QCD and Strongly Coupled Gauge Theories: Challenges and Perspectives

QCD and strongly coupled gauge theories: challenges and perspectives

N. Brambilla^{*†},¹ S. Eidelman[†],^{2,3} P. Foka^{†‡},⁴ S. Gardner^{†‡},⁵ A.S. Kronfeld[†],⁶ M.G. Alford[‡],⁷ R. Alkofer[‡],⁸ M. Butenschoen[‡],⁹ T.D. Cohen[‡],¹⁰ J. Erdmenger[‡],¹¹ . Fabbietti[‡],¹² M. Faber[‡],¹³ J.L. Goity[‡],^{14,15} B. Ketzer[‡],¹ H.W. Lin[‡],¹⁶ F.J. Llanes-Estrada[‡],¹⁷ H.B. Meyer[‡],¹⁸ P. Pakhlov[‡],^{19,20} E. Pallante[‡],²¹ M.I. Polikarpov[‡],^{19,20} H. Sazdjian[‡],²² A. Schmitt[‡],²³ W.M. Snow[‡],²⁴ A. Vairo[‡],¹ R. Vogt[‡],^{25, 26} A. Vuorinen[‡],²⁷ H. Wittig[‡],¹⁸ P. Arnold,²⁸ P. Christakoglou,²⁹ P. Di Nezza,³⁰ Z. Fodor,^{31, 32, 33} X. Garcia i Tormo,³⁴ Höllwieser,¹³ M.A. Janik,³⁵ A. Kalweit,³⁶ D. Keane,³⁷ E. Kiritsis,³⁸ A. Mischke,³⁹ R. Mizuk,¹⁹, G. Odyniec,⁴¹ K. Papadodimas,²¹ A. Pich,⁴² R. Pittau,⁴³ J.-W. Qiu,^{44,45} G. Ricciardi,^{46,47} C.A. Salgado,⁴⁸ K. Schwenzer,⁷ N.G. Stefanis,⁴⁹ G.M. von Hippel,¹⁸ and V.I. Zakharov^{11,19} arXiv:1404.3723v1 [hep-ph] 14 Apr 2014

QCD and strongly coupled gauge theories: challenges and perspective

N. Brambilla^{*†},¹ S. Eidelman[†],^{2,3} P. Foka^{†‡},⁴ S. Gardner^{†‡},⁵ A.S. Kronfeld[†],⁶
M.G. Alford[‡],⁷ R. Alkofer[‡],⁸ M. Butenschön[‡],⁹ T.D. Cohen[‡],¹⁰ J. Erdmenger[‡],¹¹ L. Fabbietti[‡],¹²
M. Faber[‡],¹³ J.L. Goity[‡],^{14,15} B. Ketzer^{‡§},¹ H.W. Lin[‡],¹⁶ F.J. Llanes-Estrada[‡],¹⁷
H.B. Meyer[‡],¹⁸ P. Pakhlov[‡],^{19,20} E. Pallante[‡],²¹ M.I. Polikarpov[‡],^{19,20} H. Sazdjian[‡],²²
A. Schmitt[‡],²³ W.M. Snow[‡],²⁴ A. Vairo[‡],¹ R. Vogt[‡],^{25,26} A. Vuorinen[‡],²⁷ H. Wittig[‡],¹⁸
P. Arnold,²⁸ P. Christakoglou,²⁹ P. Di Nezza,³⁰ Z. Fodor,^{31,32,33} X. Garcia i Tormo,³⁴ R. Höllwieser,¹³
M.A. Janik,³⁵ A. Kalweit,³⁶ D. Keane,³⁷ E. Kiritsis,^{38,39,40} A. Mischke,⁴¹ R. Mizuk,^{19,42}
G. Odyniec,⁴³ K. Papadodimas,²¹ A. Pich,⁴⁴ R. Pittau,⁴⁵ J.-W. Qiu,^{46,47} G. Ricciardi,^{48,49}
C.A. Salgado,⁵⁰ K. Schwenzer,⁷ N.G. Stefanis,⁵¹ G.M. von Hippel,¹⁸ and V.I. Zakharov^{11,19}

We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly-coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments. Work for this document started in the preparation of Xconf in Munich in 2012

Ath Quark Confinement and the Hadron Spectrum

8 -12 October 2012

TUM Campus Garching Munich, Germany

THE TENTH EDITION IN THE SERIES!

