

The Critical End Point through observables

G Kozlov JINR, Dubna

CEP & Critical Phenomena

NICA / collider /

FAIR / fixed target/

strong interacting matter @ high T & μ_B

Freezout point: CEP / QCD CP

Matter becomes weakly coupled

In the proximity of *CEP*:

- Color is no more confined
- Chiral symmetry is restored
- Phase transition is associated with breaking of symmetry

Traditionally *CEP* clarified through $(\mu_B - T)$ plane scanning of $(\mu_B - T)$ phase diagram

Superconducting accelerator complex NICA

(Nuclotron based Ion Collider fAcility)

Main goal: Exp. Study of hot & dense strongly interacting matter

Two modes in operation:

- Collider mode (MPD detector) Max momentum 13 GeV/c (protons), $L = 10^{27} cm^{-2} s^{-1}$
- Extracted beams (BM@N)

Also Spin Physics/ Polarized deutrons and protons (Energy = 26 GeV (protons))

CEP & Critical Phenomena

A few questions arise:

- > CEP meaning?
- > Main observables to be measured when *CEP* achieved?
- > New knowledge if *CEP* approached?

Answer: QCD_T @ large distances

N/Perturbative phenomena: χSB & Confinement of color

Phase transition of χS Restoration Deconfinement

 \downarrow correlations \downarrow

important issue

NO correct solution (massless quarks in the theory)

Effective models, e.g., with topological defects

Topological defects (TD's)

TD's exist only in phase with SSB where $\langle \phi \rangle_{vacuum}$ emerges Non-broken symmetry phase: no solution with TD's

Minimal model: TD's (strings) arise in Abelian Higgs-like model (Nielsen, Olesen, 1973)

$$SU(N) \xrightarrow{reduction} \left[U(1) \right]^{N-1}$$
 dual scalar thery breaking \downarrow Higgs-like mechanism

- MA Gauge suggests special properties of QCD vacuum
- Dual superconductor picture of QCD vacuum ('t Hooft 1981)
- Condensation of scalar d.o.f. (Ezawa, Iwasaki, 1982)

Field correlator

CEP • Fluctuation measure • Observables

through \downarrow

Fluctuations of characteristic length ξ of chiral end mode

Model: fluctuations based on the order parameter field with $m \sim \xi^{-1}$

- Deal with gauge-invariant quantities, TPCF as a function of $C_{\mu} \Big(x \Big)$

- Dual color string:
$$U_C(x,y) \sim exp\left[ig\int_y^x dz^{\mu}C_{\mu}(z)\right]$$

- Bound states in terms of flux tubes

Duality & Scale symmetry breaking

 $R \to \infty$: C_u^a , instead of A_u^a - natural variables for confinement

 C_u^a weakly coupled to ϕ_i (i = 1, 2, 3) dilatons (each in the adjoint representation of magnetic gauge group)

$$Z = \int D\phi_i \exp\left\{-\int_0^{\tau} d\tau \int d^3\vec{x} \ L(\tau, \vec{x})\right\}$$
In general, $L(x) = \sum_i c_i(\mu) O_i(x)$, $\left[O_i(x)\right] = d_i$
Under scale trans.'s $x^{\mu} \to e^{\omega} x^{\mu} : O_i(x) \to e^{\omega d_i} O_i(e^{\omega} x)$, $\mu \to e^{-\omega} \mu$
Dilatation current $S^{\mu}(x) = T^{\mu\nu} x_{\nu}$

Dilatation current $S^{\mu}(x) = T^{\mu\nu}x_{\nu}$

$$\partial_{\mu} S^{\mu} = T^{\mu}_{\mu} = \sum_{i} \left[c_{i} (\mu) (d_{i} - 4) O_{i} (x) + \beta_{i} (c) \frac{\partial}{\partial c_{i}} L \right], \ \beta_{i} (c) = \mu \frac{\partial c_{i} (\mu)}{\partial \mu}$$

$$O9.09.14 \qquad G Kozlov, QCHSXI$$

IR Fixed Point

Slow running of α turns to smallness of $\beta(\alpha) = -\frac{b_0}{2\pi}\alpha^2 - \frac{b_1}{(2\pi)^2}\alpha^3 - \dots$

