Regge trajectories of ordinary and non-ordinary mesons from their poles

Jenifer Nebreda

Yukawa Institute for Theoretical Physics, Kyoto University
In collaboration T. Londergan (I.U.), J. R. Peláez (UCM), and
A. Szczepaniak (Indiana U.), Phys. Lett. B 729 (2014) 9-14
and J. A. Carrasco (UCM), in preparation

Quark Confinement and the Hadron Spectrum XI Saint Petersburg, Russia, 8-12 September 2014

Motivation

- In S-matrix theory, unitarity in the s channel is the key to determine the properties of resonances and bound states
- Singularities in the complex J-plane (Regge poles) reflect the important contributions of the crossed channels on the direct channel -> contain in principle the most complete description of resonance parameters

We parametrize the Regge poles corresponding to the ρ, σ, $f_{2}(1275)$ and $f^{\prime}{ }_{2}(1525)$ resonances and fix the parameters by fitting to the experimental data on the physical poles.

Regge trajectories

- Experimental observation

Take particles with the same quantum numbers and signature ($\tau=(-1)^{J}$) and plot (spin) vs. (mass) ${ }^{2}$

Particles can be classified in linear trajectories with a universal slope

Regge Theory

The Regge trajectories can be understood from the analytic extension to the complex angular momentum plane (Regge Theory)

However, light scalars, particularly the $\mathrm{f}_{0}(500)$, do not fit in
are doubled due to two flavor components, $n \bar{n}$ and $s s$. We do not put the enigmatic σ meson $[11-14]$ on the $q q$ trajectory supposing σ is alien to this classification. The broad state

Regge Theory

- The concept of partial wave can be expanded to complex values of J, which will be valid in the entire t-plane

Procedure: Sommerfeld-Watson transform

$$
T(s, t)=\sum_{J=0}^{\infty}(2 J+1) f_{J}(s) P_{J}(z) \quad \longrightarrow \quad T(s, t)=-\frac{1}{2 i} \int_{C} \frac{(2 J+1) f(J, s) P_{J}(-z)}{\sin \pi J} \mathrm{~d} J
$$

Regge Theory

Regge Theory

Regge Theory

- Relevance of Regge poles in the s-channel

Contribution of a single Regge pole to a physical partial wave amplitude

$$
f(J, s)=\hat{f}+\frac{\beta(s)}{J-\alpha(s)}{ }_{c}^{\text {analytic functions }} \begin{aligned}
& \alpha: \text { right hand cut } s>4 m^{2} \\
& \beta: \text { real }
\end{aligned}
$$

Parametrization of the amplitudes

- Unitarity condition on the real axis implies

$$
\operatorname{Im} \alpha(s)=\rho(s) \beta(s)
$$

- Further properties of $\beta(s)$

$$
\beta(s)=\frac{\hat{s}^{\alpha(s)}}{\Gamma\left(\alpha(s)+\frac{3}{2}\right)} \gamma(s)
$$

threshold behavior

$$
\hat{s}=\frac{s-4 m^{2}}{\tilde{s}}
$$

suppress poles of full amplitude

$$
(2 \alpha+1) P_{\alpha}\left(z_{s}\right) \sim \Gamma\left(\alpha+\frac{3}{2}\right)
$$

analytical function:
$\beta(s)$ real on real axis
\Rightarrow phase of $Y(s)$ known
S. -Y. Chu, G. Epstein, P. Kaus, R. C. Slansky and F.
\Rightarrow Omnès-type disp. relation

Parametrization of the amplitudes

- Twice-subtracted dispersion relations

$$
\begin{gathered}
\alpha(s)=A+B\left(s-s_{0}\right)+\frac{\left(s-s_{0}\right)^{2}}{\pi} \int_{\text {thr. }}^{\infty} \frac{\operatorname{Im} \alpha\left(s^{\prime}\right) d s^{\prime}}{\left(s^{\prime}-s\right)\left(s^{\prime}-s_{0}\right)^{2}} \\
\gamma(s)=g^{2} \exp \left\{C\left(s-s_{0}\right)+\frac{\left(s-s_{0}\right)^{2}}{\pi} \int_{\text {thr } .}^{\infty} \frac{\phi_{\gamma}\left(s^{\prime}\right)}{\left(s^{\prime}-s\right)\left(s^{\prime}-s_{0}\right)} d s^{\prime}\right\}
\end{gathered}
$$

with $\quad \beta(s)=\frac{\hat{s}^{\alpha(s)}}{\Gamma\left(\alpha(s)+\frac{3}{2}\right)} \gamma(s)=\frac{\operatorname{Im} \alpha(s)}{\rho(s)}$

