An analysis of the nucleon spectral function in the nuclear medium from QCD sum rule

Tokyo Institute of Technology Keisuke Ohtani

Collaborators: Philipp Gubler, Makoto Oka

Introduction

- Hadron properties in the nuclear medium

The properties of the hadron are modified in the medium.

Probe hadron

Partial restoration of the chiral symmetry

Nuclear matter
Interaction with the nucleons in the nuclear matter

We focus on the nucleon ground state and excited state.

Introduction

Mass spectrum of the nucleons

Introduction

Mass spectrum of the nucleons

- The mass difference between nucleon ground state and $\mathrm{N}(1535)$ is about 600 MeV .
- It is predicted that Chiral symmetry breaking cause these difference.

When chiral symmetry is restored, the mass spectrum will change.

Introduction

Mass spectrum of the nucleons

When chiral symmetry is restored, the mass spectrum will change.

To investigate these properties from QCD, non perturbative method is needed.

Analysis of QCD sum rule in nuclear matter

Nucleon QCD sum rule

$$
\begin{aligned}
\Pi(q) & \equiv i \int e^{i q x}\langle 0| T[\eta(x) \bar{\eta}(0)]|0\rangle d^{4} x \\
& =\int_{0}^{\infty} \frac{1}{\pi} \frac{\operatorname{Im} \Pi(t)}{t-q^{2}} d t=\int_{0}^{\infty} \frac{\rho(t)}{t-q^{2}} d t
\end{aligned}
$$

is calculated by the operator product expansion (OPE)

Non perturbative contributions are expressed by some Condensates.

$$
\overbrace{\text { (qq) },}^{\left\langle\frac{\alpha_{s}}{\pi} G^{2}\right\rangle \quad \ldots} \begin{aligned}
& \text { An order parameter of chiral symmetry }
\end{aligned}
$$

We apply this method to the analyses in the nuclear matter.

Nucleon QCD sum rule

$$
\begin{aligned}
\Pi(q) & \equiv i \int e^{i q x}\langle 0| T[\eta(x) \bar{\eta}(0)]|0\rangle d^{4} x \\
& =\int_{0}^{\infty} \frac{1}{\pi} \frac{\operatorname{Im} \Pi(t)}{t-q^{2}} d t=\int_{0}^{\infty} \frac{\rho(t)}{t-q^{2}} d t
\end{aligned}
$$

is calculated by the operator product expansion (OPE)
\downarrow Application for the analyses in nuclear matter
$\left.i \int e^{i q x}\langle 0| T[\eta(x) \bar{\eta}(0)]|0\rangle d^{4} x \quad \square\right\rangle i \int d^{4} x e^{i q x}\left\langle\underline{\Psi_{0}} \mid T[\eta(x) \bar{\eta}(0)] \underline{\Psi_{0}}\right\rangle$
Modification: $\langle 0| O_{i}|0\rangle \quad \square\left\langle\Psi_{0}\right| O_{i}\left|\Psi_{0}\right\rangle \quad \Psi_{0}$: Ground state of nuclear matter
Chiral condensate: $\quad\langle\bar{q} q\rangle_{0}$
$\square\langle\bar{q} q\rangle_{\rho}=\langle\bar{q} q\rangle_{0}+\frac{\sigma_{N}}{2 m_{q}} \rho+\cdots$
New condensate:
$\square\left\langle q^{\dagger} q\right\rangle_{\rho}=\frac{3}{2} \rho$

Nucleon QCD sum rule

$$
\begin{aligned}
\Pi(q) & \equiv i \int e^{i q x}\langle 0| T[\eta(x) \bar{\eta}(0)]|0\rangle d^{4} x \\
& =\int_{0}^{\infty} \frac{1}{\pi} \frac{\operatorname{Im} \Pi(t)}{t-q^{2}} d t=\int_{0}^{\infty} \frac{\rho(t)}{t-q^{2}} d t
\end{aligned}
$$

is calculated by the operator product expansion (OPE)

Gaussian sum rule

$$
G(s, \tau)=\int_{0}^{\infty} \rho(\omega) \frac{1}{\sqrt{4 \pi \tau}} \exp \left(-\frac{\left(\omega^{2}-s\right)^{2}}{4 \tau}\right) d \omega
$$

is calculated by OPE
七, s: parameter

Nucleon QCD sum rule

The behavior of the OPE data in the vacuum

$G^{ \pm}(s, \tau)=\left[C_{0}(s, \tau)+C_{4}(s, \tau)\left\langle\frac{\alpha_{s}}{\pi} G^{2}\right\rangle+C_{6}(s, \tau)\langle\bar{q} q\rangle^{2}\right]$

$$
\underline{ \pm}\left[C_{3}(s, \tau)\langle\bar{q} q\rangle+C_{5}(s, \tau)\langle\bar{q} g \sigma \cdot G q\rangle+C_{7}(s, \tau)\langle\bar{q} q\rangle\left\langle\frac{\alpha_{s}}{\pi} G^{2}\right\rangle\right]
$$

Mass spectrum of
the nucleons
Parity: + Parity: -

The difference between positive parity and negative parity is mainly caused by chiral condensate term.

