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Motivation 
 

• In S-matrix theory, unitarity in the s channel is the key to 

determine  the properties of resonances and bound 

states 

• Singularities in the complex J-plane (Regge poles) reflect 

the important contributions of the crossed channels on 

the direct channel -> contain in principle the most 

complete description of resonance parameters 

 

We parametrize the Regge poles corresponding to the ρ, σ, 

f2(1275) and f’2(1525) resonances and fix the parameters 

by fitting to the experimental data on the physical poles. 

 

 



Regge trajectories 

• Experimental observation 

Take particles with the same quantum numbers and 

signature (τ=(-1)J ) and plot (spin) vs. (mass)2  

 

 

 

 

 

Particles can be classified in linear trajectories  

with a universal slope 



Regge Theory 

 

 
The Regge trajectories can be understood from the analytic 
extension to the complex angular momentum plane (Regge 
Theory) 
 

However, light scalars, particularly the f0(500), do not fit in 
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• The concept of partial wave can be expanded to complex 
values of J, which will be valid in the entire t-plane 
 
Procedure: Sommerfeld-Watson transform 

 

 

 

Regge Theory 



Regge poles 

Position   α(s) 
 

Residue   β(s)  

Regge Theory 



Regge poles 

Position   α(s) 
 

Residue   β(s)  

Regge Trajectory 

Regge Theory 



• Relevance of Regge poles in the s-channel  

Contribution of a single Regge pole to a physical partial  
wave amplitude 

 

 

 

regular function 
analytic  functions  
α: right hand cut s>4m2  
β: real 

Regge Theory 



Parametrization of the amplitudes 

• Unitarity condition on the real axis implies 

 

 

• Further properties of β(s)  

 

 

threshold behavior 

suppress poles  
of full amplitude  

analytical function: 
β(s) real on real axis 
⇒ phase of ϒ(s) known 
⇒ Omnès-type disp. relation S. -Y. Chu, G. Epstein, P. Kaus, R. C. Slansky and F. 

Zachariasen, Phys. Rev. 175, 2098 (1968).  



• Twice-subtracted dispersion relations 

 

 

with  

Parametrization of the amplitudes 



System of integral equations: 

 

 

 

In the scalar case a slight modification is introduced (Adler zero)  

 

Parametrization of the amplitudes 



 

•  for a given set of α0, α’ and b0: 

- solve the coupled equations 

-  get α(s) and β(s) in real axis 

- extend to complex s-plane 

- obtain pole position and residue 

 

 

 

 

 

 

 

• fit α0, α’ and b0 so that pole position and residue coincide  
with those given by a dispersive analysis of scattering data  
 

 Garcia-Martin, Kaminski, Pelaez and Ruiz de Elvira, Phys. Rev. Lett. 107, 072001 (2011) 

Determination of the parameters 



ρ case (I = 1, J = 1) Results: 

We recover a fair representation of 
the amplitude, in good agreement 
with the GKPY amplitude 
 



ρ case (I = 1, J = 1) Results: 

We get a prediction for the  

ρ Regge trajectory, which is: 

   

• α(s) almost real 

• almost linear α(s) ~ α0+α’ s  

• intercept α0= 0.52  

• slope α’ = 0.913 GeV-2  
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Remarkably consistent with the literature,  
taking into account our approximations 



Results: f2(1275) and f’2(1525) case (I = 0, J = 2) 

 

Regge trajectories:  
 

• almost real and linear  

           α(s) ~ α0+α’ s 
 

• f2(1275) 

          α0= 0.71    α’ = 0.83 GeV-2  
 

• f’2(1525) 

          α0= 0.59    α’ = 0.61 GeV-2    

 

Parametrization: A. V. Anisovich, V. V. 
Anisovich and A. V. Sarantsev, Phys. Rev. D 
62, 051502 (2000) 

• Almost elastic resonances: f2(1275) has BR (ππ) = 85% , f’2(1525) has BR(KK)=90% 
• We assume that they are Breit-Wigner resonances to obtain the couplings 
• We include error in the coupling to account for inelasticity 
 



σ case (I = 0, J = 0) Results: 

