CONFXI 2014, St. Petersburg

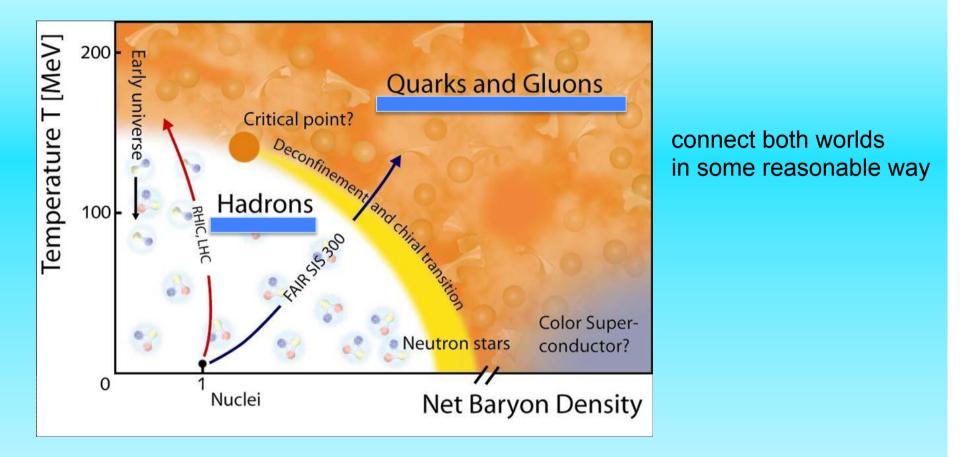
Models of Quark-Hadron Matter and Compact Stars

OUTLINE

- hadronic SU(3) model
- adding quarks
- some results for $\mu = 0$ and heavy-ions
- dense matter, compact stars
- conclusions, to-do list

V. Dexheimer, R. Negreiros, P. Rau, J. Steinheimer, SWS FIAS Frankfurt, Kent State, Fluminense,

the usual phase diagram (sketch) of strong interactions



Practical model useful for heavy-ion simulations and compact star physics

correct asymptotic degrees of freedom reasonable description on a quantitative level for high T down to nuclei possibility of studying first-order as well as cross-over transitions hadronic SU(3) approach based on non-linear realization of $\sigma\omega$ model

Lowest multiplets

B = { p , n , Λ , $\Sigma^{\pm/0}$, X^{-/0} } baryons

diag (V) = { $(\omega + \rho) / \sqrt{2}$, $(\omega - \rho) / \sqrt{2}$, ϕ } vector mesons

diag (X) = { $(\sigma + \delta) / \sqrt{2}$, $(\sigma - \delta) / \sqrt{2}$, ς } scalar mesons

Mean fields generate scalar attaction and vector repulsion

Scalar self interaction $L_0 = -\frac{1}{2} k_0 l_2 + k_1 (l_2)^2 + k_2 l_4 + 2 k_3 l_3 + L_{ESB}$

invariants $I_1 = Tr(X)$ $I_2 = Tr(X)^2$ $I_3 = det(X)$

+ dilaton field $L_{\chi} = -k_4 \chi^4 - \frac{1}{4} \chi^4 \ln (\chi^4/\chi_0^4) + \delta/3 \chi^4 \ln (I_3/\langle X \rangle)$

hadronic SU(3) approach ... continued

$$L_{BW} = -\sqrt{2} g_8^{W} (\alpha_W [BOBW]_F + (1 - \alpha_W) [BOBW]_D)$$
$$- g_1^{W} / \sqrt{3} Tr(BOB) Tr (W)$$

SU(3) interaction

 $V(M) \qquad <\sigma > = \sigma_0 \neq 0 \qquad <\zeta > = \zeta_0 \neq 0$

$$\sigma \sim \langle \overline{u} u + \overline{d} d \rangle \quad \zeta \sim \langle \overline{s} s \rangle \quad \delta^0 \sim \langle \overline{u} u - \overline{d} d \rangle$$

 $\mbox{explicit breaking} ~~ \sim ~ Tr \left[\ c \ \sigma \ \right] ~~ (\sim m_q \ \overline{q} \ q \)$

fix scalar parameters to

baryon masses, decay constants, meson masses

Nuclear Matter and Nuclei

binding energy $E/A \sim -15.2 \text{ MeV}$ saturation $(\rho_{\rm R})_0 \sim .16/{\rm fm^3}$ compressibility ~ 223 MeV asymmetry energy ~ 31.9 MeV parameter fit to known nuclear binding energies and hadron masses 2d calculation of all measured (~ 800) even-even nuclei 1d to 3d code good charge radii $\delta r_{ch} \sim 0.5 \%$ (+ LS splittings) error in energy $\epsilon (A > 50) \sim 0.17 \% (NL3: 0.25 \%)$ $\epsilon (A > 100) \sim 0.12 \% (NL3: 0.16 \%)$ relativistic nuclear + correct binding energies of hypernuclei structure models

new fit in the works by T. Schürhoff currently $\epsilon \sim 0.3$, $\kappa < 300$ MeV, M $\sim 2 M_{\odot}$