Parametrization of the amplitudes

System of integral equations:

$$
\begin{aligned}
\operatorname{Re} \alpha(s) & =\alpha_{0}+\alpha^{\prime} s+\frac{s}{\pi} P V \int_{4 m_{\pi}^{2}}^{\infty} d s^{\prime} \frac{\operatorname{Im} \alpha\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-s\right)} \\
\operatorname{Im} \alpha(s) & =\rho(s) b_{0} \frac{\hat{s}^{\alpha_{0}+\alpha^{\prime} s}}{\left|\Gamma\left(\alpha(s)+\frac{3}{2}\right)\right|} \exp \left(-\alpha^{\prime} s\left[1-\log \left(\alpha^{\prime} \tilde{s}\right)\right]\right. \\
& \left.+\frac{s}{\pi} P V \int_{4 m_{\pi}^{2}}^{\infty} d s^{\prime} \frac{\operatorname{Im} \alpha\left(s^{\prime}\right) \log \frac{\hat{\hat{s}^{\prime}}}{}+\arg \Gamma\left(\alpha\left(s^{\prime}\right)+\frac{3}{2}\right)}{s^{\prime}\left(s^{\prime}-s\right)}\right)
\end{aligned}
$$

In the scalar case a slight modification is introduced (Adler zero)

Determination of the parameters

- for a given set of $\alpha_{0}, \alpha^{\prime}$ and b_{0} :
- solve the coupled equations
- get $\alpha(s)$ and $\beta(s)$ in real axis
- extend to complex s-plane
- obtain pole position and residue

$$
f^{I I}(J, s)=\hat{f}+\frac{\beta(s)}{J-\alpha^{I I}(s)}
$$

- fit $\alpha_{0}, \alpha^{\prime}$ and b_{0} so that pole position and residue coincide with those given by a dispersive analysis of scattering data

Results:
 ρ case $(I=1, J=1)$

We recover a fair representation of the amplitude, in good agreement with the GKPY amplitude

Results:
 ρ case $(I=1, J=1)$

We get a prediction for the
ρ Regge trajectory, which is:

- $\alpha(\mathrm{s})$ almost real
- almost linear $\alpha(s) \sim \alpha_{0}+\alpha^{\prime} s$
- intercept $\alpha_{0}=0.52$
- slope $\alpha^{\prime}=0.913 \mathrm{GeV}^{-2}$

Results:
 ρ case $(I=1, J=1)$

- intercept $\alpha_{0}=0.52$
- slope $\alpha^{\prime}=0.913 \mathrm{GeV}^{-2}$

Previous studies:

$$
\begin{aligned}
& \text { [1] } \alpha_{0}=0.5 \\
& \text { [2] } \alpha_{0}=0.52 \pm 0.02 \\
& {[3] \alpha_{0}=0.450 \pm 0.005}
\end{aligned}
$$

[1] $\alpha^{\prime}=0.83 \mathrm{GeV}^{-2}$
[2] $\alpha^{\prime}=0.9 \mathrm{GeV}^{-2}$
[4] $\alpha^{\prime}=0.87 \pm 0.06 \mathrm{GeV}^{-2}$
[1] A. V. Anisovich et al., Phys. Rev. D 62, 051502 (2000)
[2] J. R. Pelaez and F. J. Yndurain, Phys. Rev. D 69, 114001 (2004)
[3] J. Beringer et al. (PDG), Phys. Rev. D86, 010001 (2012)
[4] P. Masjuan et al., Phys. Rev. D 85, 094006 (2012)

Results:
 ρ case $(I=1, J=1)$

- $\alpha_{0}=0.52$
- $\alpha^{\prime}=0.913 \mathrm{GeV}^{-2}$

Previous studies:

$$
\begin{aligned}
& {[1] \alpha_{0}=0.5} \\
& {[2] \alpha_{0}=0.52 \pm 0.02} \\
& \text { [3] } \alpha_{0}=0.450 \pm 0.005
\end{aligned}
$$

[1] $\alpha^{\prime}=0.83 \mathrm{GeV}^{-2}$
[2] $\alpha^{\prime}=0.9 \mathrm{GeV}^{-2}$
[4] $\alpha^{\prime}=0.87 \pm 0.06 \mathrm{GeV}^{-2}$

Remarkably consistent with the literature, taking into account our approximations