Good agreement with the 
parameterized GKPY amplitude 
 



σ case (I = 0, J = 0) Results: 

Prediction for the σ Regge 

trajectory, which is: 

   

• NOT real 

• NOT linear 

• intercept α0= -0.087  

• slope α’ = 0.002 GeV-2  

  
 Two orders of magnitude flatter 

than other hadrons 
The sigma does NOT fit the usual 

classification 



Results: comparison to Yukawa potential 

Striking similarity with 

Yukawa potentials at low  

energy: 

V(r)=−Ga exp(−r/a)/r 

Our result is mimicked 

with  a=0.5 GeV-1 

 to compare with 

S-wave ππ scattering length 

1.6 GeV-1 

 

Non-ordinary σ 

trajectory Ordinary ρ trajectory 



Summary 

•  We are studying the Regge trajectories that pass through 

the ρ, σ, f2(1275) and f’2(1525) resonances 

•  By fitting to the pole position and residue, we get the 

parameters of the Regge parametrization (in particular, the 

slope of the Regge trajectory) 

•  ρ, f2(1275) and f’2(1525) trajectory: parameters consistent 

with literature 

• σ trajectory: slope of the trajectory two orders of 

magnitude smaller than natural 

• If we force the σ trajectory to have a natural slope, the 

description of the pole parameters is ruined  



Thank you! 



σ case (I = 0, J = 0) Results: 

If we fix the α’ (~ slope in the “normal” Regge trajectories) to a 

natural value (that of the ρ trajectory)  



     -  Froissart bound (amplitude analiticity + unitarity)  

 

• Large energy behavior of amplitudes 

- t-channel exchange of a particle of mass M and angular 

momentum J 

 

Since                                        , at fixed t and large s 



To reconcile both behaviors: 

with  

 α(t<0) < 1   (physical values of t)  

 α(t=MJ
2) = J   the Regge trajectory! 

 
 
 
 
 
 

High energy behavior interpreted as an interpolation in J 

between poles with different spin → justifies the 

continuation of the partial waves to complex values of J 



Complex angular momentum 

• We want to extend the concept of partial wave to complex 
values of J, which will be valid in the entire t-plane 
 
Procedure: Sommerfeld-Watson transform 
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Next step is to deform the contour. 

 

 

 

 

 

Froissart-Gribov projection 
For J bigger than the number of subtractions that we need to make the integrals converge 

 

 

 

Associated T±(s,z) such that 

 

 

 

To be sure that it can be done, f(J,s) must have some 

analytic properties -> we must redefine it: 



In non-relativistic scattering, Regge found that the only 
singularities of f ±(J,s) in the region Re J > -½ are poles in the  
           upper half J-plane: 
 

Regge poles 

(In relativistic scattering, 
Mandelstam showed that there 
could be branch points, but we 
will ignore them) 
 

Position   α±(s) 
 

Residue   β±(s)  



In non-relativistic scattering, Regge found that the only 
singularities of f±(J,s) in the region Re l > -½ are poles in the  
           upper half l-plane: 
 

Regge poles 

Position   α±(s) 
 

Residue   β±(s)  

(In relativistic scattering, 
Mandelstam showed that there 
could be branch points, but we 
will ignore them) 
 

Regge Trajectory 



Integration on the contour → 

 

 

 

α+(s) only contribute to the amplitude 
when the trajectory passes through 
even integer values (and viceversa)  

Background term 



• Relevance of Regge poles in the s-channel  

Contribution of a single Regge pole to a physical partial  
wave amplitude 

 

 

 
even signature poles only contribute to even pw amplitudes 

Near the Regge pole: 

 

 

 

 

 

regular function 

analytic  functions  
α: right hand cut s>4m2  
β: real 



• Relevance of Regge poles in the t-channel  

Assymptotic behavior of Pα(z) when z ➝ ∞   (t ➝ ∞) 

 

 

 

 

Dominated by leading Regge pole (largest Re α) 

 

 

 

 

 



• Relevance of Regge poles in the s-channel (cont.) 

The whole family of resonances in the Regge trajectory (with 
spins spaced by two units) contributes to the amplitude 

 

 

 

 

 

 