SWS, Phys. Rev. C66, 064310

stellar crust calculations in progress

hadrons, quarks, Polyakov loop and excluded volume

Include modified distribution functions for quarks/antiquarks

$$\Omega_q = -T \sum_{j \in Q} \frac{\gamma_i}{(2\pi)^3} \int d^3k \ln\left(1 + \Phi \exp\frac{E_i^* - \mu_i}{T}\right)^*$$

Φ confinement order parameter^{*}

Following the parametrization used in PNJL calculations

$$U = -\frac{1}{2} a(T) \Phi \Phi^* + b(T) \ln[1 - 6 \Phi \Phi^* + 4 (\Phi \Phi^*)^3 - 3 (\Phi \Phi^*)^2]$$

$$a(T) = a_0T^4 + a_1T_0T^3 + a_2T_0^2T^2$$
, $b(T) = b_3T_0^3T$

The switch between the degrees of freedom is triggered by excluded volume corrections

thermodynamically consistent -

× /

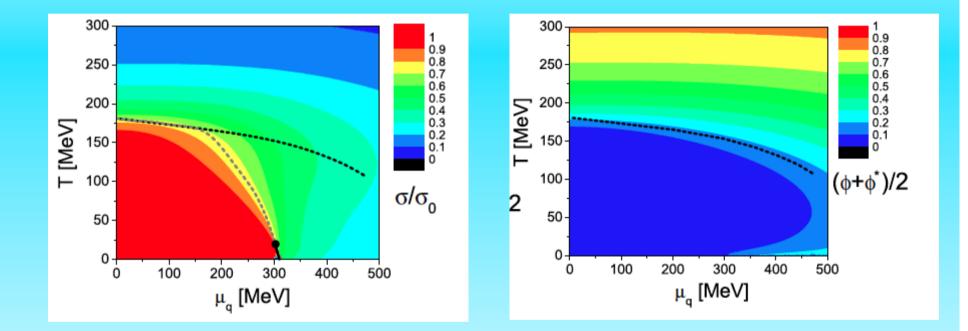
no reconfinement!

$$\begin{array}{l} v_{q} &= 0 \\ V_{h} &= v \\ W_{m} &= v / 8 \end{array} \qquad \qquad \widetilde{\mu_{i}} = \mu_{i} - v_{i} P \qquad e = \widetilde{e} / (1 + \Sigma v_{i} \widetilde{\rho_{i}} + \Sigma v_{i} \widetilde{\rho_{i}} + \Sigma v_{i} \widetilde{\rho_{i}} + \Sigma v_{i} \widetilde{\rho_{i}} \end{array}$$

Steinheimer, SWS, Stöcker JPG 38, 035001 (2011)

equation of state stays causal!

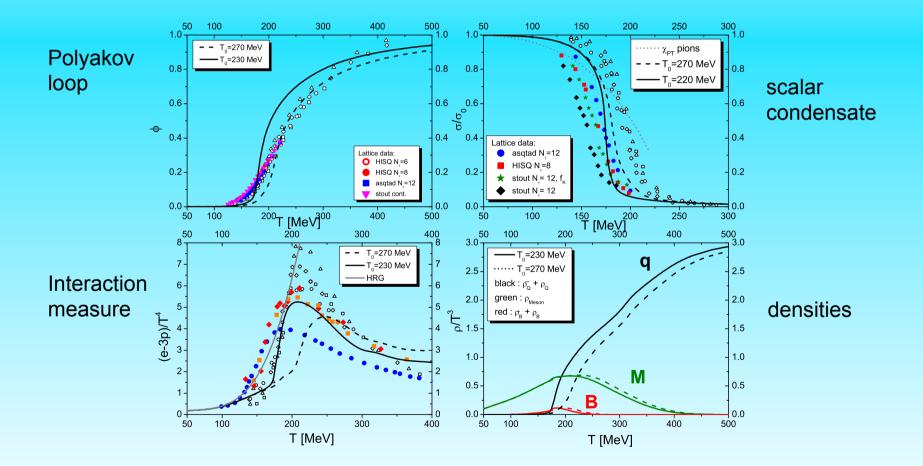
Order parameters for chiral symmetry and confinement in $\boldsymbol{\mu}$ and T

