC	23	µ	280	5.6-9.1	7
^{14}N	HERMES	20	e	27	1-3.6	1.4
	BCDMS	24	µ	280	1.7-6.5	1.3
²⁷ Al	Rochester-SLAC-MIT	25	e	4.5,20	1.3-50	2.3
	SLAC	7	e	8,24.5	0.9-10.3	1.22
	NMC	9, 22	µ	200	1.6-9.4	0.45
^{40}Ca	SLAC	7	е	8,24.5	1.2 - 5.9	1.35
	NMC	9	µ	200	0.9 - 7.3	0.4
	EMC	23	µ	280	5.1 - 10.2	7
⁵⁶ Fe	Rochester-SLAC-MIT	26	е	4.5,20	1.7-21.9	1.1
	SLAC	7	е	8,24.5	0.9-9.7	1.4
	NMC	9, 22	µ	200	1.5-7.8	0.45
	BCDMS	27	µ	200	1.2-4.6	1.5
⁶⁴ Cu	EMC	28	μ	100,280	1.3 - 4	_
¹⁰⁸ Ag	SLAC	7	e	8,24.5	1.3 - 6.3	1.49
$^{119}\mathrm{Sn}$	NMC EMC	9, 22 29	$_{\mu}^{\mu}$	200 100,280	1.1-7 4.4-10.3	0.45 0.9
¹⁹⁷ Au	SLAC	7	e	8,24.5	1.1 - 12.9	2.51
207 Pb	NMC	9, 22	μ	200	1.7 - 9.2	0.45

Table 1. World measurements of lepton DIS cross-section ratios on nuclear targets to deuterium.

Table from the recent review: S. Malace et al. (2014)

Qualitative universality

x < 0.05 - 0.1 Shadowing: depletion, depletion increases with A

0.1 < x < 0.3 Antishadowing: enhancement, no clear A dependence

0.3 < x < 0.8 EMC effect: depletion, depletion increases with A

x > 0.8 Fermi motion: strongly enhanced

Theory

Many ideas:

- Nuclear binding
- Pion excess in nuclei
- Multi-quark clusters
- Dynamical rescaling
- Medium modification
- Short-range correlations

nuclear physics

nucleon structure

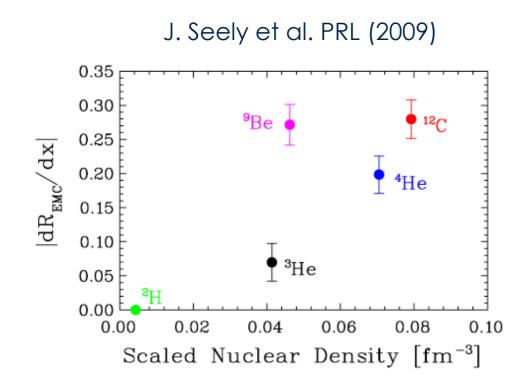
... BUT not yet fully understood

Theory

Many ideas:

- Nuclear binding
- Pion excess in nuclei
- Multi-quark clusters
- Dynamical rescaling
- Medium modification
- Short-range correlations

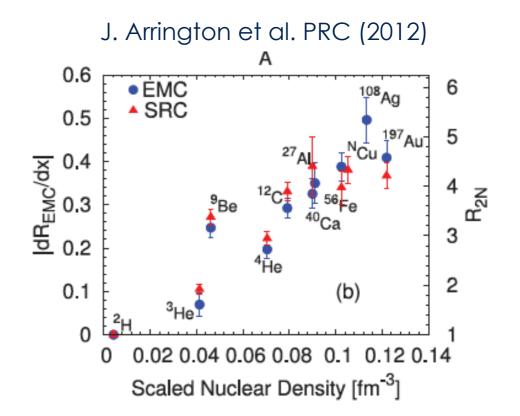
nuclear physics


nucleon structure

... BUT not yet fully understood

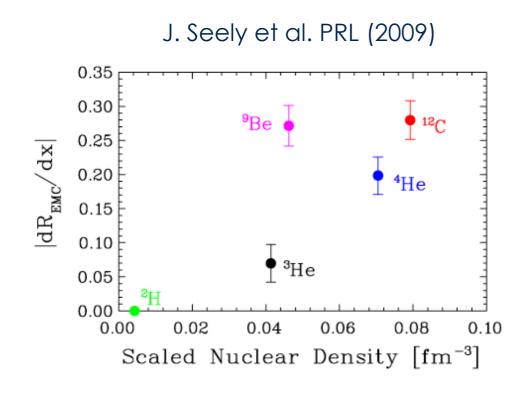
Possible scenario: several effects acting together, difficult to disentangle