Madrid (Spain) 2010

Mainz (Germany) 2008

Açores (Portugal) 2006

Sardinia (Italy) 2004

Gargnano (Italy) 2002

Vienna (Austria) 2000

TJNAF (USA) 1998

Como (Italy) 1996, 1994

Work for this document started in the preparation of Xconf in Munich in 2012

8 -12 October 2012

TUM Campus Garching Munich, Germany

Ath Quark Confinement and the Hadron Spectrum

Madrid (Spain) 2010

Mainz (Germany) 2008

Açores (Portugal) 2006

Sardinia (Italy) 2004

Gargnano (Italy) 2002

Vienna (Austria) 2000

TJNAF (USA) 1998

Como (Italy) 1996, 1994

THE TENTH EDITION IN THE SERIES!

The conference has become an important discussion forum for strong interactions: use the discussion at the meeting to formulate "visions for strong theories" at a particular important time for particle physics after the discovery of the Higgs.

Conference Sections

Section A: Vacuum Structure and Confinement

Conveners: M. Faber (TU Vienna), M. Polikarpov (ITEP, Moscow)

Section B: Light Quarks

Conveners: <u>R. Alkofer</u> (Univerität Graz), <u>B. Ketzer</u> (TU München), <u>J. Goity</u> (JLAB, Newport News), <u>H. Sazdjian</u> (IPN Orsay), <u>H. Wittig</u> (JGU Mainz)

Section C: Heavy Quarks

Conveners: G. Bodwin (Argonne National Lab), P. Pakhlov (ITEP, Moscow), J. Soto (University of Barcelona), A. Vairo (TU München)

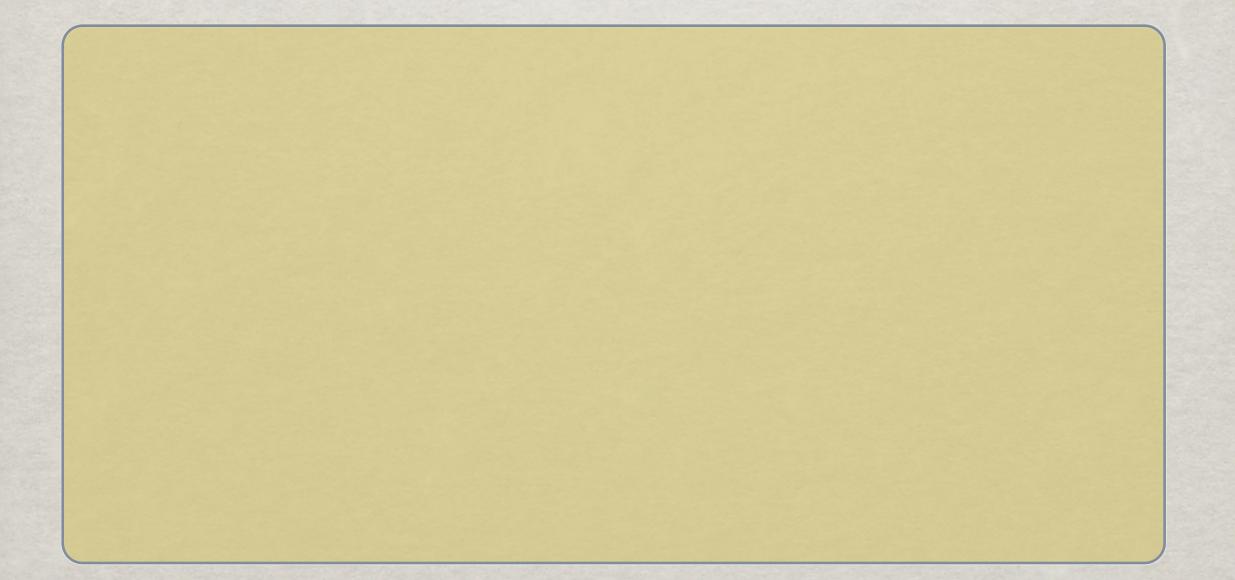
Section D: Deconfinement

Conveners: P. Arnold (University of Virginia), Y. Foka (GSI, Darmstadt), H. Meyer (JGU Mainz), J. Rafelski (University of Arizona)

Section E: QCD and New Physics

Conveners: <u>S. Gardner</u> (University of Kentucky), <u>H. W. Lin</u> (University of Washington), <u>F. Llanes Estrada</u> (UC Madrid), <u>M. Snow</u> (Indiana University)

Section F: Nuclear and Astroparticle Physics


Conveners: M. Alford (Washington University in St. Louis), <u>T. Cohen</u> (University of Maryland), <u>L. Fabbietti</u> (TU München), <u>A. Schmitt</u> (TU Vienna)