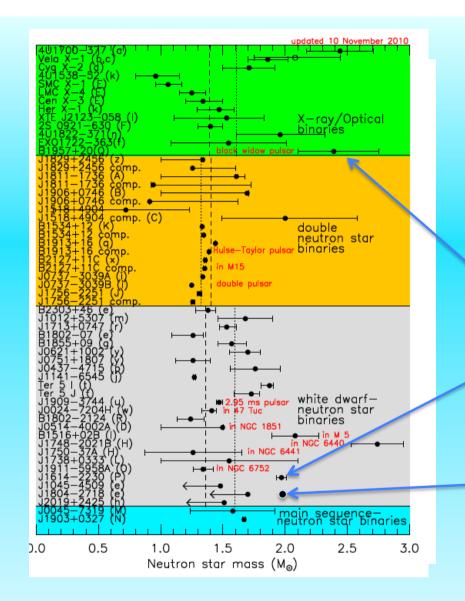


except for liquid-gas no first-order transition

results for hot matter at vanishing chemical potential

points are various lattice results





Lattimer, Prakash, astro-ph:1012.3208

Masses of Neutron Stars

Masses of radio pulsars

Kiziltan, Kottas, Thorsett, astro-ph:1011.4291

no signature for mass cut off

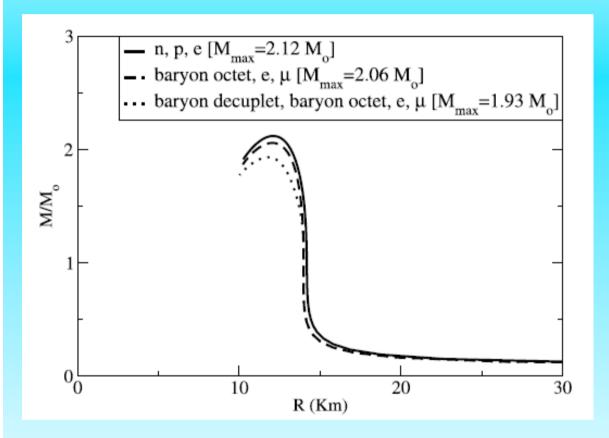
M = (2.4 +- 0.12) M_s ? van Kerkwijk et al., ApJ 728, 95 (2011)

current benchmark for NS models $M = (1.97 + .04) M_0$ Demorest et al. Nature 467, 1081 (2010)

new observation PSR J0348+0432 M = (2.01 +- .04) M₀ Antoniadis et al. Science 340, 448 (2013)