Recent developments

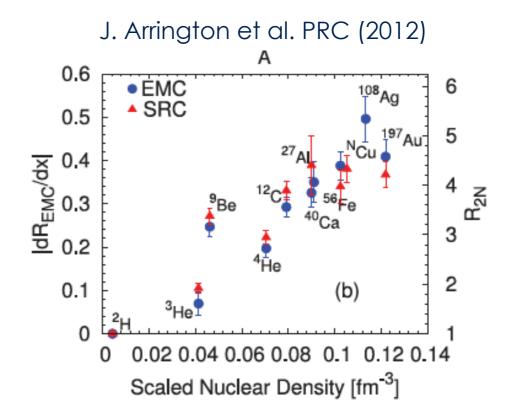

Slope^{*} of the ratio F_A/AF_D - magnitude of the EMC effect

Effect in ⁴He and ⁹Be similar magnitude as in ¹²C

2N short range correlations


- extracted from knockout reactions

What matters is the local density the DIS happens


Recent developments

Slope^{*} of the ratio F_A/AF_D - magnitude of the EMC effect

2N short range correlations

- extracted from knockout reactions

Effect in ⁴He and ⁹Be similar magnitude as in ¹²C

What matters is the <u>local</u> density the DIS happens

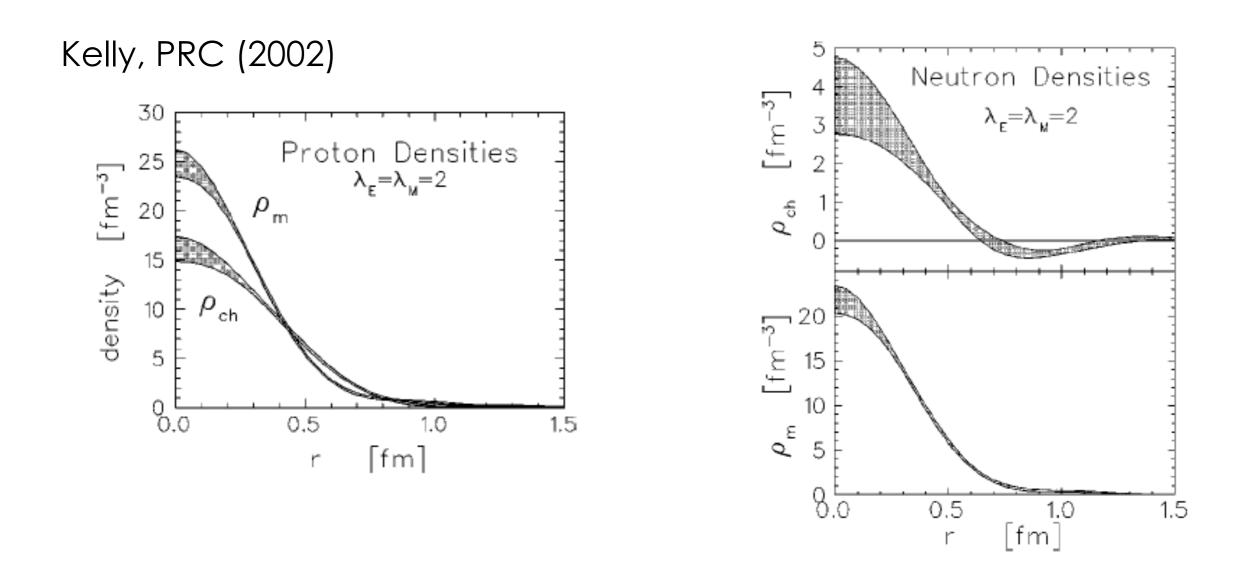
*in the liner region 0.35 < x < 0.7

S. Malace et al. Int. J. Mod. Phys. 23, 1430013 (2014).

Recent review:

E.M. Form Factors

— of nucleons in nuclei

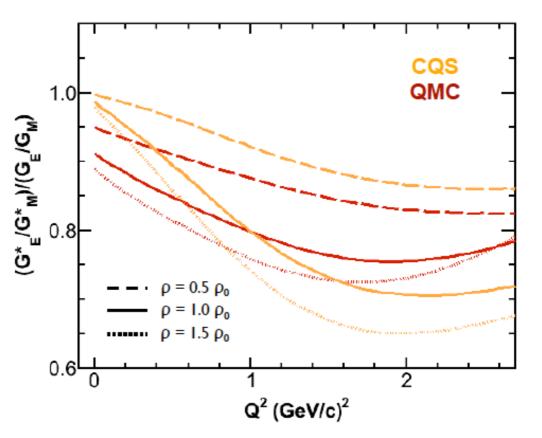

Magnetic and Electric Form Factors:

- encode fundamental properties of the proton and neutron,

related to confinement and DCSB

- distribution of charge and magnetisation
- information on quark core & pion cloud
- going to medium, access to environmental changes