Results: $f_{2}(1275)$ and $f^{\prime}{ }_{2}(1525)$ case $(I=0, J=2)$

- Almost elastic resonances: $f_{2}(1275)$ has BR $(\pi \pi)=85 \%, f^{\prime}{ }_{2}(1525)$ has BR(KK)=90\%
- We assume that they are Breit-Wigner resonances to obtain the couplings
- We include error in the coupling to account for inelasticity

Regge trajectories:

- almost real and linear

$$
\alpha(s) \sim \alpha_{0}+\alpha^{\prime} s
$$

- $f_{2}(1275)$

$$
\alpha_{0}=0.71 \quad \alpha^{\prime}=0.83 \mathrm{GeV}^{-2}
$$

- $f^{\prime}{ }_{2}(1525)$

$$
\alpha_{0}=0.59 \quad \alpha^{\prime}=0.61 \mathrm{GeV}^{-2}
$$

Parametrization: A. V. Anisovich, V. V.
Anisovich and A. V. Sarantsev, Phys. Rev. D 62, 051502 (2000)

Results:
 σ case $(I=0, J=0)$

Good agreement with the parameterized GKPY amplitude

Results:
 σ case $(I=0, J=0)$

Prediction for the σ Regge trajectory, which is:

- NOT real
- NOT linear
- intercept $\alpha_{0}=-0.087$
- slope $\alpha^{\prime}=0.002 \mathrm{GeV}^{-2}$

Two orders of magnitude flatter than other hadrons
The sigma does NOT fit the usual classification

Results: comparison to Yukawa potential

Striking similarity with
Yukawa potentials at low energy:

$$
V(r)=-G a \exp (-r / a) / r
$$

Our result is mimicked with $\mathrm{a}=0.5 \mathrm{GeV}^{-1}$ to compare with
S -wave $\pi \pi$ scattering length $1.6 \mathrm{GeV}^{-1}$

Summary

- We are studying the Regge trajectories that pass through the $\rho, \sigma, f_{2}(1275)$ and $f^{\prime}{ }_{2}(1525)$ resonances
- By fitting to the pole position and residue, we get the parameters of the Regge parametrization (in particular, the slope of the Regge trajectory)
- $\rho, f_{2}(1275)$ and f^{\prime} (1525) trajectory: parameters consistent with literature
- σ trajectory: slope of the trajectory two orders of magnitude smaller than natural
- If we force the σ trajectory to have a natural slope, the description of the pole parameters is ruined

Thank you!

Results:
 σ case $(I=0, J=0)$

If we fix the α^{\prime} (\sim slope in the "normal" Regge trajectories) to a natural value (that of the ρ trajectory)

- Large energy behavior of amplitudes
- Froissart bound (amplitude analiticity + unitarity)

$$
|T(s, t=0)| \leq \mathrm{c} s(\log s)^{2}, \quad s \rightarrow \infty
$$

- t-channel exchange of a particle of mass M and angular momentum J

$$
T\left(s, t \approx M_{J}^{2}\right) \approx \frac{g^{2} P_{J}\left(\cos \theta_{t}\right)}{M_{J}^{2}-t}
$$

Since $\cos \theta_{t}=1+\frac{2 s}{t-4 m^{2}}$, at fixed t and large s

$$
P_{J}\left(\cos \theta_{t}\right) \sim s^{J} \quad \Rightarrow \quad T\left(s, t \approx M_{J}^{2}\right) \sim s^{J}
$$

To reconcile both behaviors:

$$
\begin{aligned}
& |T(s, t=0)| \leq \mathrm{c} s(\log s)^{2} \\
& T\left(s, t \approx M_{J}^{2}\right) \sim s^{J}
\end{aligned} \quad\left[\quad T(s, t) \sim \beta(t) s^{\alpha(t)}\right.
$$

with

$$
\begin{aligned}
& \alpha(t<0)<1 \quad \text { (physical values of } \mathrm{t}) \\
& \alpha\left(\mathrm{t}=M_{J}^{2}\right)=J \text { the Regge trajectory! }
\end{aligned}
$$

High energy behavior interpreted as an interpolation in J between poles with different spin \rightarrow justifies the continuation of the partial waves to complex values of J

Complex angular momentum

- We want to extend the concept of partial wave to complex values of J, which will be valid in the entire t-plane

Procedure: Sommerfeld-Watson transform

$$
T(s, t)=\sum_{J=0}^{\infty}(2 J+1) f_{J}(s) P_{J}(z) \quad \longrightarrow \quad T(s, t)=-\frac{1}{2 i} \int_{C} \frac{(2 J+1) f(J, s) P_{J}(-z)}{\sin \pi J} \mathrm{~d} J
$$

Complex angular momentum

- We want to extend the concept of partial wave to complex values of J, which will be valid in the entire t-plane