At Q < f (conformal breaking scale) to scale invariance saving:

replacement
$$c_i(\mu) \rightarrow \left(\frac{\phi}{f}\right)^{4-d_i} c_i\left(\mu \frac{\phi}{f}\right)$$
 Goldberger et al., 2008

incorporated flat direction transforms $\phi(x) \rightarrow e^{\omega} \phi(e^{\omega}x)$, $\langle \phi \rangle = f$

Theory would be nearly scale invariant if $d_i \to 4$, $\beta(\alpha) \to 0$

Breaking of chiral symmetry is triggered by the dynamics of nearly conformal sector

Effective model

$$L_{eff} = -\frac{1}{4}G_{\mu\nu}G^{\mu\nu} + \sum_{i=1}^{3} \left[\frac{1}{2} \left| D_{\mu}^{(i)} \phi_{i} \right|^{2} - \frac{1}{4} \lambda \left(\phi_{i}^{2} - \phi_{0_{i}}^{i} \right)^{2} \right]$$

$$G_{\mu\nu} = \partial_{\mu}C_{\nu} - \partial_{\nu}C_{\mu} - ig\left[C_{\mu}, C_{\nu}\right], \qquad D_{\mu}\phi_{i} = \partial_{\mu}\phi_{i} - ig\left[C_{\mu}, \phi_{i}\right]$$

$$C_{\mu} \text{ defined by } U_{C}(x,y) = P \exp \left[ig \int_{y}^{x} dz^{\mu} C_{\mu}(z) \right]$$

$$C_{\mu}(x) \rightarrow \Omega_{C}^{-1}(x) C_{\mu}(x) \Omega_{C}(x) + \frac{i}{g} \Omega_{C}^{-1}(x) \partial_{\mu} \Omega_{C}(x)$$

Color structure of $\phi_{0_i} = \langle \phi_i(x) \rangle$, i = 1, 2, 3

$$\phi_{0_1} = \frac{f}{\sqrt{2N}} J_x, \quad \phi_{0_2} = \frac{f}{\sqrt{2N}} J_y, \quad \phi_{0_3} = \frac{f}{\sqrt{2N}} J_z, \qquad J = \frac{1}{2} (N - 1),$$

Flux tubes

Excitations above vacuum: flux tubes, $r_s \sim m^{-1}$ (in the center, $r_s \rightarrow 0$, scalar condensate vanishes)

Ensemble of a single tube system

$$P = \sum_{\beta} \sum_{R} N(R) \exp[-\beta E(m,R)] D(|\vec{x}|, \beta; M)$$

effective action: $E(m,R) \sim m^2 R \left[a + b \ln(\tilde{\mu}R) \right]$ GK, 2010

CEP: infinite fluctuation length $\xi \sim m^{-1}$

 $C_{\prime\prime}$ - critical end mode!

$$m^{2}(\beta) \sim g^{2}(\beta)\delta^{(2)}(0)$$

$$\downarrow$$

$$c/(\pi r_{s}^{2}), \quad c \sim O(1)$$

TPCF

At large distances for any correlator (observables)

$$\langle O(\tau, \vec{x}) O(\tau, 0) \rangle \sim A |\vec{x}|^c D(|\vec{x}|, \beta; M) \text{ as } |\vec{x}| \rightarrow \infty$$

$$D(|\vec{x}|, \beta; M) = \exp[-M(\beta)|\vec{x}|], D(|\vec{x}|, \beta; M) \neq 0$$
 even at $\beta = \beta_c$

 $M^{-1}(\beta)$ is the measure of screening effect of color electric field

For
$$SU(N=2,3)$$
, high T , N_f massless, $\mu=0$

$$M(\beta) = M^{LO}(\beta) + N\alpha T \ln\left(\frac{M^{LO}(\beta)}{4\pi\alpha T}\right) + 4\pi\alpha T y_{n/p}(N) + O(\alpha^2 T)$$

$$M^{LO}(\beta) = \sqrt{4\pi\alpha \left(\frac{N}{3} + \frac{N_f}{6}\right)} T$$

Kajante et al. 1997

At
$$|\vec{x}| < M^{-1}(\beta)$$
, $\langle \mathcal{O}(\tau, \vec{x}) \mathcal{O}(\tau, 0) \rangle \sim \frac{16A\pi}{3} \frac{T}{V} \sigma_{eff}(\beta) y_{n/p} \xi^2$!

