Chiral Symmetry Breaking & Quantum Hall effect in monolayer graphene **Bitan Roy Condensed Matter Theory center** University of Maryland **Collaborators:**

Malcolm Kennett (SFU) Sankar Das Sarma (UMD)

SF

STIVERSITA 18 56 ZARYLATO

Preprint @ arxiv:1406.5184

St. Petersburg, Russia, 11th September, 2014

<u>Graphene (half-filled or intrinsic): Dirac liquid</u>

$$H_0 = -t \sum_{\vec{A}, i, \sigma = \pm 1} u^{\dagger}_{\sigma}(\vec{A}) v_{\sigma}(\vec{A} + \vec{b}_i) + H.c.$$
 PR , 1947) $\vec{A}_{i,i,\sigma = \pm 1}$

Energy spectrum:
$$E(\vec{k}) = \pm t |\sum_i \exp[\vec{k} \cdot \vec{b}_i]|$$

(Wallace,

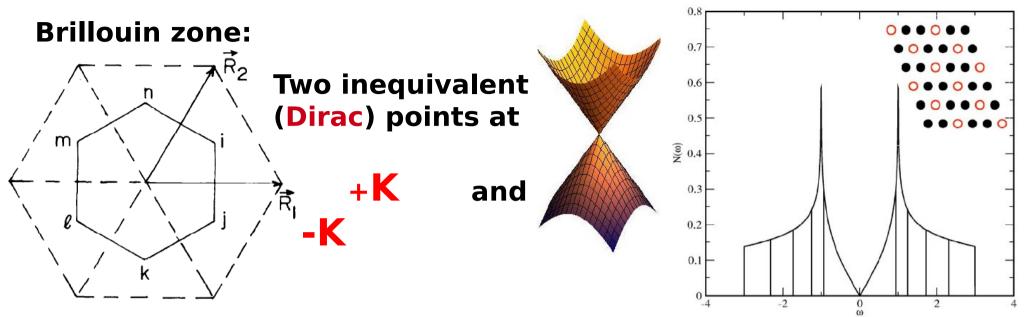
The sum is complex → two equations for two variables for zero energy → **Dirac points** (no Fermi surface)

Crucial: *lack of inversion symmetry* in lattice (unlike square lattice)