Extraction* of charge and magnetic densities — from experimental from factors

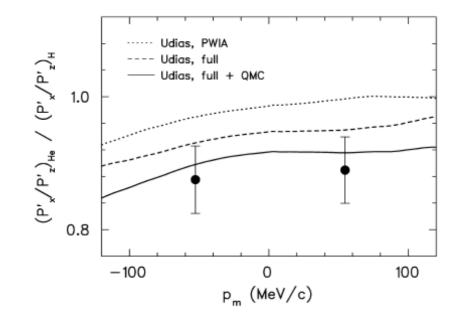

* Involves some model dependence

In-medium polarisation transfer — change of form factors in medium

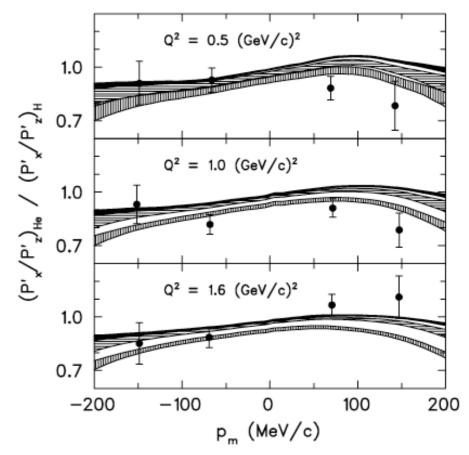
e' Θ_{e} ē

$$\frac{G_{Ep}}{G_{Mp}} = -\frac{\frac{P_x'}{P_z'}(E_i + E_f)}{2m} \tan\frac{\theta_e}{2}$$

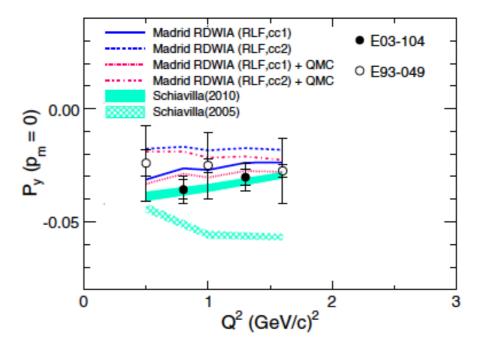
Quark model predictions


$$G(Q^2,\rho) = G(Q^2) \frac{G^*(Q^2,\rho)}{G^*(Q^2,0)}$$

Measurements


— MAMI & JLab

$$R = \frac{(P'_x/P'_z)_{^4\mathrm{He}}}{(P'_x/P'_z)_{^1\mathrm{H}}}$$


S. Dieterichet al. PLB (2001)

Quark models and conventional nuclear physics (or combination of both) seem to be able explain the data! S. Strauch et al. PRL (2003)

S. P. Malace et al. PRL (2011)

Spectral Properties

- of light vector mesons

In-medium decay of light vector mesons in lepton pairs — Early motivations:

1. masses of vector mesons are driven by DCSB

- 2. leptons (electrons, muons) interact weakly with the medium
- 3. clean information on masses and widths of vector mesons

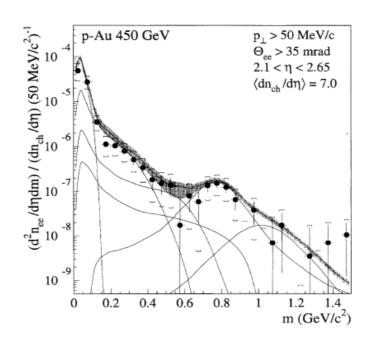
Spectral Properties

- of light vector mesons

In-medium decay of light vector mesons in lepton pairs — Early motivations:

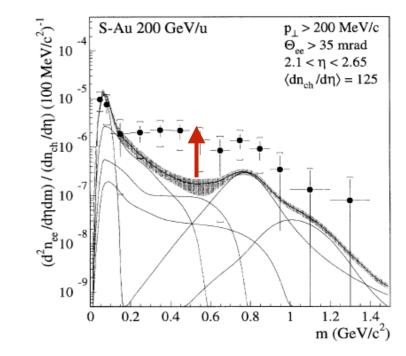
- 1. masses of vector mesons are driven by DCSB
- 2. leptons (electrons, muons) interact weakly with the medium
- 3. clean information on masses and widths of vector mesons

DCSB (Dynamical chiral symmetry breaking)