09.09.14

G Kozlov, QCHSXI

GK, 2014

String tension

$$\sigma_{eff}(\beta) \sim m^2(\beta)\alpha(\beta)$$

GK 2010

Flux-tube scheme:

- $\xi \sim m^{-1}$ the penetration length of color-electric field
- $\xi \sim r_s$ "string"-like radius
- $l \sim m_{\phi}^{-1}$ coherent length of scalar (dilaton) condensate
- $\tau = \sqrt{4/(3\alpha)}\xi$ formation time of flux tube (→∞ @ CEP)

For SU(3),
$$m \approx 1.95 \sqrt{\sigma_{eff}}$$

Baker et al., 1997

✓ Lattice:
$$T_c \approx 0.65 \sqrt{\sigma_{eff}}$$

Effective theory applicable in deconfined phase $T_c < T < 3T_c$!

Strings. Vacuum.

In SU(3) gluodynamics vacuum is characterized

$$k_{GL} = \frac{\xi}{l} \sim \frac{m_{\phi}}{m} < 1 \quad (type \ I \ vacuum, \ attracted)$$
 >1 \quad (type \ II \ vacuum, \ repel)

If $k_{GL} = 1$ parallel strings (carry the same flux) do not interact each other

NICA:

Observation of correlations between two bound states (strings) is rather useful & instructive to check the *CEP* is approached at *the Critical Point*!

NICA: sample with production $\pi^+\pi^+, \pi^-\pi^-, \pi^0\pi^0$ $AA (pp) \rightarrow high \ T \ quark - gluon \ bubble \rightarrow hadronization \rightarrow$

 $AA (pp) \rightarrow nigh \ 1 \ quark - gluon bubble \rightarrow hadronization \rightarrow AA (pp) \rightarrow night \ 1 \ quark - gluon bubble \rightarrow hadronization \rightarrow AA (pp) \rightarrow night \ 1 \ quark - gluon bubble \rightarrow hadronization \rightarrow AA (pp) \rightarrow night \ 1 \ quark - gluon bubble \rightarrow hadronization \rightarrow night \ 2 \ n$

NICA: Bose-Einstein Correlations @ high *T* Def.:

BEC's are the quantum effect which enhances the probability that multiple bosons be found in the same state, same position, same momentum

NICA: Bose-Einstein Correlation

- BE correlations might be measured using data collected with MPD detector at NICA in heavy-ion collisions , $\sqrt{s} = O(10 GeV)$
- In the case of no CEP approached, the signal is observed as an enhancement of pairs of same-sign charge particles with small relative momenta GK 2008

$$C_{2}(q,\beta = T^{-1}) = \eta(n) \left\{ 1 + \tilde{\lambda}(\beta) e^{-q^{2}L_{st}^{2}} \left[1 + \lambda_{1}(\beta) e^{q^{2}L_{st}^{2}/2} \right] \right\}$$

• When CEP approached:

09.09.14

- **NO** signal of enhancement of pairs of same-sign charge particles is observed

 $!\,C_2$ -function does not deviate from 1

$$L_{st} \rightarrow \infty$$
 as $T \rightarrow T_c$, $\eta(n) \rightarrow 1$, $n \rightarrow \infty$