well established - heavy neutron stars

Neutron star masses including different sets of particles

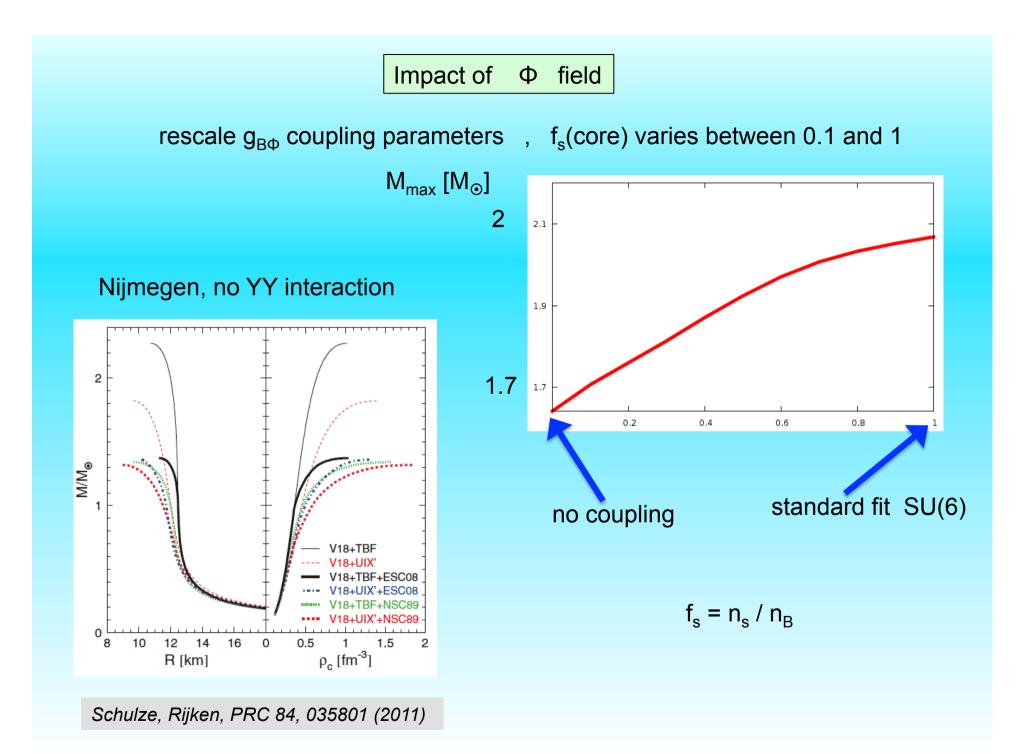


Tolman-Oppenheimer-Volkov equations, static spherical star

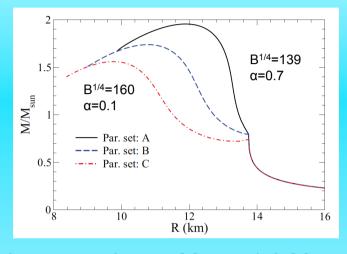
changing masses with degrees of freedom

large star masses even with spin 3/2 resonances

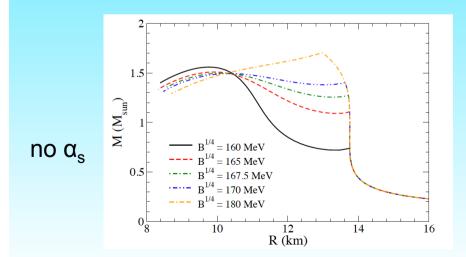
Dexheimer, SWS ApJ 683, 943 (2008)



Hybrid Stars, Quark Interactions

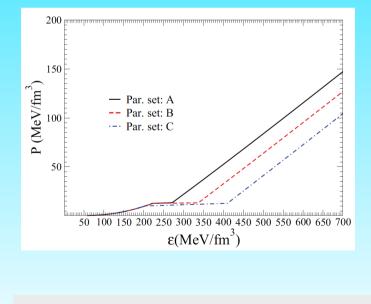


baryons alone M_{max} ~1.8 M_{solar}



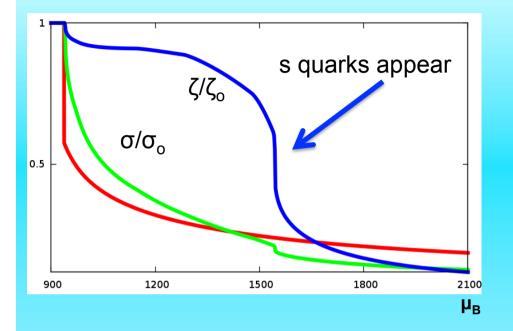
ingredients – Standard baryonic EOS (G300) plus MIT bag model + α_s corrections

Fast cooling in the quark core need gaps in the quark phase

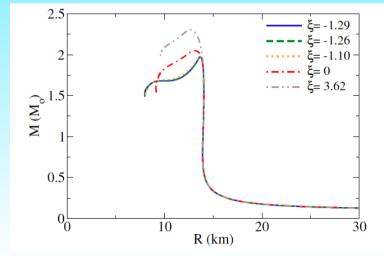


Negreiros, Dexheimer, SWS, PRC 035805 (2012)

star matter in beta equilibrium in QH approach



star masses $M_{\odot} \text{varying quark interactions}$

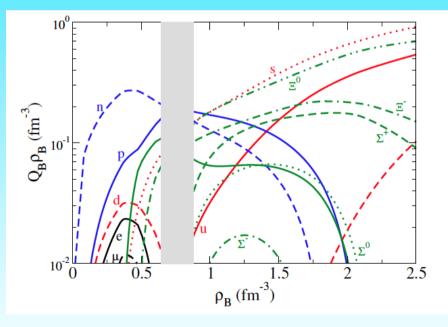


1st order phase transition in star matter possible

cross over in symmetric matter

 $f_s(core)$ jumps to ~ 1

particle cocktail



Mass ~ $2 - 2.3 M_{\odot}$

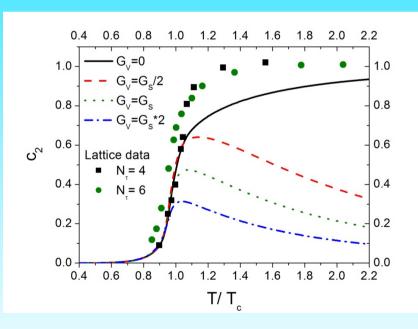
Radius ~13 km

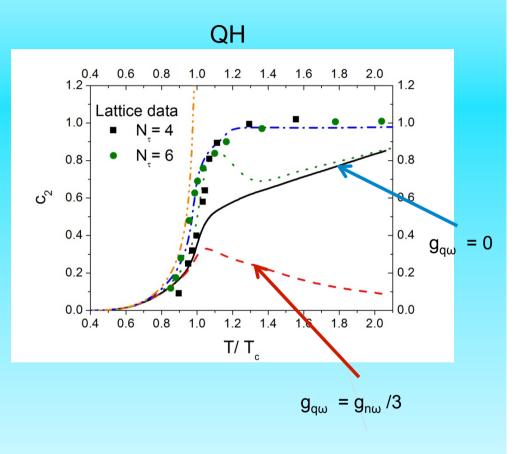
Susceptibilitiy c₂ in PNJL and QH model for different quark vector interactions

 $P(T,\mu) = P(T) + c_2(T) \mu^2 T^2 + \dots$

small quark vector repulsion !!