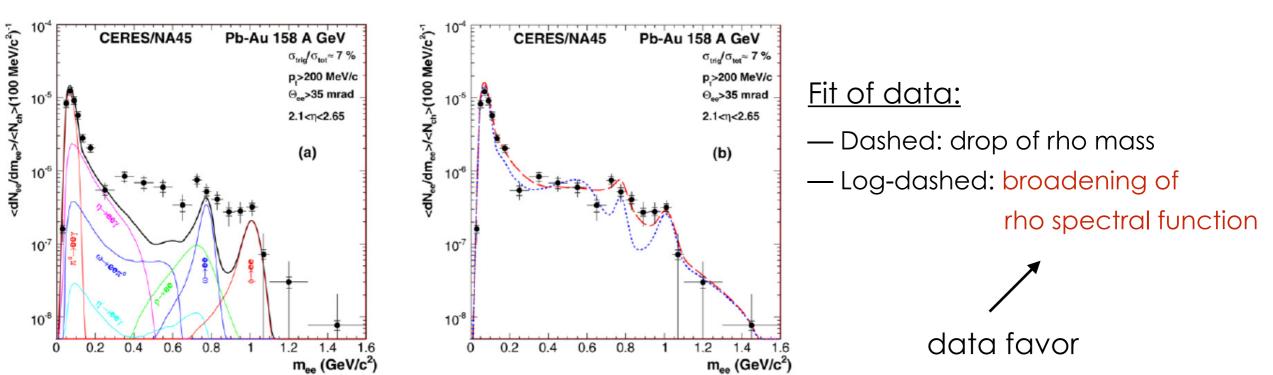

$$\langle \bar{q}q \rangle \simeq \left(1 - \frac{T^2}{8f_{\pi}^2} - 0.3 \frac{\rho}{\rho_0}\right) \langle \bar{q}q \rangle_{\rm vac}$$
 Wambach (2003)

NJL

$$M_q \sim \langle \bar{q}q \rangle$$
 Mesons $\rightarrow = = = \langle \simeq \times + \rangle \land + \rangle \land (+ \cdots = \frac{\times}{1 - \rangle}$


First experiments: CERES @ CERN-SPS

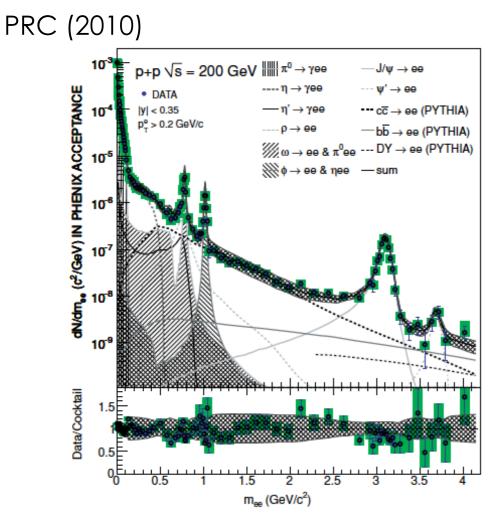
PRL (1995) p-Be 450 GeV $\begin{array}{c} (d^2 n_{ee} / d\eta dm) / (dn_{eh} / d\eta) (50 \text{ MeV/c}^2)^{-1} \\ 0 & 0 \\ 0 & 0 \\ \end{array}$ $p_{\perp} > 50 \text{ MeV/c}$ -4 $\Theta_{ee} > 35 \text{ mrad}$ $2.1 < \eta < 2.65$ $\langle dn_{ch}/d\eta \rangle = 3.1$) teey -9 10 0 0.2 0.4 0.6 0.8 1 1.2 1.4 m (GeV/c²)