Remote hoppings are too weak: spectrum is *almost* particle-hole symmetric

Dirac points can be accessed: using **GATE**

Low energy theory: emergent Dirac fermions

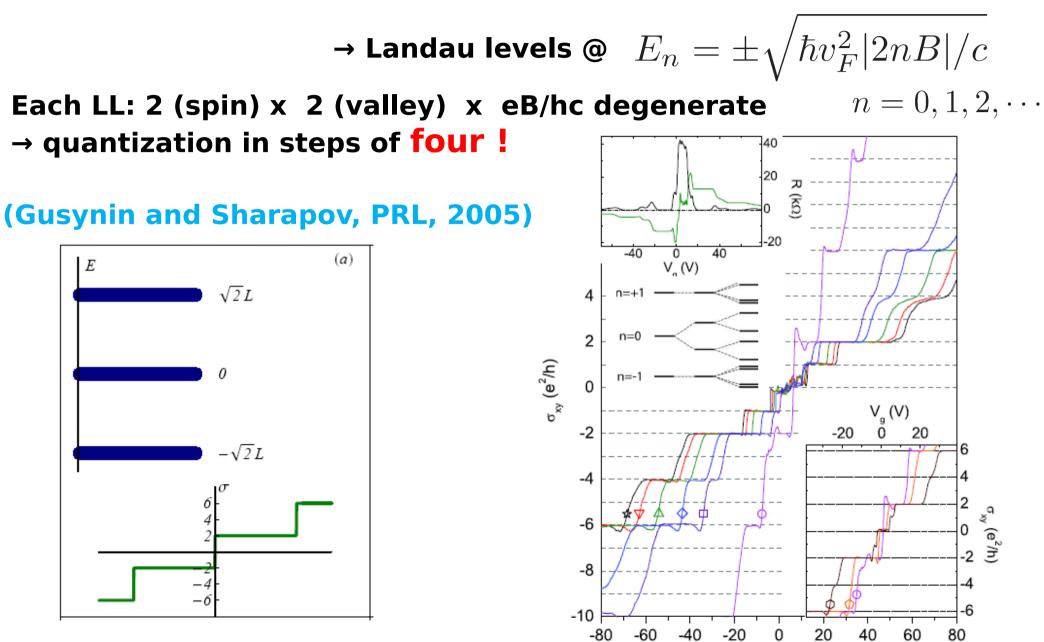


 $\Psi_{\sigma}^{\dagger}(\vec{x},\tau) = T \sum_{\omega_n} \int^{\Lambda} \frac{d\vec{q}}{(2\pi a)^2} e^{i\omega_n \tau + i\vec{q}\cdot\vec{x}} (u_{\sigma}^{\dagger}(\vec{K}+\vec{q},\omega_n), v_{\sigma}^{\dagger}(\vec{K}+\vec{q},\omega_n), u_{\sigma}^{\dagger}(-\vec{K}+\vec{q},\omega_n), v_{\sigma}^{\dagger}(-\vec{K}+\vec{q},\omega_n)) = \mathbf{1} + \mathbf$

"Low-energy" Hamiltonian: $H_0 = i\gamma_0\gamma_j\left(-i\partial_j - A_j\right)$ j = 1, 2 γ -matrix algebra: $\{\gamma_\mu, \gamma_\nu\} = 2\delta_{\mu\nu}$ $\mu, \nu = 0, 1, 2, 3, 5$ Fermi velocity v = c/300 = 1, in our units (unless mentioned) Emergent chiral symmetry: $SU(2) : \{i\gamma_3\gamma_5, \gamma_3, \gamma_5\}$ PRB, 79, 085116 (2009) $i\gamma_3\gamma_5 = \tau_3 \otimes s_0$: generator of translation

Experimental detection of Dirac fermions

Quantum Hall effect: Dirac fermions + magnetic field



(Y. Zhang, et. al. PRL, 2006)

V_ (V)

Strong interaction: symmetry breaking

Mass generation for Dirac fermions (quasi-particle spectrum: gapped)

Condensed Matter analog of Higg's mechanism

In either case the spectrum becomes gapped

$$\varepsilon_{\pm}(\boldsymbol{p}) = \pm \sqrt{|\boldsymbol{p}|^2 + |\Delta_0|^2}$$
 $\Delta_0 = m_j, \tilde{m}_j$

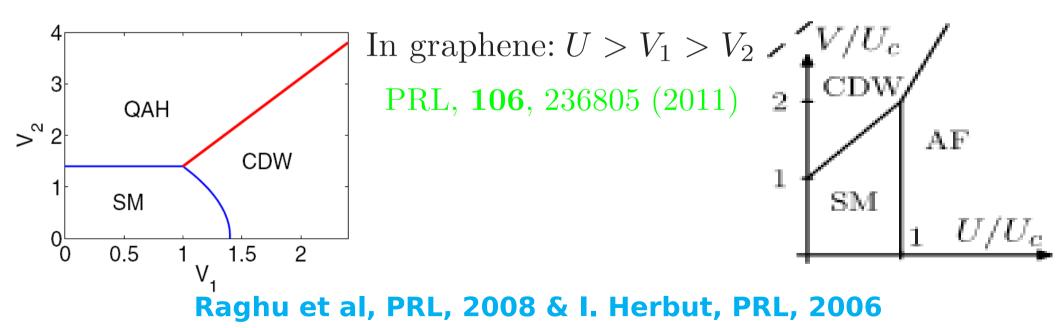
All the phases @ extremely strong coupling (unphysical)

due to vanishing density of states

All the masses break sublattice inversion symmetry: $\gamma_2 = \tau_0 \otimes s_1$

Microscopic Origin: short-range interactions

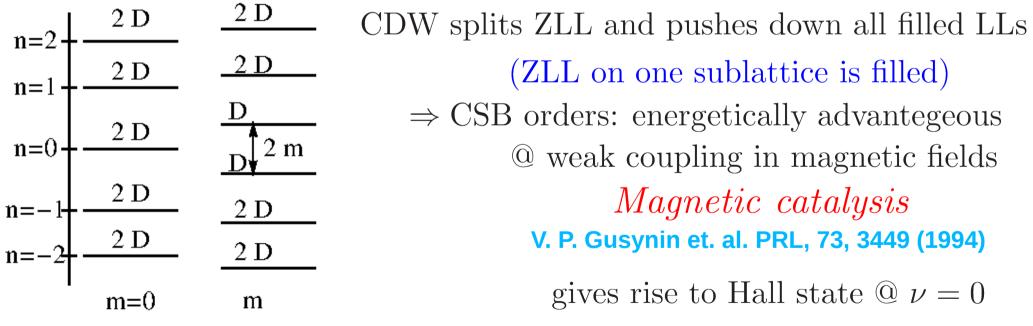
- Onsite Hubbard repulsion (U): anti-ferromagnet (AFM)
 I. Herbut, PRL, 2006; F. F. Assaad, I. H., PRX, 2013
- Nearest-Neighbor repulsion (V_1) : *charge-density-wave (CDW)* I.H., PRL, 2006; Weeks & Franz, PRB 2010; Grushin et. al., PRL 2011
- Next-nearest-neighbor (V₂): quantum anomalous/spin Hall insulators
 Raghu et al, PRL, 2008; B.R., I.H., PRB, 2013