PNJL

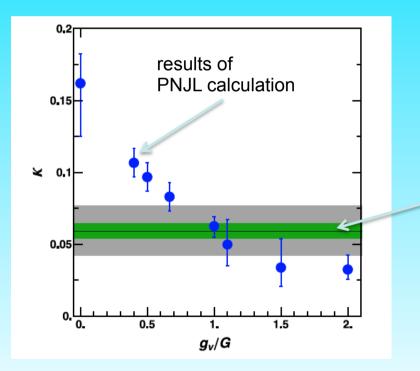




Steinheimer, SWS, PLB 696, 257 (2011)

signs of vector repulsion in $T_c(\mu)$ behavior

curvature of transition line $\kappa = -T_c dT_c(\mu)/d\mu^2|_{\mu=0}$

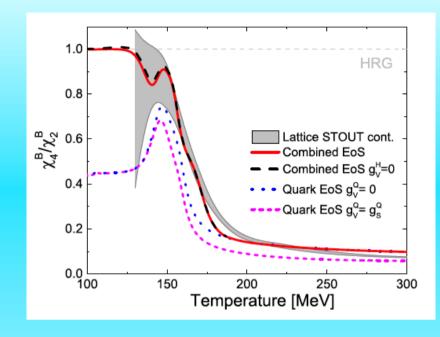


Plot taken from Bratovic, Hatusda, Weise, PLB 719, 131 (2013)

Lattice results Kacmarek et al PRD 83, 014504 (2011)

large quark vector repulsion?

T_c rather difficult to determine



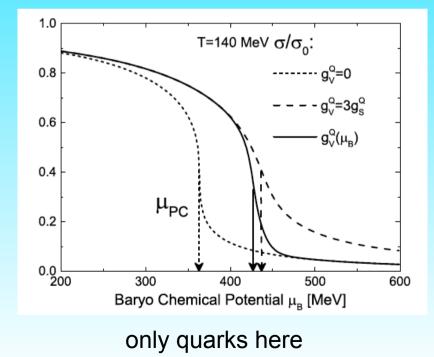
scalar field as function of μ

for fixed T = 140 MeV

ratio of susceptibilities

turn on/off repulsion or quarks and baryons

$$g_V^Q(\mu_B) = g_V^Q(\mu_B = 0) \cdot (1 + \exp(\mu_B - \mu_B^{PC}) / \delta_{\mu})^{-1}$$



Conclusion:

quark interaction should be small in the hadron sector either heavy baryons and/or repulsion (liquid-gas, nuclei)

Condensation of charged higher spin particles?

Heavy-ion collisions can generate very large B fields

W boson condensation at LHC? *Ambjørn, Olesen,PLB257, 201 (1991) however, see SWS, Müller, A. Schramm, PLB 277, 512 (1992)*

 ρ mesons? Simple estimate requires B ~ 10²⁰ G

SWS, Müller, A. Schramm MPLA 7, 9773 (1992)

heavy-ion collisions - bind away the whole mass of the particle

Chernodub, Phys. Rev. Lett. **106**, 142003 Hidaka, Yamamoto PRD87, 094502

Advantage: high spin - strong interaction with magnetic field

Landau levels of the rho meson

$$E_{n,Sz}^2 = p^2 + m^2 + (2 n - 2 S_z + 1) e B$$

$$m_{\rho^-}^2 * = m_{\rho^-}^2 - eB.$$

charge chemical potential and effective rho mass as function of density



Use standard hadronic model

GM3 parameterization

B value: 7 × 10¹⁸ G

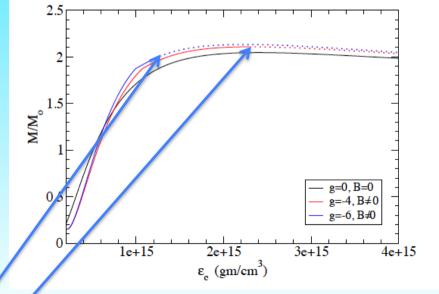
slight change of star masses faster cooling

density dependence of rho mass ?

simple estimate $m_{\rho}^{*} = m_{\rho} - g \sigma$

readjust coupling to correct asymmetry energy (32.5 MeV)

range of g limited by L, ...



onset of condensation

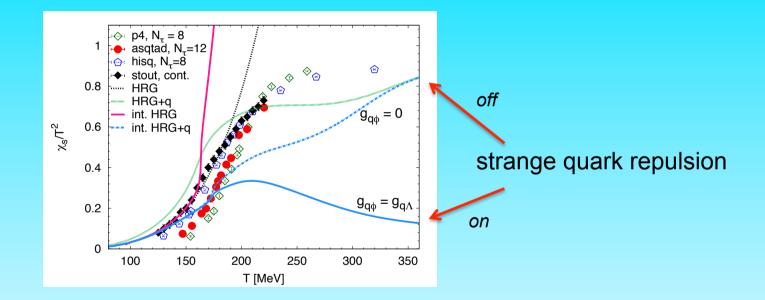
Conclusions, Outlook

- coherent phenomenological model including correct asymptotic degrees of freedom
- useful input for heavy-ion simulation (extracting interesting signals of PT hard work)
- heavy compact stars / hyper stars little strangeness
- hybrid stars: stiff equation of state for quarks
- what about lattice susceptibilities?
- possibility of rho meson condensates in compact stars
- comprehensive equation of state for a wide range of densities/temperatures (supernovae, mergers)
- couple hydro and kinetic equations for fields

Many thanks to the organizers!

