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E. Shuryak and M.L.,Phys.Rev.C76 (2007) 021901, D80 (2009) 065026, C84 (2011) 061901:

Generalize NS hydro by introducing ALL order dissipative terms in the gradient

expansion of fluid stress tensor

(∇∇u) we keep (∇u)
2

we neglect

Extract momenta-dependent viscosity function η(ω, q) by matching two-point

correlation functions of the stress tensor with correlation functions computed from

BH AdS/CFT (fluid/gravity correspondence).

We have set the problem, but at the time failed to solve it completely.

(We have done it now!)

We have done phenomenological studies of the effects of all-order gradients on

entropy/multiplicity production in HI collisions

Motivation: Experiments (RHIC,LHC) probe systems with finite gradients.

Phenomenologically observed low viscosity is an “effective” viscosity measured at

momentum typical for process in study.

High order gradients are very big in early stages of HI collisions

Small perturbations/correlations on top of global explosion are sensitive to high

gradients. This is where our results are most applicable

Relativistic Navier-Stokes hydrodynamics is non-causal/non-stable.

Causality is supposed to be restored after summation of all orders



Relativistic Hydrodynamics

Energy momentum tensor

〈Tµν〉 = (ǫ + P) uµ
u
ν + P g

µν + Π
µν

uv = −1/
√

1 − β2, ui = βi/
√

1 − β2

Πµν – tensor of dissipations (ideal fluid: Πµν = 0)

Landau frame choice: uµ Π
µν = 0.

Navier Stokes hydro (expanding up to first order in the velocity gradient)

Πij = − η0 σij , σij =
1

2

(

∂iβj + ∂jβi −
2

3
δij∂β

)

, Πvv = Πvj = 0.

∇µ 〈Tµν〉 = 0 −→ Navier − Stokes Eqns.



Linearized Hydro to all orders

Shuryak and M. L.: Introduce all order gradient expansion of 〈Tµν〉:

Πij = −
[

η(ω, q
2
)σij + ζ(ω, q

2
)πij

]

,

where πij is a third order tensor structure

πij = ∂i∂j∂β − 1

3
δij∂

2∂β

η = η[∇2, (u∇)] ; ζ = ζ[∇2, (u∇)] ;

∇2 → ω2 − q2 and (u∇) → − iω.

We keep the nonlinear dispersion to all orders, but

We neglect nonlinear interactions (though some terms could be recovered).



Results: Viscosities from the Fluid/Gravity correspondence

Analytical results in the hydrodynamic regime ω, q ≪ 1 (πT = 1):

η(ω, q
2
) = 2+(2−ln 2)iω−1

4
q
2− 1

24

[

6π − π
2
+ 12

(

2 − 3 ln 2 + ln
2
2
)]

ω
2
+· · ·

ζ(ω, q2) =
1

12
(5 − π − 2 ln 2) + · · ·

Blue terms are new!

Modified sound dispersion:

ω = ± 1√
3
q − i

6
q2± 1

24
√
3
(2 ln 2 − 1) q3+

i

288

(

8 − π2

3
+ 4 ln2 2 − 4 ln 2

)

q4 +





q2 = 0
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• Real parts of the viscosities are decreasing functions of momenta. Oscillations

are consistent with the expectations about the viscosities have infinitely many

complex poles.

• Imaginary parts have a clear maximum near ω ∼ 2, introducing a (new?)

transition scale.

• Viscosity vanish at large momenta, which is probably what is required to restore

causality.

• ζ is always subleading vs η.



AdS/CFT

AdS/CFT correspondence: weakly coupled super-gravity in AdS5 × S5 is “dual”

to strongly coupled N = 4 SYM gauge theory in 4d



All dissipative effects take place at the horizon. There is no dissipation in the bulk.

Gravitons propagate signals from the horizon to the boundary, where the hologram

is captured.

The bulk acts as a highly nonlinear dispersive medium.

First approach: Perturb metric near horizon (membrane paradigm) and read off

the response of the system at the boundary.

Alternative approach: send a signal from one point at the boundary to another

(two point correlations of stress energy tensor).

h

 BH horizon slowly varying BH horizon

h h

 < T     (x) >   
µν µν µν < T    (x)    ,    T   (y) >   



”Gravity”, starring S. Bhattacharyya, V. E Hubeny, S. Minwalla, M. Rangamani

5d GR with negative cosmological constant:

S =
1

16πGN

∫

d
5
x
√

−g (R + 12) ,

Einstein Equations

EMN ≡ RMN − 1

2
gMN R − 6 gMN = 0.