Procedure: Sommerfeld-Watson transform

$$
T(s, t)=\sum_{J=0}^{\infty}(2 J+1) f_{J}(s) P_{J}(z) \quad \longrightarrow \quad T(s, t)=-\frac{1}{2 i} \int_{C} \frac{(2 J+1) f(J, s) P_{J}(-z)}{\sin \pi J} \mathrm{~d} J
$$

Next step is to deform the contour.
To be sure that it can be done, $f(J, s)$ must have some analytic properties -> we must redefine it:

Froissart-Gribov projection
For J bigger than the number of subtractions that we need to make the integrals converge

$$
\begin{aligned}
f^{ \pm}(J, s)= & \frac{1}{\pi} \int_{z_{0}}^{\infty}\left\{D_{t}(s, z) \pm D_{u}(s, z)\right\} Q_{J}(z) \mathrm{d} z \\
& f_{J}(s)=f^{+}(J, s) \quad \text { for even } J \\
& f_{J}(s)=f^{-}(J, s) \quad \text { for odd } J
\end{aligned}
$$

Associated $T^{ \pm}(s, z)$ such that

$$
T(s, z)=\frac{1}{2}\left\{T^{+}(s, z)+T^{+}(s,-z)+T^{-}(s, z)-T^{-}(s,-z)\right\}
$$

In non-relativistic scattering, Regge found that the only singularities of $f \pm(J, s)$ in the region $R e J>-1 / 2$ are poles in the upper half J-plane:

In non-relativistic scattering, Regge found that the only singularities of $f^{ \pm}(J, s)$ in the region $R e />-1 / 2$ are poles in the upper half $/$-plane:

Integration on the contour \rightarrow

$$
T^{ \pm}(s, z)=-\frac{1}{2 i} \int_{C^{\prime}} \frac{(2 J+1) f^{ \pm}(J, s) P_{J}(-z)}{\sin \pi J} \mathrm{~d} J-\sum_{i} \frac{\pi\left(2 \alpha_{i}^{ \pm}(s)+1\right) \beta_{i}^{ \pm}(s) P_{\alpha_{i}^{ \pm}}(-z)}{\sin \pi \alpha_{i}^{ \pm}(s)}
$$

Background term

$$
\begin{aligned}
& T^{\text {poles }}(s, t)= \\
& -\sum_{i} \frac{\pi\left(2 \alpha_{i}^{ \pm}(s)+1\right)}{2 \sin \pi \alpha_{i}^{ \pm}} \beta_{i}^{ \pm}(s)\left(P_{\alpha_{i}^{ \pm}}(-z) \pm P_{\alpha_{i}^{ \pm}}(z)\right)
\end{aligned}
$$

$\alpha^{+}(s)$ only contribute to the amplitude when the trajectory passes through even integer values (and viceversa)

- Relevance of Regge poles in the s-channel

Contribution of a single Regge pole to a physical partial wave amplitude

$$
f_{l}^{\mathrm{pole}}(s)=\frac{1}{2} \int_{-1}^{1} P_{l}(z) T^{\mathrm{pole}}(s, t) d z=-\frac{1}{2}\left(1 \pm(-1)^{l}\right) \beta(s) \frac{2 \alpha(s)+1}{(\alpha(s)-l)(\alpha(s)+l+1)}
$$

even signature poles only contribute to even pw amplitudes
Near the Regge pole:

$$
f_{l}(s)=\hat{f}_{l}+\frac{\beta(s)}{l-\alpha(s)} \longleftrightarrow \begin{aligned}
& \text { analytic functions } \\
& \alpha: \text { right hand cut } s>4 m^{2} \\
& \text { B: real }
\end{aligned}
$$

regular function

- Relevance of Regge poles in the t-channel

Assymptotic behavior of $P_{\alpha}(z)$ when $z \rightarrow \infty \quad(t \rightarrow \infty)$

$$
\sqrt{\pi} P_{\alpha}(z) \sim \frac{\left(\alpha-\frac{1}{2}\right)!}{\alpha!} \underbrace{(2 z)^{\alpha}}_{\uparrow}+\frac{\left(-\alpha-\frac{3}{2}\right)!}{(-\alpha-1)!}(2 z)^{-\alpha-1}
$$

Dominated by leading Regge pole (largest $\operatorname{Re} \alpha$)

$$
T(s, t) \sim \phi(s) t^{\alpha(s)}
$$

- Relevance of Regge poles in the s-channel (cont.)

The whole family of resonances in the Regge trajectory (with spins spaced by two units) contributes to the amplitude