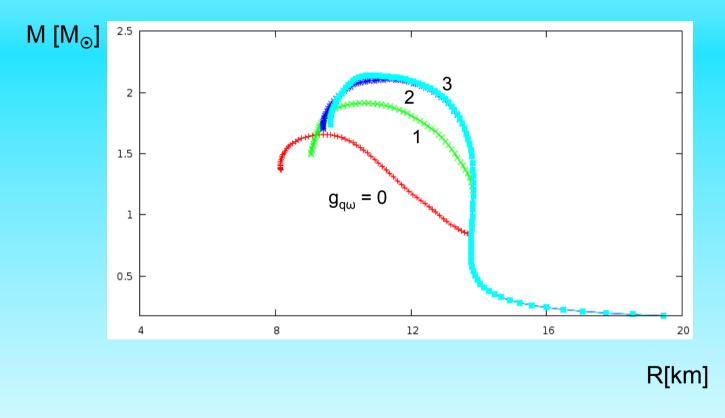
analogous behaviour of strange susceptibilitiy

 $X_s = d^2(P) / (d \mu_S)^2 |_{\mu B, \mu S = 0}$



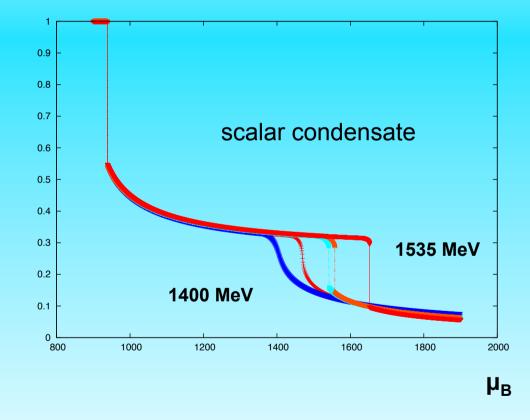
calc. by Philip Rau

Including vector interaction for quarks



increase M / R, potential problems at μ = 0

scalar condensate for different masses m_{N^*}



First order transition for masses ≥ 1470 MeV, below crossover

Extension of the parity model to SU(3)

Baryon SU(3) multiplet + parity doublets

Similar approach, SU(3)-invariant potential for scalar fields

single particle energies $E_{\pm} = \sqrt{(g_1\sigma + g_2\varsigma)^2 + m_0^2 \pm (g_1\sigma + g_2\varsigma)}$

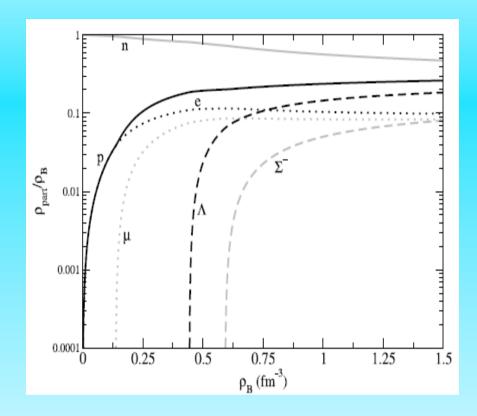
simplify investigation - same mass shift for whole octet

Candidates – $\Lambda(1670), \Sigma(1750), \Xi$ (?) overall unclear

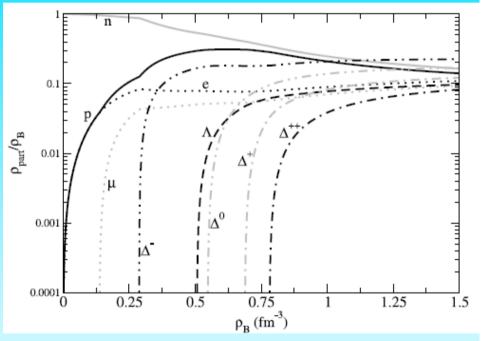
Steinheimer, SWS, Stöcker, JPhysG 38, 035001 (2011)

first study - Nemoto et al. PRD 57, 4124 (1998)