Section G: *Strongly Coupled Theories*

Conveners: <u>J. Erdmenger</u> (MPP Munich), <u>E. Katz</u> (Boston University), <u>E. Pallante</u> (University of Groningen), <u>A. Szczepaniak</u> (Indiana University)

AFTER TWO YEARS of WORK:

QCD and strongly coupled gauge theories: challenges and perspectives This document highlights the status and challenges of strong-interaction physics at the beginning of a new era initiated by the discovery of the Higgs particle at Cern

AFTER TWO YEARS of WORK:

QCD and strongly coupled gauge theories: challenges and perspectives This document highlights the status and challenges of strong-interaction physics at the beginning of a new era initiated by the discovery of the Higgs particle at Cern

effort. Together, we have sought to address a common set of questions: What are the latest achievements and highlights related to the strong interaction? What important open problems remain? What are the most promising avenues for further investigation? What do experiments need from theory? What does theory need from experiments? In addressing these questions, we aim to cast the challenges in quantum chromodynamics (QCD) and other strongly-coupled physics in a way that spurs future developments.

	Contents			
1.	Ove	erview	,1	4
	1.1.	Reade	ers' guide	4
2.	The	e natu	re of QCD ²	6
	2.1.	Broad	er themes in QCD	6
	2.2.	QCD	experiments	8
	2.3.	Theor	etical tools	9
	2.4.	QCD	parameters	1(
3.		ht qua		12
			luction	12
	3.2.		on structure	12
			Parton distribution functions in QCD	12
			PDFs in the DGLAP approach	1(
			PDFs and nonlinear evolution equations	1'
			Hadron form factors and GPDs	18
			The proton radius puzzle	22
			The pion and other pseudoscalar mesons	24
	3.3.		on spectroscopy	2
			Lattice QCD	20
			Continuum methods	29
			Experiments	30
	3.4.		l dynamics	40
			$\pi\pi$ and πK scattering lengths	4
		3.4.2.	Lattice calculations: quark masses and	
			effective couplings	4
			$SU(3)_L \times SU(3)_R$ global fits	4:
			$\eta \rightarrow 3\pi$ and the nonstrange quark masses	4:
			Other tests with electromagnetic probes	44
			Hard pion ChPT	4
		3.4.7.	Baryon chiral dynamics	4

3.4.8. Other topics	46
3.4.9. Outlook and remarks	46
3.5. Low-energy precision observables and tests of the	
Standard Model	47
3.5.1. The muon's anomalous magnetic moment	47
3.5.2. The electroweak mixing angle	49
3.6. α_s from the inclusive hadronic τ decay	50
3.7. Future Directions	51
Heavy quarks	52
4.1. Methods	52
4.1.1. Nonrelativistic effective field theories	52
4.1.2. The progress on NRQCD factorization	53
4.1.3. Lattice	56
4.2. Heavy semileptonic decays	58
4.2.1. Exclusive and inclusive D decays	58
4.2.2. Exclusive B decays	61
4.2.3. Inclusive <i>B</i> decays	62
4.2.4. Rare charm decays	63
4.3. Spectroscopy	63
4.3.1. Experimental tools	64
4.3.2. Heavy quarkonia below open flavor	01
thresholds	64
4.3.3. Quarkonium-like states at open flavor	01
thresholds	66
4.3.4. Quarkonium and quarkonium-like states	00
above open flavor thresholds	69
4.3.5. Summary	70
4.4. Strong coupling α_s	71
4.5. Heavy quarkonium production	71
4.5.1. Summary of recent experimental progress	71
4.5.2. NLO tests of the NRQCD LDME	11
universality	74
4.5.3. Recent calculations of relativistic corrections	
	76
4.5.4. Calculations using k_T factorization 4.5.5. Current trends in theory	
4.5.5. Current trends in theory	77
4.6. Future directions	77