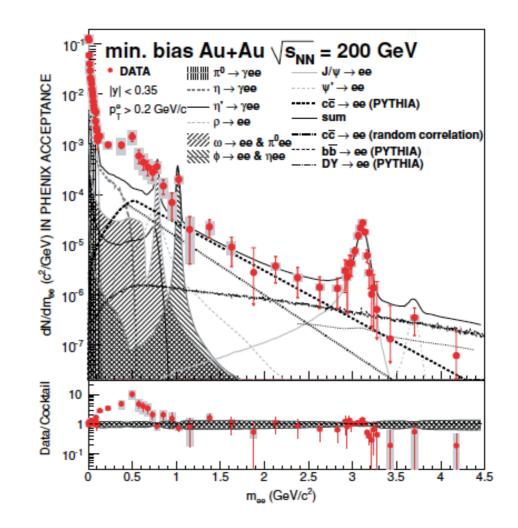


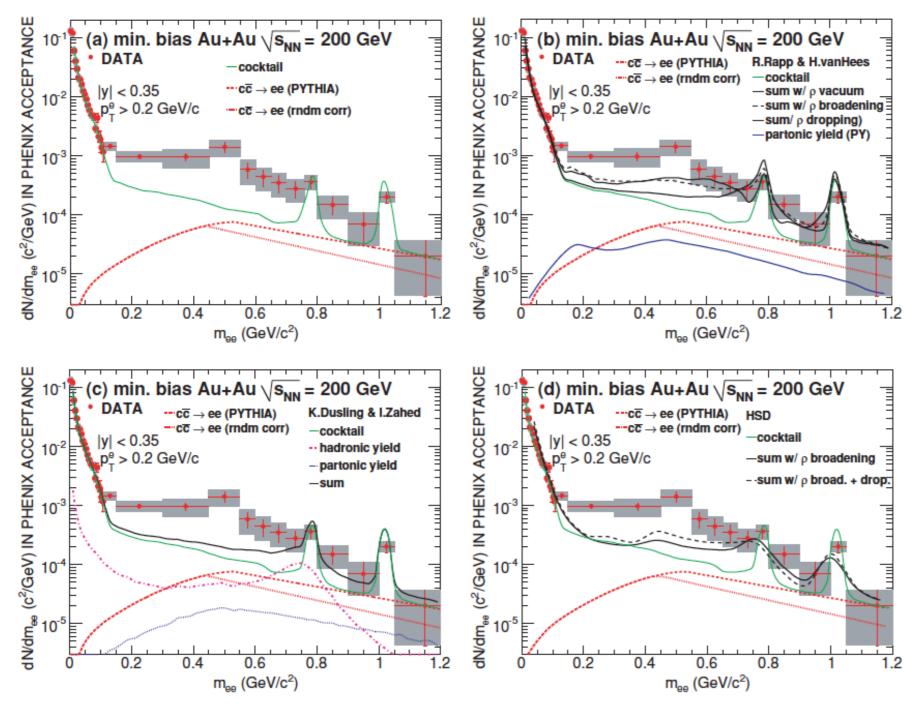
Many papers explaining the data

in terms of a chiral restoration

PLB (2008)


Hadronic many-body explanations:

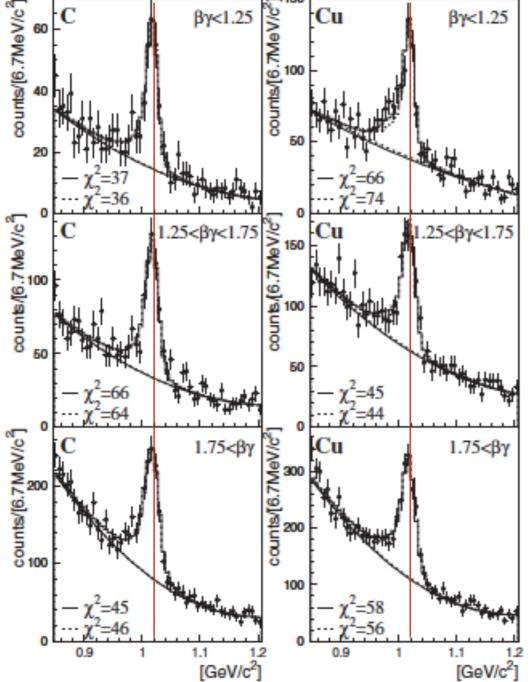

Well-constrained hadronic interactions in vacuum as input


- broadening, with little mass shift (e.g. Rapp & van Hess)

BUT

- Does not seem to be able to describe PHENIX data

On the other hand: — STAR reports a much smaller enhancemen⁻


Alternative explanation — P- & CP-odd effects Talks by Andianov, Espriu

Recent review:

- S. Leupold, V. Metag and U. Mosel, Int. J. Mod. Phys. E 19, 147 (2010)

\$(1020) in medium

KEK-PS E325 Coll. (2007)

Extrapolation to nuclear matter density:

- Mass decreases 3.4%
- Width broadens 3.6 times

Relation to strangeness content in nucleon? Talk of Gubler, Parallel V, Monday

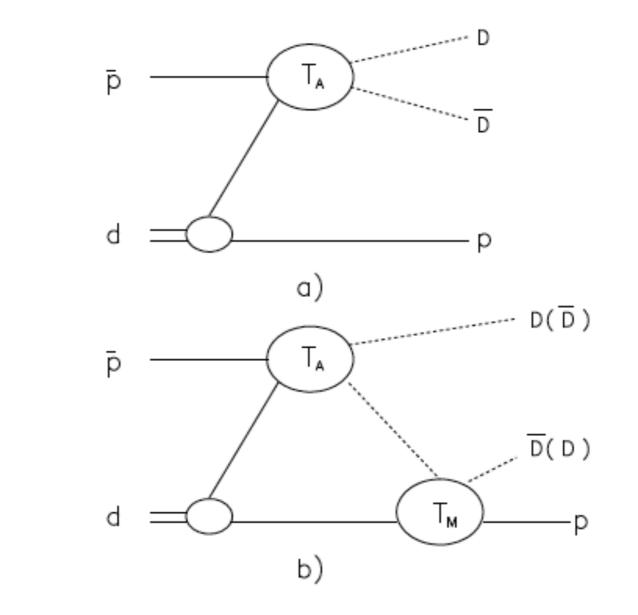
Experiments on strangeness in nuclei:
KLOE e⁺e⁺: Vasquez Doce, Parallel V, Monday
HADES pp : Lapidus, Parallel VI, Tuesday
ALICE LHC: Lea, Parallel VI, Tuesday

Heavy Flavor — D-meson nuclear bound states

One of the most interesting QCD bound states

- 1. At the crossroads of the chiral $m_q = 0$ and pure-gluon $m_q = \infty$ worlds
- 2. Since $m_q \neq 0$ and $m_q \neq \infty$, challenge for EFTs with quark & gluon d.o.f.
- 3. Need go beyond rainbow-ladder in functional methods (DSE & BSE)
- 4. In medium, light quark is sensitive to chiral restoration