particle densities inside of the star

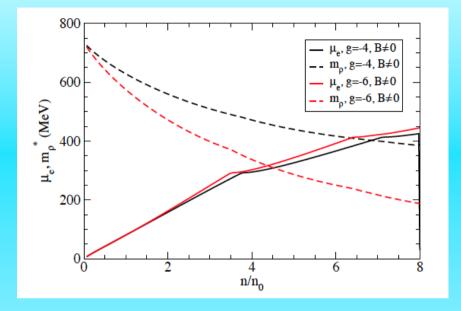


particle abundancies – no decuplet



particle numbers as function of density uncertainties from $g_{3/2}$ coupling

charge chemical potential and effective rho mass as function of density



Use standard hadronic model

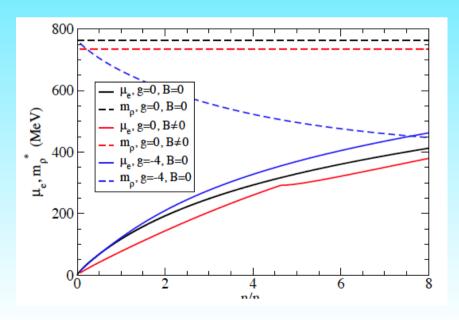
GM3 parameterization

B value: 7 × 10¹⁸ G

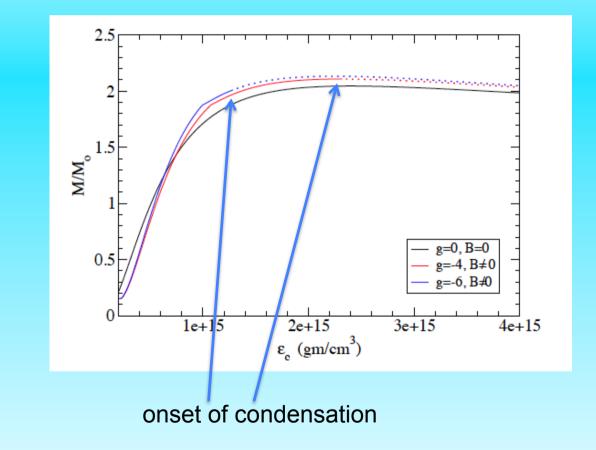
density dependence of rho mass ?

simple estimate $m_{\rho}^* = m_{\rho} - g \sigma$

readjust coupling to correct asymmetry energy (32.5 MeV)



Neutron star masses as function of central energy density

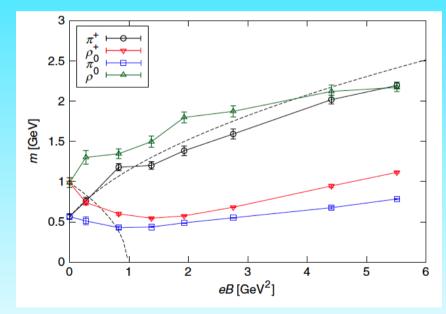


slight change of star masses, faster cooling

Different in compact stars

Advantages - long time scales (beta equilibrium) large size potentially large magnetic fields

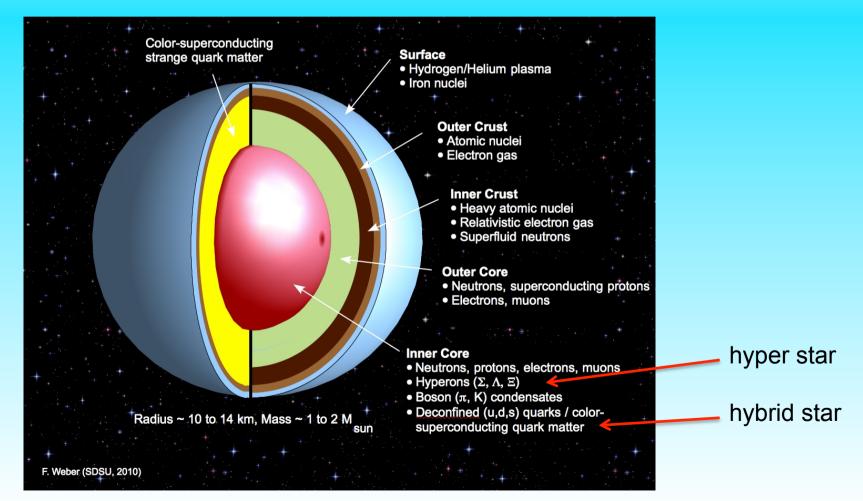
Hidaka, Yamamoto PRD87, 094502



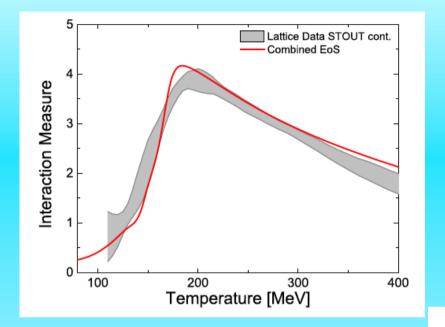
neutron stars are remnants of Type II supernovae