5. Searching for new physics with precision measurements and computations

5.1.	Introduction	79
5.2.	QCD for collider-based BSM searches	80
	5.2.1. Theoretical overview: factorization	80
	5.2.2. Outcomes for a few sample processes	80
	5.2.3. LHC results: Higgs and top physics	82
	5.2.4. Uncertainties from nucleon structure and	
	PDFs	84
	5.2.5. Complementarity with low-energy probes	85
5.3.	Low-energy framework for the analysis of BSM	
	effects	86
5.4.	Permanent EDMs	87
	5.4.1. Overview	87
	5.4.2. Experiments, and their interpretation and	
	implications	88
	5.4.3. EFTs for EDMs: the neutron case	89
	5.4.4. Lattice-QCD matrix elements	90
5.5.	Probing non- $(V - A)$ interactions in beta decay	91
	5.5.1. The role of the neutron lifetime	94
5.6.	Broader applications of QCD	95
	5.6.1. Determination of the proton radius	95
	5.6.2. Dark-matter searches	95
	5.6.3. Neutrino physics	96
	5.6.4. Cold nuclear medium effects	96
	5.6.5. Gluonic structure	97
5.7.	Quark flavor physics	97
	5.7.1. Quark masses and charges	98
	5.7.2. Testing the CKM paradigm	99
	5.7.3. New windows on CP and T violation	103
	5.7.4. Rare decays	105
5.8.	Future Directions	106

6.	Dec	confinement	107
	6.1.	Mapping the QCD phase diagram	108
		6.1.1. Precision lattice QCD calculations at	
		finite-temperature	108
		6.1.2. A critical point in the QCD phase diagram?	110
		6.1.3. Experimental exploration of the QCD phase	
		diagram	110
	6.2.	Near-equilibrium properties of the QGP	112
		6.2.1. Global event characterization	112
		6.2.2. Azimuthal anisotropies	115
		6.2.3. Transport coefficients & spectral functions:	
		theory	117
	6.3.	Approach to equilibrium	118
		6.3.1. Thermalization at weak and strong coupling	118
		6.3.2. Multiplicities and entropy production	119
	6.4.	Hard processes and medium induced effects	121
		6.4.1. Introduction	121
		6.4.2. Theory of hard probes	122
		Nuclear matter effects in pA collisions	122
		Energy loss theory	124
		Quarkonium interaction at finite	
		temperature and quarkonium suppression	125
		6.4.3. Experimental results on hard probes	128
		High p_T observables	128
		Heavy flavors	133
	6.5.	Reference for heavy-ion collisions	140
	6.6.	Lattice QCD, AdS/CFT and perturbative QCD	141
		6.6.1. Weakly and strongly coupled (Super)	
		Yang-Mills theories	142
		6.6.2. Holographic breaking of scale invariance and	
		IHQCD	143
	6.7.	Impact of thermal field theory calculations on	
		cosmology	144
	6.8.	The chiral magnetic effect	144
		Future directions	145

•	Nuclear physics and dense QCD in colliders and		
	compact stars	147	
	7.1. Experimental constraints on high-density objects	147	
	7.1.1. Results from heavy-ion collisions	147	
	7.1.2. The K -nucleon interaction in vacuum	150	
	7.1.3. Hyperon–nucleon interaction	151	
	7.1.4. Implications for neutron stars	151	
	7.1.5. Neutron–rich nuclei	152	
	7.2. Nucleon-nucleon interactions and finite nuclei from		
	QCD	153	
	7.2.1. Lattice QCD and nuclear physics	153	
	7.2.2. Effective field theory approach	154	
	7.2.3. Large N_c limit and the $1/N_c$ expansion	154	
	7.3. Dense matter: theory and astrophysical constraints	155	-
	7.3.1. Ultra-dense QCD and color-flavor locking	155	-
	7.3.2. Moderately dense QCD	156	
	7.3.3. Theoretical approaches and challenges	156	
	7.3.4. Dense matter and observations of compact		1
	stars	158	
	7.4. Future directions	161	

8.	Vac	cuum structure and infrared QCD:	
	con	finement and chiral symmetry breaking ⁸	163
	8.1.	Confinement	163
	8.2.	Functional methods	167
	8.3.	Mechanism of chiral symmetry breaking	171
	8.4.	Future Directions	175
9.	Str	ongly coupled theories and conformal	
	syn	nmetry	177
	9.1.	New exact results in quantum field theory	177
		9.1.1. Integrability of planar $\mathcal{N} = 4$ SYM	178
		9.1.2. Scattering amplitudes	178
		9.1.3. Generalized unitarity and its consequences	179
		9.1.4. Supersymmetric gauge theories	179
		9.1.5. Conformal field theories	180
		9.1.6. 3d CFTs and higher spin symmetry	180
	9.2.	Conformal symmetry, strongly coupled theories and	
		new physics	181
		9.2.1. Theory of the conformal window	181
		9.2.2. Lattice, AdS/CFT, and the electroweak	
		symmetry breaking	182
	9.3.	Electroweak symmetry breaking	183
		9.3.1. Strongly coupled scenarios for EWSB	183
		9.3.2. Conformal symmetry, the Planck scale, and	100
	~ .	naturalness	186
	9.4.	Methods from high-energy physics for strongly	100
		coupled, condensed matter systems	188
		9.4.1. Lattice gauge theory results	188
	~ ~	9.4.2. Gauge-gravity duality results	189
	9.5.	Summary and future prospects	191
	Ap	pendix: Acronyms	192
	Ack	knowledgements	197
	Ref	erences	198