Chiral-symmetry-breaking masses: dominant instabilities in graphene

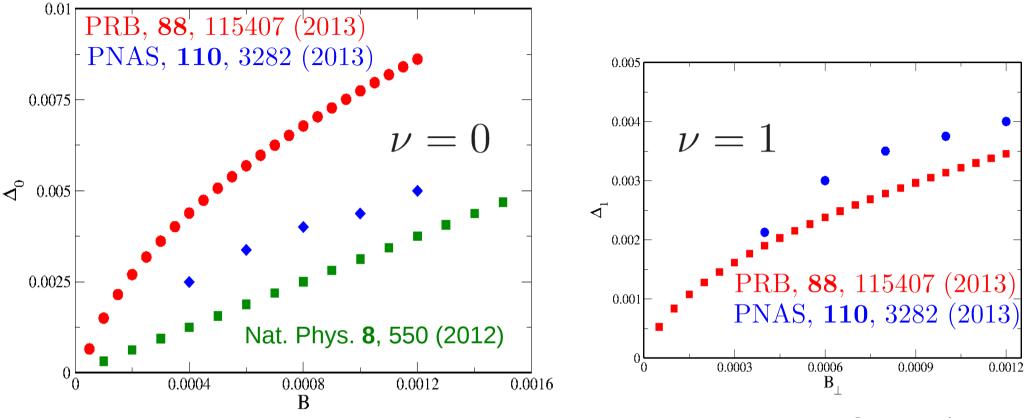
<u>Magnetic catalysis</u>

- \bullet Triggers the formation of CSB orders @ infinitesimal interaction
- Zeroth LL is simultaneously sublattice and valley polarized: Each spin projection: ZLL near $+(-)\vec{K}$ valley lives on A(B) sublattice
- CDW/AFM \rightarrow gap @ Dirac point for weak enough V_1/U
- Take the simplest example of spinless fermions:



With spin restored: onsite U drives AFM (dominant instability)
 ZLL on opposite sublattice with opposite spin projection: filled
 I. Herbut, PRB, 2007; Jung et al. PRB, 2009

Experimental status



gaps in units of $\Lambda v \sim 3$ eV in graphene & field (B) in $B_0 \sim \Lambda^2 \sim 10^4$ Tesla

• Features: ^(a) $\nu = 0$: cross over from linear \rightarrow sublinear \rightarrow almost \sqrt{B} ^(a) $\nu = 1$: roughly sublinear

Substrate (exp. method): vacuum or suspended graphene (compressibility),

boron nitride (capacitance), boron nitride(ressitivity)

Other theoretical models & limitations

• ZLL approximation: quantum Hall ferromagnet (Δ_{QHFM})

 $\sigma_0(spin) \otimes \tau_3(valley) \otimes s_0(sublattice)$

Barlas et. al. Nano. Tech. 2012

• Splits not only ZLL, but also filled Landau levels : $-\sqrt{2nB} \pm \Delta_{QHFM}$ QHFM gains energy only by splitting ZLL for $n = 0, 1, 2, \cdots$

Thus energetically inferior to CSB masses within ZLL

- Strong LL mixing by CSB order: ZLL approximation forbidden (Contrasting situation with non-relativistic systems : GaAs heterostructure)
- Long range Coulomb interaction: scales as $\sim \frac{\alpha}{l_B} \sim \sqrt{B}$ (always) $\alpha = \frac{e^2}{8\pi v_F \epsilon}$: fine structure constant (ϵ : dielectric constant) cannot explain the crossover of scaling for activation gap @ $\nu = 0$
- Appropriate short-range interactions: good agreement

Zeeman coupling & canted AFM

- Weak onsite- $U \rightarrow AFM$ instability near Dirac point $\rightarrow \nu = 0$ Hall state
- Zeeman coupling: restricts AFM to easy-plane $(\perp to \vec{B} = B\hat{z})$