1 to 2 solar masses, radii around 10 - 15 km maximum central densities 4 to 10 ρ_0

about 2000 known neutron stars



after fine-tuning parameters



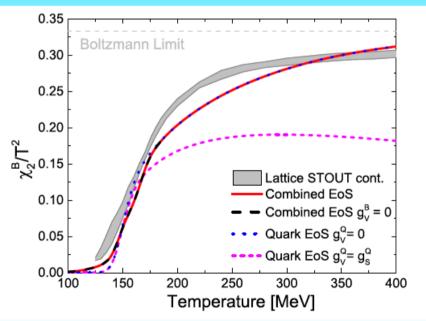
"interaction measure" $(e - 3p)/T^4$

Lattice (STOUT) and model

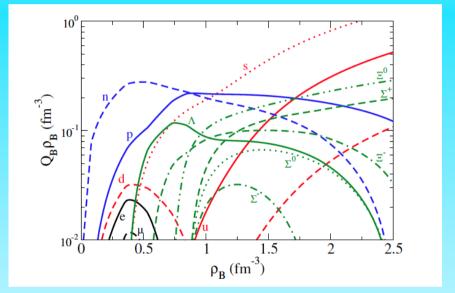
X₂ for different vector couplings

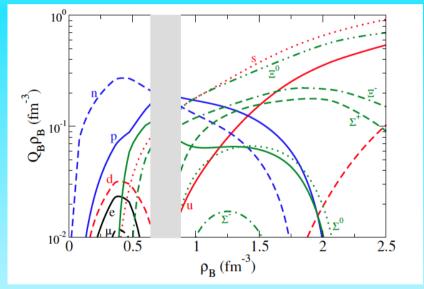
susceptibilities χ_n , c_n

$$\frac{\chi_n^B}{T^2} = n! c_n^B(T) = \frac{\partial^n (p(T, \mu_B)/T^4)}{\partial (\mu_B/T)^n}$$



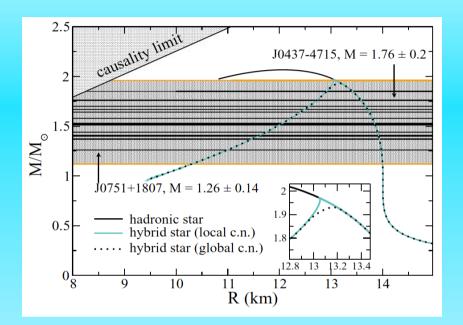
particle "cocktail" as function of density





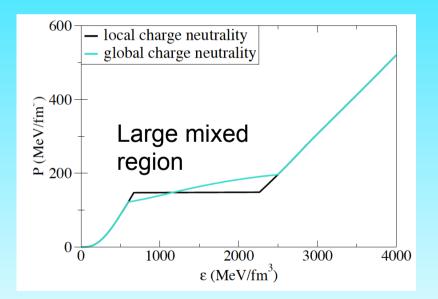
with first-order transition

Hybrid Stars



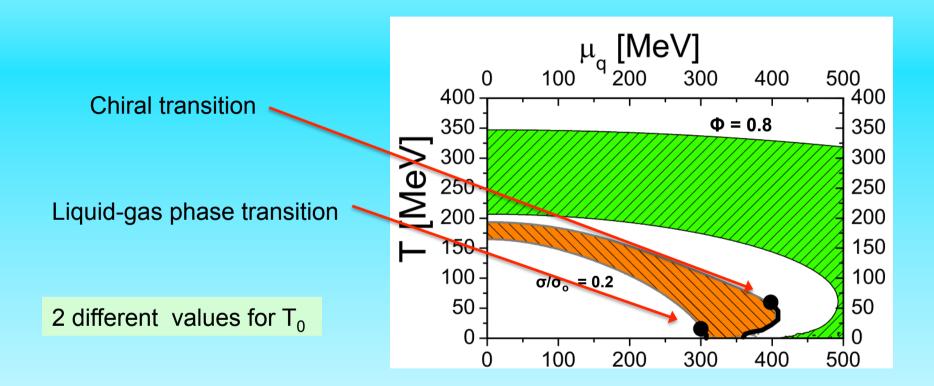
Maxwell / Gibbs construction for local / global charge neutrality M-R diagram in QH model

baryonic star with a 2km core of quarks



Negreiros, Dexheimer, SWS, PRC82 035803 (2010)

Excited quark-hadron matter in the parity-doublet approach



single particle energies

$$E_{\pm} = \sqrt{\left(g_1 \sigma + g_2 \varsigma\right)^2 + m_0^2 \pm \left(g'_1 \sigma + g'_2 \varsigma\right)}$$

Steinheimer, SWS, Stöcker, JPhysG 38, 035001