7. Nuclear physics and dense QCD in colliders and	
compact stars	147
7.1. Experimental constraints on high-density objects	147
7.1.1. Results from heavy-ion collisions	147
7.1.2. The K -nucleon interaction in vacuum	150
7.1.3. Hyperon–nucleon interaction	151
7.1.4. Implications for neutron stars	151
7.1.5. Neutron–rich nuclei	152
7.2. Nucleon-nucleon interactions and finite nuclei from	
QCD	153
7.2.1. Lattice QCD and nuclear physics	153
7.2.2. Effective field theory approach	154
7.2.3. Large N_c limit and the $1/N_c$ expansion	154
7.3. Dense matter: theory and astrophysical constraints	
7.3.1. Ultra-dense QCD and color-flavor locking	155
7.3.2. Moderately dense QCD	156
7.3.3. Theoretical approaches and challenges	156
7.3.4. Dense matter and observations of compact	100
stars	158
7.4. Future directions	161
	101
243	
[2759] P. A. R. Ade et al. (Planck Collaboration) (2013),	
1303.5076.	
0750 0	
2759 references!	

Vacuum structure and infrared QCD:		
confinement and chiral symmetry breaking ⁸	163	
8.1. Confinement	163	
8.2. Functional methods	167	
8.3. Mechanism of chiral symmetry breaking	171	
8.4. Future Directions	175	
Strongly coupled theories and conformal	1	
symmetry	177	
9.1. New exact results in quantum field theory	177	
9.1.1. Integrability of planar $\mathcal{N} = 4$ SYM	178	
9.1.2. Scattering amplitudes	178	
9.1.3. Generalized unitarity and its consequences	179	
9.1.4. Supersymmetric gauge theories	179	
9.1.5. Conformal field theories	180	
9.1.6. 3d CFTs and higher spin symmetry	180	
9.2. Conformal symmetry, strongly coupled theories an	.d	
new physics	181	
9.2.1. Theory of the conformal window	181	
9.2.2. Lattice, AdS/CFT, and the electroweak		
symmetry breaking	182	
9.3. Electroweak symmetry breaking	183	
9.3.1. Strongly coupled scenarios for EWSB	183	
9.3.2. Conformal symmetry, the Planck scale, and		
naturalness	186	
9.4. Methods from high-energy physics for strongly		
coupled, condensed matter systems	188	
9.4.1. Lattice gauge theory results	188	
9.4.2. Gauge-gravity duality results	189	
9.5. Summary and future prospects	191	
	100	
Appendix: Acronyms	192	
Acknowledgements	197	
Acknowledgements	197	
References		
	198	

Acknowledgements

We dedicate this document to the memory of Mikhail Polikarpov, who passed away in July 2013. Misha worked with us for decades as a convener of the "Confinement" section of the Quark Confinement and Hadron Spectrum Series. He guided and expanded the scientific discussion of that topic, inspiring and undertaking new research avenues. From its initial conception, he supported the enterprise of this document and organized Chapter 8, writing the part on confinement himself. He attracted the XIth Conference on Quark Confinement and the Hadron Spectrum to St. Petersburg (September 8-12, 2014; see http://phys.spbu.ru/confxi.html). His warm and kind personality, his high sense of humor, his ideas in physics and his special energy in imagining and realizing new projects will be always a loss and an example for us. We also miss four other physicists who made lasting contributions to the field of strong interactions: Dmitri Diakonov, Nikolai Uraltsev, Pierre van Baal, and Kenneth Wilson. We remember Misha, Dima, Ken, Kolya, and Pierre with fondness and gratitude.

We expect that this work will attract a broad readership, ranging from practitioners in one or more subfields of QCD, to particle or nuclear physicists working in fields other than QCD and the SM, to students starting research in QCD or elsewhere.

but also for funds agencies, projects applications ...

We expect that this work will attract a broad readership, ranging from practitioners in one or more subfields of QCD, to particle or nuclear physicists working in fields other than QCD and the SM, to students starting research in QCD or elsewhere.

but also for funds agencies, projects applications ...

So we hope that you will find useful and you will use this work!