Solution: Boosted Black Brane in asymptotic AdS5

ds
2 = −2uµdx

µ
dr − r

2
f (br) uµuνdx

µ
dx

ν + r
2Pµνdx

µ
dx

ν,

f(r) = 1 − 1/r4 and Pµν = ηµν + uµuν

Hawking temperature

T =
1

πb
,



S. Bhattacharyya, V. E Hubeny, S. Minwalla, M. Rangamani,

JHEP 0802:045,2008:

Promote βi and b into a slowly varying functions of boundary coordinates xα

ds
2 = −2uµ(x

α)dxµ
dr − r

2
f (b(xα)r) uµ(x

α)uν(x
α)dxµ

dx
ν + r

2Pµν(x
α)dxµ

dx
ν,

Use gradient expansion of the fields u(x) = u0 + δx∇u and b(x) = b + δx∇b

to set up a perturbative procedure

The resulting energy momentum tensor

〈Tµν〉 = T
µν
ideal + Π

µν
NS + τR (u∇)Π

µν
NS + O[ (∇ u)

2
]

η0

s
=

1

4π
, τR = 2 − log(2)



We do it somewhat differently, linearizing in the velocity amplitude

uµ(x
α) = (−1, ǫβi(x

α)) + O(ǫ2), b(xα) = b0 + ǫb1(x
α) + O(ǫ2),

”seed” metric, i.e., a linearized version of the BH metric

ds
2

seed = 2drdv−r
2
f(r)dv2+r

2
d~x2−ǫ

[

2βi(x
α)drdxi +

2

r2
βi(x

α)dvdxi +
4

r2
b1(x

α)dv2

]

+O(ǫ2),

ds
2 = ds

2

seed + ds
2

corr[β] gauge fix grr = 0, grµ ∝ uµ

ds
2

corr = ǫ

(

−3h drdv +
k

r2
dv

2
+ r

2
h d~x

2
+

2

r2
ji dvdx

i
+ r

2
αij dx

i
dx

j

)

h[β], k[β], j[β], α[β] are to be found by solving the Einstein equations.

Boundary cond: no singularities, no modification to AdS asymptotics at r → ∞

h < O(r
0
), k < O(r

4
), ji < O(r

4
), αij < O(r

0
).



Stress tensor from the Holographic Dictionary

We consider a hypersurface Σ at constant r.

Vector nM normal to Σ: nM =
∇Mr√

gMN∇Mr∇Nr
.

Induced metric γMN on Σ: γMN = gMN − nMnN

Extrinsic curvature tensor KMN:

KMN =
1

2

(

n
A ∂A γMN + γMA ∂N n

A + γNA ∂M n
A
)

.

The stress tensor for the dual fluid

〈Tµ〉
ν = lim

r→∞
T̃

µ
ν(r) ; T̃

µ
ν(r) ≡ r

4

(

Kµ
ν − Kγ

µ
ν + 3γ

µ
ν − 1

2
G

µ
ν

)

,

where Gµ
ν is associated with γµν. The last two terms are counter-terms which

remove divergences near the boundary r = ∞.



T̃
0

0 = −3(1 − 4ǫb1) +
ǫ

2r

{

−6rk + 4r
4∂β − 4∂j − r

3∂i∂jαij + 18(r5 − r)h

+6(r
6 − r

2
)∂rh + 2r

3
∂
2
h + 6r

4
∂vh
}

,

T̃
0

i =
ǫ

2r4

{

2
[

4r
4βi − 4(r4 − 1)ji + r

7∂vβi − r
3∂ik + (r5 − r)∂rji

]

−r
2
(

−∂
2
ji + ∂i∂j + r

4
∂v∂kαik − 2r

4
∂v∂ih − 3r

5
∂ih
)}

,

T̃
i

0 = − ǫ

2r3

{

2
[

4r
3βi − 4r

3
ji + r

6∂vβi − r
2∂ik + (r4 − 1)∂rji

]

+r
[

∂
2
ji − ∂i∂j − r

4
∂v∂kαik − 2r

4
∂v∂ih − 3(r

6 − r
2
)∂ih

]}

,

T̃
i

j = δij(1 − 4ǫb1) +
ǫ

2r4
δij

{

r
2
[

−∂2
k + (1 − r

4)∂k∂lαkl + 2∂v∂j
]

−2
[

(1 − r
4
)k − 2r

7
∂β + 2r

3
∂j − r

3
∂vk + (r

5 − r)∂rk
]

+ r
6
∂
2
h

−2r
6∂2

vh + 2
[(

3 − 12r
4 + 9r

5
)

h + (r3 − r
7)∂vh + (2r − 4r

5 + 2r
9)∂rh

]}

+
ǫ

2r2

{

−2r
[

2r
4∂(iβj) − 2∂(ijj) + r

4∂vαij + (r6 − r
2)∂rαij

]

− r
4∂i∂jh

+
[

∂i∂jk + (1 − r
4
)∂

2
αij + 2(r

4 − 1)∂k∂(iαj)k − 2∂v∂(ijj) + r
4
∂
2

vαij

]}

,



Approaching the boundary

ji → −iωr
3βi −

1

3
r
2∂i∂β + O

(

1

r

)

,

αij →
(

2

r
− η(ω, q2)

4r4

)

σij −
ζ(ω, q2)

4r4
πij + O

(

1

r5

)

.

k → 2

3

(

r
3 + iωr

2
)

∂β + O
(

1

r2

)

, as r → ∞

h = 0

The dissipative part of the stress tensor

Πij = −
[

η(ω, q2)σij + ζ(ω, q2)πij

]



Einstein equations for the metric corrections

Dynamical equations:

Err = 0 : 5 ∂rh + r∂2
rh = 0 .