NICA: Particle emission size

Theory:
$$L_{st} = L_{st}(\beta, k_T, m, v(n)!) \sim \frac{1}{v^{1/5}(n)}$$
 GK, 2009-2010

$$v(n) = \frac{2 - \tilde{C}_2(0) + \sqrt{2 - \tilde{C}_2(0)}}{\tilde{C}_2(0) - 1}, \qquad \tilde{C}_2(0) = \frac{C_2(q = 0)}{n(n)}$$

$$\langle n \rangle \ge 1 + C_2(0)/2$$
, $C_2(0) \le 2$

CMS (2011): \sqrt{s} =0.9 TeV; 7 TeV L_{st} increases with $\langle n \rangle$

High
$$T$$
: $L_{st} \sim \left[v(n) k_T^2 \ T^3 \right]^{-1/5}$ no $\mu - \& m_h$ – dependence! $L_{st} \to \infty$ as $v(n) \to 0$ with $n \to \infty$

NICA: Expansion of particle emission size

$$L_{st}(\beta) \sim \left[v(n)k_T^2 T^3\right]^{-1/5} \to \infty \text{ as } v(n) \to 0 \text{ with } n \to \infty \text{ at } T \to T_c \text{ KG 2010}$$

The temperature at which the signal of two-particles correlations disappears is the critical temperature at CEP: $C_2(q, T_c) = 1$

NICA: Dip-effect

The effect of anti-correlations (the dip-effect) is predicted at low charged-particle multiplicity n in the event: $C_2(\{q\},n)<1$?! KG 2010

The depth of the dip in the anti-correlation region decreases as n increases.

Observed by CMS at LHC [CMS Coll., JHEP 5 (2011) 029]

Proposal: at *CEP* the dip-effect disappears

Critical temperature

GK, ICHEP2014

$$T_c \approx 0.28 m_{q\bar{q}} \sqrt{3\pi (N/3 + N_f/3)}$$
 no α_s -dependence

LO, NLO: $\alpha_s \rightarrow 0$ in the vicinity of deconfinement

$$T_c = 167 MeV$$
 for pions; $\mu = 0.35 GeV$

NICA: Strength of BE corr's $\tilde{\lambda}(k_{_T}, \beta)$ for incoherent particles emitted from independent sources

$$C_{2}(q,\beta) \approx \eta(n) \left\{ 1 + \tilde{\lambda}(\beta) e^{-q^{2} \mathcal{L}_{st}^{2}} \left[1 + \lambda_{1}(\beta) e^{+q^{2} \mathcal{L}_{st}^{2}/2} \right] \right\}$$

$$\tilde{\lambda}(\beta) = \frac{\gamma(\omega, \beta)}{\left[1 + \nu(n)\right]^{2}}, \ \nu \sim \frac{1}{n} \frac{1}{k_{GZ}^{2}}, \ \gamma(\omega, \beta) \sim \mathcal{O}(1)$$

Measure of the *CEP*: fluctuation length $\xi \sim m^{-1}$ (of the "dual" gauge field) GK 2009-2014

Proposal:

 $\checkmark \tilde{\lambda}(k_T, \beta)$ decreases with k_T far away from the *CEP*, CMS (2011)

$$\checkmark \tilde{\lambda}(k_T,\beta) \rightarrow 0$$
 as *CEP* approached, $k_{GL} \rightarrow \infty$ DECONFINEMENT

Origin: infinite fluctuation length $\xi \to \infty$

09.09.14

G Kozlov, QCHSXI

Conclusion: Proposal for NICA/FAIR

- a). C_2^{exp} is the monotonous function with the Dip-effect @ small $\langle n \rangle$, far away from *CEP*.
- b). Hot emission volume: Dip disappears as $\langle n \rangle >> 1$, CEP signature: $C_2^{\text{exp}} = 1$.
- c). Source size L_{st} increases (smoothly) with n at low T.
- d). L_{st} blows up as $T \to T_c$ due to $v(n) \to 0$, $m_h \to 0$; L_{st} singular @ transition point, CEP.
- e). $\tilde{\lambda}$ decreases with k_T ; $\tilde{\lambda} \to 0$ as $T \to T_c$ where $\xi \to \infty$.

Finally:

a)., c)., e). confirmed by CMS (2011)

points b).,d)., e). are subjects of NICA/FAIR.