There is no direct experimental information on their interactions with ordinary matter


Heavy Flavor — D-meson nuclear bound states

One of the most interesting QCD bound states

- 1. At the crossroads of the chiral $m_q = 0$ and pure-gluon $m_q = \infty$ worlds
- 2. Since $m_q \neq 0$ and $m_q \neq \infty$, challenge for EFTs with quark & gluon d.o.f.
- 3. Need go beyond rainbow-ladder in functional methods (DSE & BSE)
- 4. In medium, light quark is sensitive to chiral restoration

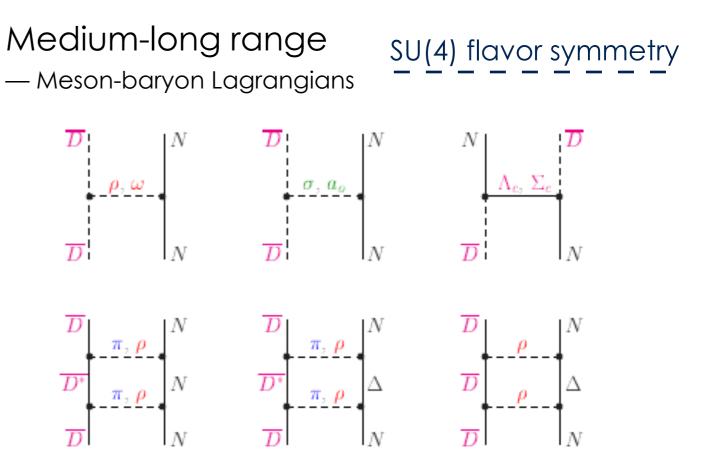
There is no direct experimental information on their interactions with ordinary matter Experiments are underway

Antiproton annihilation on the deuteron

Panda @ FAIR

J. Haidenbauer, GK, U.-G. Meissner, A. Sibirtsev

DN Interaction

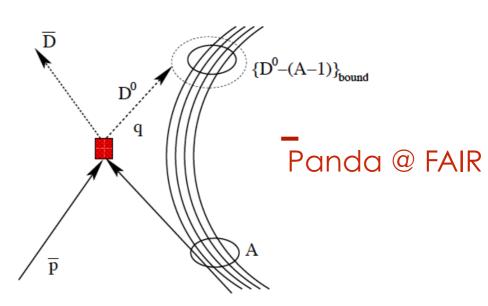

— free space, low energies

Total cross sections: $\begin{cases} \overline{D}N: 10 - 20 \text{ mb} \\ (E_{c.m.} < 150 \text{ MeV}) \end{cases}$ Similar to KN

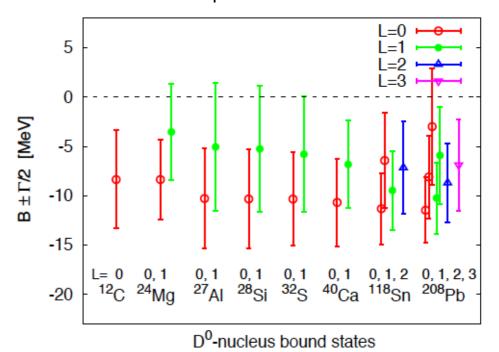
Very short range - Quark interchange (Coulomb gauge QM, NRQM)

C.E. Fontoura, GK J. Haidenbauer, GK, U.-G. Meissner, A. Sibirtsev J. Haidenbauer, GK, U.-G. Meissner, L. Tólos

D-mesons


— bound to nuclei

Quark-meson-coupling model - Hartree MFT*, scalar + vector mean fields


D bound state energy in Pb						
state	D ⁻ 1.96 *Vqω	Ο νϥω	D ⁻ Vg <i>w</i> No Coulomb	¯ ^{D0} 1.96 *Vqω	V <u>₽</u> 0 Vq <i>ω</i>	Vqω
1s	-10.6	-35.2	-11.2	unbound	-25.4	-96.2
1р	-10.2	-32.1	-10.0	unbound	-23.1	-93.0
2s	-7.7	-30.0	-6.6	unbound	-19.7	-88.5

Review K. Saito et al. PPNP (2007)

*Fock terms do not change much size of mean fields GK, K. Tsushima, T. Thomas

EFT HQSS - MFT, coupled channels

Review L. Tolos, Int. J. Mod. Phys. E (2013)

Quark model:

- in vacuum, very few DN bound states (Caramés & Valcarce)
- in medium, many bound states

(drop quark masses + coupled channels) (Caramés et al. 2014)