Nucleon QCD sum rule

Positive parity
Negative parity

In both positive and negative parity, the peaks are found. In the negative parity analysis, the peak correspond to the $\mathrm{N}(1535)$ or (and) $\mathrm{N}(1650)$.

Nucleon QCD sum rule

The behavior of the OPE data in the nuclear matter

Positive parity: OPE data decreases.
Negative parity: OPE data does not decrease

Positive parity: $\quad+C_{1}\langle\bar{q} q\rangle_{\rho}+C_{2}\left\langle q^{\dagger} q\right\rangle_{\rho}$
Negative parity: $\quad-C_{1}\langle\bar{q} q\rangle_{\rho}+C_{2}\left\langle q^{\dagger} q\right\rangle_{\rho}$

Nucleon QCD sum rule

The behavior of the OPE data in the nuclear matter

Positive parity: OPE data decreases.
Negative parity: OPE data does not decrease

Positive parity: $\quad+C_{1}\langle\bar{q} q\rangle_{\rho}+C_{2}\left\langle q^{\dagger} q\right\rangle_{\rho}$
Negative parity: $\quad-C_{1}\langle\bar{q} q\rangle_{\rho}+C_{2}\left\langle q^{\dagger} q\right\rangle_{\rho}$

Nucleon QCD sum rule

The behavior of the OPE data in the nuclear matter

Positive parity: OPE data decreases.
Negative parity: OPE data does not decrease

Nucleon QCD sum rule

The behavior of the OPE data in the nuclear matter

Positive parity: OPE data decreases.
Negative parity: OPE data does not decrease

Positive parity: $\quad+C_{1}\langle\bar{q} q\rangle_{\rho}+C_{2}\left\langle q^{\dagger} q\right\rangle_{\rho}$
Negative parity: $\quad-C_{1}\langle\bar{q} q\rangle_{\rho}+C_{2}\left\langle q^{\dagger} q\right\rangle_{\rho}$

Nucleon QCD sum rule

Pole of positive energy state: $E=\sqrt{M^{* 2}+\vec{q}^{2}}+\Sigma_{v}$
Effective mass: $M^{*}=M+\Sigma_{s}$
Pole of negative energy state: $\quad-\bar{E}=-\sqrt{M^{* 2}+\vec{q}^{2}}+\Sigma_{v}$

Nucleon QCD sum rule

Investigation of $M_{0 \pm}^{*}, \Sigma_{0 \pm}^{v}$

$$
\Pi(q)=i \int d^{4} x e^{i q x} \underline{\theta\left(x_{0}\right)\left\langle\Psi_{0}\right| T[\eta(x) \bar{\eta}(0)]\left|\Psi_{0}\right\rangle} \quad E=\sqrt{q^{2}+M^{* 2}}+\Sigma^{v}
$$

$$
=q \Pi_{1}\left(q^{2}, q \cdot u\right)+\Pi_{2}\left(q^{2}, q \cdot u\right)+\not q \Pi_{u}\left(q^{2}, q \cdot u\right)
$$

$$
=\sum_{n}\left|\lambda_{n+}^{2}\right|\left(\frac{\left(\sqrt{M^{* 2}+\vec{q}^{2}} \gamma_{0}+M^{*}\right)}{2 \sqrt{M^{* 2}+\vec{q}^{2}}} \frac{1}{q_{0}-E^{+}+i \epsilon}+\frac{\gamma_{i} q^{i}}{2 \sqrt{M^{* 2}+\vec{q}^{2}}} \frac{1}{q_{0}-E^{+}+i \epsilon}\right)
$$

+ (contribution of negative parity states)

By fitting the phenomenological side and OPE side, we can investigate $M_{0 \pm}^{*}, \Sigma_{0 \pm}^{v}$.

Nucleon QCD sum rule

ρ_{N} : nuclear matter density
n_{0} : nuclear matter density
Positive parity $\left\{\begin{array}{|c|c|c|c|c|}\hline & \text { Vacuum } & \mathrm{n}=0.25 \mathrm{n}_{0} & \mathrm{n}=0.5 \mathrm{n}_{0} & \mathrm{n}=0.75 \mathrm{n}_{0} \\ \hline M_{0+}^{*} & 930 & 850 & 710 & 470 \\ \hline \Sigma_{0+}^{v} & 0 & 120 & 270 & 500 \\ \hline M_{0-}^{*} & 1620 & 1630 & 1650 & 1680 \\ \hline \Sigma_{0-}^{v} & 0 & 0 & -20 & -50 \\ \hline\end{array}\right.$

Summary

-We analyze the nucleon spectral function by using QCD sum rules with MEM

- We find that the difference between the positive and negative parity spectral function is mainly caused by the chiral condensate.
- The information of not only the ground state but also the negative parity excited state is extracted
-We apply this method to the analyses in nuclear medium and investigate the effective masses and the vector self-energies.