& develops ferromagnet (FM) order along \vec{B}

• LL spectrum: $E_{n,\sigma} = \pm \sqrt{N_{\perp}^2 + [(N_3^2 + 2nB)^{1/2} + \sigma(m + \lambda)]^2}$ $\sigma = \pm \text{(spin projections)}, n = 0, 1, 2, \cdots$

energy of filled Dirac LL sea: maximally lowered $N_3 = 0, N_1, N_2, m \neq 0$ canted or easy-plane anti-ferromagnet

I. Herbut, PRB, 2007

• Free energy @ Dirac point or $\nu = 0$:

$$F_0 = \frac{N_\perp^2}{4g_a} + \frac{m^2}{4g_f} - D\sum_{\sigma=\pm} \begin{bmatrix} \frac{1}{2}E_{0,\sigma} + \sum_{n\geq 1}E_{n,\sigma} \end{bmatrix} \qquad N_\perp = \sqrt{N_1^2 + N_2^2} \\ N_3 = 0 \end{cases}$$

microscopic origin: $g_a, g_f \sim U$ in magnetic fields: $g_a(l_B) \neq g_f(l_B)$

Gap equations & regularization

- gap @ $\nu = 0$: $\Delta_0 = \sqrt{N_{\perp}^2 + (\lambda + m)^2}$
- Minimizing F_0 w.r.t. $|N_{\perp}| \Rightarrow \frac{1}{g_a} = \frac{B}{\pi} \sum_{\sigma=\pm} \left[\frac{1}{2E_{0,\sigma}} + \sum_{n\geq 1}^{N_{max}} \frac{1}{E_{n,\sigma}} \right]$

displays UV divergence as $N_{max} \to \infty$ as N_{\perp} pushes down filled LLs

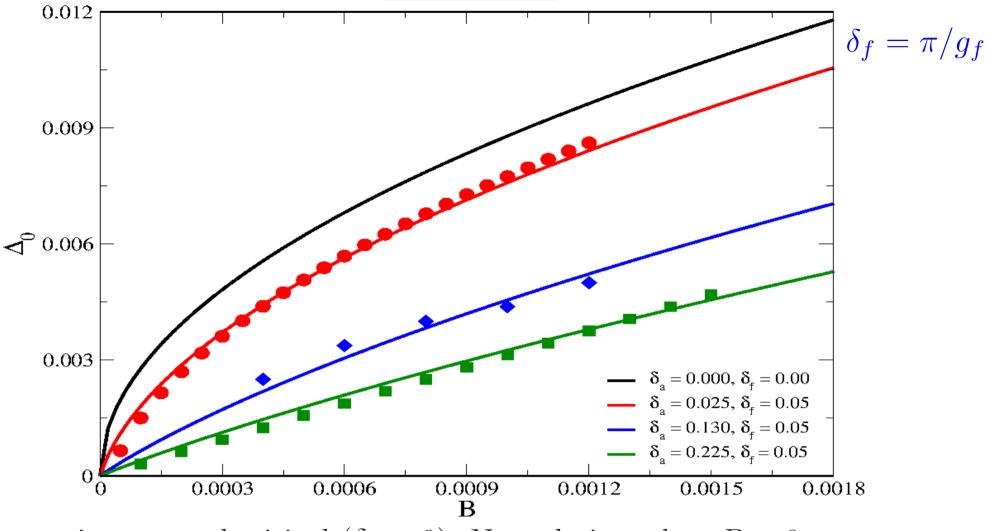
• Min. F_0 w.r.t. $m \Rightarrow \frac{1}{g_f} = \frac{B}{\pi} \sum_{\sigma=\pm} \left[\frac{(m+\lambda)}{2E_{0,\sigma}} + \sum_{n\geq 1}^{N_{max}} \frac{(m+\lambda) + \sigma\sqrt{2nB}}{E_{n,\sigma}} \right]$ No UV divergence as FM spin splits all filled LLS • Regularization: $\delta_a = \pi \left[(g_a \Lambda)^{-1} - (g_c^a \Lambda)^{-1} \right]$ $(g_c^a)^{-1} = \int_{\Lambda=1}^{\infty} ds/s^{3/2}$