Heavy Flavor

— J/ Ψ nuclear bound states

- 1. Nucleons and J/ Ψ have no valence quarks in common
- 2. No Pauli Principle no short-range repulsion
- 3. Interaction includes gluon van der Waals forces*
- 4. Probes the conformal scale anomaly
- 5. In medium, binding via D,D* loop
 - interaction of virtual D,D* with nucleons

Brodsky, Schmidt & de Téramond

Second order Stark effect $-J/\Psi$ treated as a small color dipole

J/ Ψ mass shift in medium, density ρ :

$$\Delta m_{\psi}(\rho) = -\frac{1}{9} \int dk^2 \left| \frac{d\psi(k)}{dk} \right| \frac{k}{k^2/m_c + \Delta \varepsilon} \langle \alpha_s E^2/\pi \rangle_N \frac{\rho}{2m_N}$$

```
\Delta \varepsilon : energy shift octet – charmonium
```

```
\psi(k): wave function Cornell potential
```

 $\langle \alpha_s E^2 / \pi \rangle_N = 0.5 \text{ GeV}$

 $\Delta m_{\psi} = -8 \,\mathrm{MeV}$

Sibirtsev & Voloshin: $\Delta m_\psi = -21\,{
m MeV}$

Brodsky, Schmidt & de Téramond

Second order Stark effect $-J/\Psi$ treated as a small color dipole

J/ Ψ mass shift in medium, density ρ :

$$\Delta m_{\psi}(\rho) = -\frac{1}{9} \int dk^2 \left| \frac{d\psi(k)}{dk} \right| \frac{k}{k^2/m_c + \Delta \varepsilon} \langle \alpha_s E^2/\pi \rangle_N \frac{\rho}{2m_N}$$

 $\Delta \varepsilon$: energy shift octet – charmonium

 $\psi(k)$: wave function Cornell potential

 $\langle \alpha_s E^2 / \pi \rangle_N = 0.5 \text{ GeV}$ $\Delta m_{\psi} = -8 \text{ MeV}$

Bound state: spherical "square-well" of radius *R* & depth V₀

Sibirtsev & Voloshin: $\Delta m_\psi = -21\,{
m MeV}$

Brodsky, Schmidt & de Téramond

Second order Stark effect $-J/\Psi$ treated as a small color dipole

J/ Ψ mass shift in medium, density ρ :

$$\Delta m_{\psi}(\rho) = -\frac{1}{9} \int dk^2 \left| \frac{d\psi(k)}{dk} \right| \frac{k}{k^2/m_c + \Delta \varepsilon} \langle \alpha_s E^2/\pi \rangle_N \frac{\rho}{2m_N}$$

 $\Delta \varepsilon$: energy shift octet – charmonium

 $\psi(k)$: wave function Cornell potential

 $\langle \alpha_s E^2 / \pi \rangle_N = 0.5 \text{ GeV}$ $\Delta m_{\psi} = -8 \text{ MeV}$

Sibirtsev & Voloshin: $\Delta m_\psi = -21\,{
m MeV}$

Bound state: spherical "square-well" of radius *R* & depth V₀

$$V_0 > \frac{\pi^2 \hbar^2}{8mR^2}$$

 $R = 5 \,\mathrm{fm} \rightarrow V_0 > 1 \,\mathrm{MeV}$

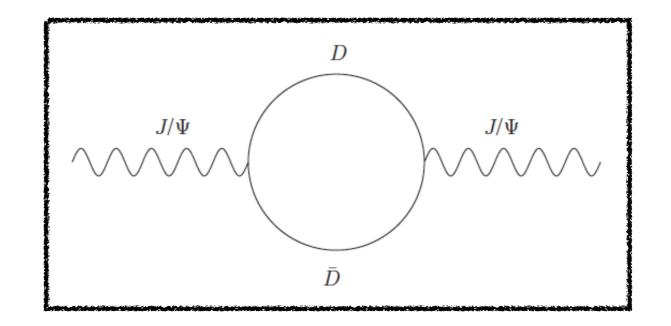
Brodsky, Schmidt & de Téramond

Second order Stark effect $-J/\Psi$ treated as a small color dipole

J/ Ψ mass shift in medium, density ρ :

$$\Delta m_{\psi}(\rho) = -\frac{1}{9} \int dk^2 \left| \frac{d\psi(k)}{dk} \right| \frac{k}{k^2/m_c + \Delta \varepsilon} \langle \alpha_s E^2/\pi \rangle_N \frac{\rho}{2m_N}$$