Erv = 0 : 3 r2∂rk = 6 r4 ∂β + r3 ∂v∂β − 2 ∂j − r ∂r∂j − r3 ∂i∂jαij

Eri = 0 : −∂2
r ji =

(

∂2βi − ∂i∂β
)

+ 3r ∂vβi − 3
r
∂rji + r2∂r∂jαij.

Eij = 0 :

(r
7 − r

3
)∂

2

rαij + (5r
6 − r

2
)∂rαij + 2r

5
∂v∂rαij + 3r

4
∂vαij

+r
3

{

∂
2
αij −

(

∂i∂kαjk + ∂j∂kαik −
2

3
δij∂k∂lαkl

)}

+

(

∂ijj + ∂jji −
2

3
δij∂j

)

− r∂r

(

∂ijj + ∂jji −
2

3
δij∂j

)

+3r
4

(

∂iβj + ∂jβi −
2

3
δij∂β

)

+r
3∂v

(

∂iβj + ∂jβi −
2

3
δij∂β

)

= 0 .



Holographic RG flow-type equations

ji and αij are linear functionals of βi. They can be uniquely decomposed as

ji = a(ω, q, r)βi + b(ω, q, r) ∂i∂β

αij = 2 c(ω, q, r)σij + d(ω, q, r)πij,

The Einstein equations reduce to ordinary diff equations

r∂
2

ra − 3∂ra − q
2
r
3
∂rc − 3iωr

2 − q
2
r = 0

r∂
2

rb − 3∂rb +
1

3
r
3
∂rc − 2

3
r
3
q
2
∂rd − r = 0

(r7 − r
3)∂2

r c+ (5r6 − r
2)∂rc − 2iωr

5∂rc − r∂ra+ a − 3iωr
4
c+ 3r

4 − iωr
3 = 0

(r7−r
3)∂2

rd+(5r6−r
2)∂rd−2iωr

5∂rd+
q2

3
r
3
d−3iωr

4
d+2b−2r∂rb−

2

3
r
3
c = 0 .



Navier-Stokes equations

Using dynamical Einstein equations, we have constructed an ”off-shell” Tµν

Constraint equations

Evv = 0 and Evi = 0

are equivalent to the stress tensor conservation law

∂µT
µν

= 0

which determines the temperature and velocity profiles as functions of time,

provided initial configuration is specified.



Conclusions

• We have consistently determined the energy-momentum stress tensor of a

weakly perturbed conformal fluid, whose underlying microscopic description

is a strongly coupled N = 4 super-Yang-Mills theory at finite temperature.

We have found that all order dissipative terms in the fluid stress tensor are

fully accounted for by two (generalized) momenta-dependent viscosity functions

η(ω, q2) and ζ(ω, q2)

• As one of our main results, we have derived a closed form linear holographic

RG flow-type equations for the viscosity functions. Constraint components of

the bulk Einstein equationshave been shown to generalize the Navier-Stokes

equations, consistently with the conservation laws of the fluid stress tensor.

• At large momenta, the effective viscosity is a decreasing function both of

frequency and momentum. This behavior is supposed to restore causality of

relativistic fluid dynamics and might be the reason behind the low viscosity

observed at RHIC. It may also explain the exceptionally good survival of various

hydrodynamic flows, particularly the sound waves.



• QGP is Deconfined

• QGP is strongly coupled (sQGP)

behaves “almost” like a perfect liquid (Navier-Stokes with very small viscosity)

η ∼ mean free path ∼ 1/σ

QCD −→ N = 4 SYM (CFT)

Strong coupling (and large Nc) → AdS/CFT → SUGRA on AdS5

CFT at finite Temperature ↔ AdS Black Hole



Israel-Stewart second order Hydrodynamics

Solves causality problems present in Navier-Stokes

Add extra term in the gradient expansion + non-linear terms in (∇u)

Π
µν

= (1 − τR uλ ∇λ
) Π

µν
NS

Iterate the equation

(1 + τR uλ ∇λ
) Π

µν
= Π

µν
NS

When thinking about small perturbations uλ ∇λ → ∇v → − iω

The IS second order hydro is equivalent (in the linear approximation) to

η0 → η(ω) ≡ η0

1 − i τR ω



Holographic Dictionary

Zbulk [φ(~x, z)|z=0 = φ0(~x)] = 〈e
∫

d4xφ0(~x)O(~x)〉Field Theory

Holographic renormalization:

φ(x, z → 0) = φ0(x) + z
∆ 〈O 〉FT + · · · ; ∆ = − 4 − 2∆O

If O = T µν then φ = gµν:

gµ ν(x, r ≡ 1/z → ∞) = ηµν + 0
1

r2
+

1

r4
〈Tµν〉FT + · · ·

Two-point correlators:

〈 O(x) O(y) 〉FT =
δ2Zbulk

δφ0(x) δφ0(y)
|φ0=0