 $\Delta \varepsilon$: energy shift octet – charmonium


 $\psi(k)$: wave function Cornell potential

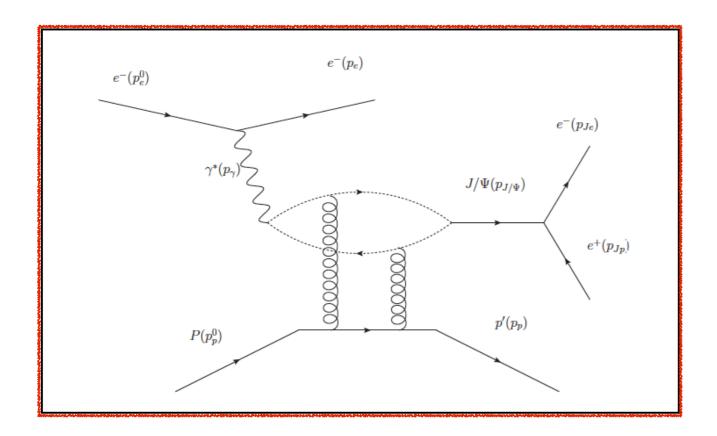
 $\langle \alpha_s E^2 / \pi \rangle_N = 0.5 \text{ GeV}$ $\Delta m_{\psi} = -8 \text{ MeV}$

Sibirtsev & Voloshin: $\Delta m_\psi = -21\,{
m MeV}$

Bound state: spherical "square-well" of radius R & depth V₀ $V_0 > \frac{\pi^2 \hbar^2}{8mR^2}$ $R = 5 \text{ fm} \rightarrow V_0 > 1 \text{ MeV}$

J/Ψ binding in nuclear matter $-\!\!\!-\!\!\!\!-\!\!\!\!$ D,D* loops

Calculation of selfenergy with effective Lagrangian

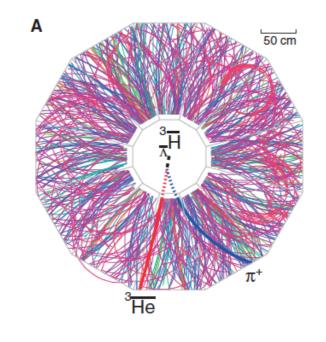

- 1. Coupling constants: SU(4) symmetry
- 2. Form factor: Quark model
- 3. In-medium masses of D, D*: QMC model

J/Ψ single-particle energies in nuclei — solve a Klein-Gordon equation

		$\Lambda_{D,D^*} = 1500 \text{ MeV}$	$\Lambda_{D,D^*} = 2000 \text{ MeV}$
		E (MeV)	E (MeV)
⁴ _Ψ He	1 <i>s</i>	-4.19	-5.74
$^{12}_{\Psi}C$	1 <i>s</i>	-9.33	-11.21
	1 <i>p</i>	-2.58	-3.94
$^{16}_{\Psi}O$	1 <i>s</i>	-11.23	-13.26
-	1 <i>p</i>	-5.11	-6.81
⁴⁰ ΨCa	1s	-14.96	-17.24
•	1 <i>p</i>	-10.81	-12.92
	1d	-6.29	-8.21
	2s	-5.63	-7.48
⁹⁰ √Zr	1s	-16.38	-18.69
•	1 <i>p</i>	-13.84	-16.07
	1d	-10.92	-13.06
	2s	-10.11	-12.22
$^{208}_{\Psi}$ Pb	1s	-16.83	-19.10
•	1 <i>p</i>	-15.36	-17.59
	1d	-13.61	-15.81
	25	-13.07	-15.26

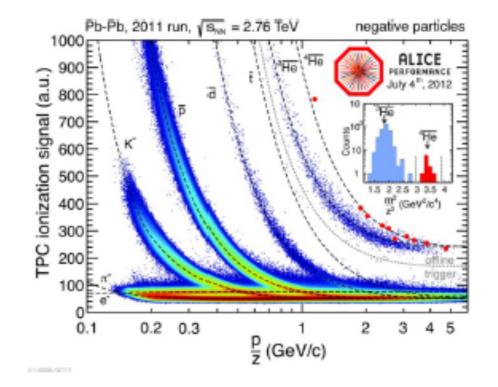
GK, A. W. Thomas & K. Tsushima K. Tsushima, D. Lu, GK & A. W. Thomas

ATHENNA* COll. — JLab @ 12 GeV



Z.-E. Meziani (Co-spokesperson/Contact)N. Sparveris (Co-spokesperson)Z. W. Zhao (Co-spokesperson)

*A J/ Ψ THreshold Electroproduction on the Nucleon and Nuclei Analysis


How about J/ Ψ - N at the LHC?

 — chances of a J/Ψ meeting one or two nucleons should not be smaller than of two antinucleons and one antiyperon meeting to form an antihypernucleus

Observation of an Antimatter Hypernucleus The STAR Collaboration *Science* **328**, 58 (2010); DOI: 10.1126/science.1183980

See talk of Ramona Lea Parallel VI, Tuesday

Need to detect in coincidence the nucleon and decay products of J/ Ψ

Perspectives (near future)

Expect progress with new experiments

 LHC, PANDA & CBM @ FAIR, JLab @ 12 GeV, NICA, JPARC, ...

- 2. Need improvements in theory, nonperturbative methods
 - control of cold nuclear matter effects (help from the lattice sign problem), quark-gluon EFT heavy & heavy quarks