I. F Herbut, BR, PRB, 2008

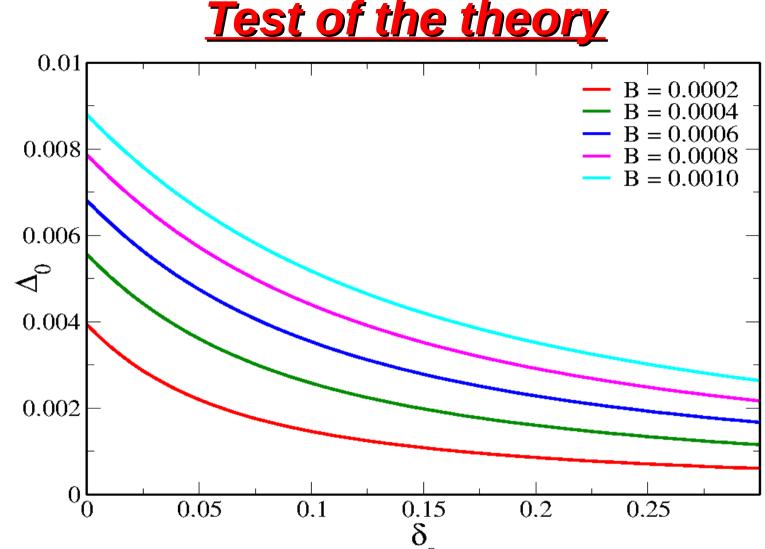
measuring the distance from zero field AF quantum critical point (g_c^a)

 $\delta_a > 0$ subcritical interaction, $\delta_a < 0$ above critical interaction

• Physical observables: N_{\perp} , m are cutoff (Λ) independent enough LLs (~ 100) within $v_F \Lambda$ to account for strong LL mixing



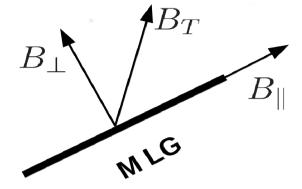
- Interactions are subcritical $(\delta_a > 0)$: No ordering when B = 0
- Interactions strength/gap size: large in suspended graphene (less screening)
- Smooth crossover: linear \rightarrow sublinear \rightarrow almost \sqrt{B} as interaction increases
- Fits are insensitive to δ_f or m: FM set by Zeeman $\ll U$; & $m/|N_{\perp}| \sim 10^{-2}$



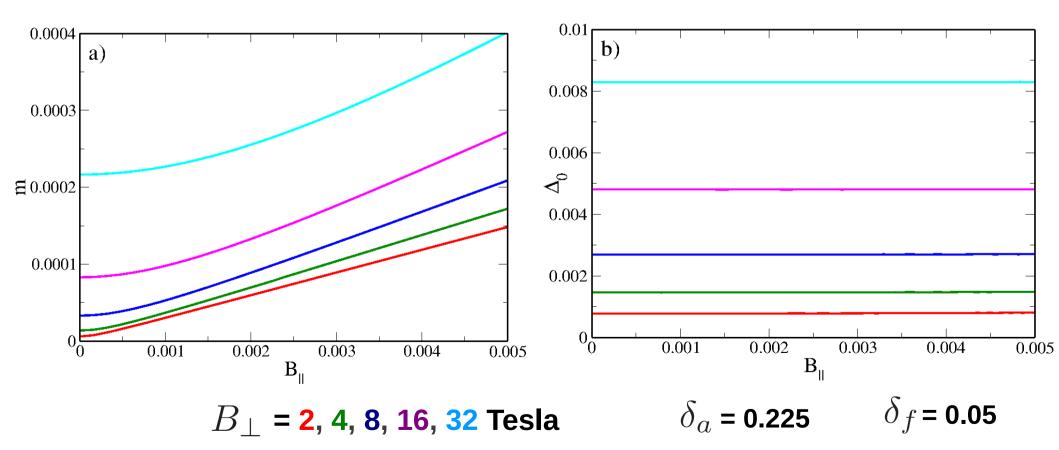
- Fixed B as interaction gets weaker gap decreases & more linear with B
- Extraction of activation gaps with different substrate
- Through gating with second graphene layer :

closer the second MLG stronger the screening smaller gap and linear activation gap with B

Easy-plane AFM in tilted magnetic fields



Zeeman coupling: $\lambda \sim B_T$ Dirac LL $\sim \sqrt{B_{\perp}}$ For fixed B_{\perp} as B_{\parallel} increases $m \sim B_{\parallel}$ for B > 2 T N_{\perp}, Δ_0 do not scale with B_{\parallel}



No phase transition easy-plane AFM \rightarrow FM

Easy-plane AFM in tilted field- II

• Pure FM supports gapless counter propagating edge states

 $\Rightarrow \sigma_{xy} = 2e^2/h$ Abanin et. al. PRL, 2007

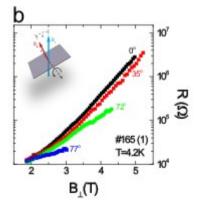
• Pure AFM or canted AFM: fully gapped edge modes

 $\Rightarrow \sigma_{xy} = 0$

In two terminal measurements

• As FM increases in canted AFM gap for edge mods decreases

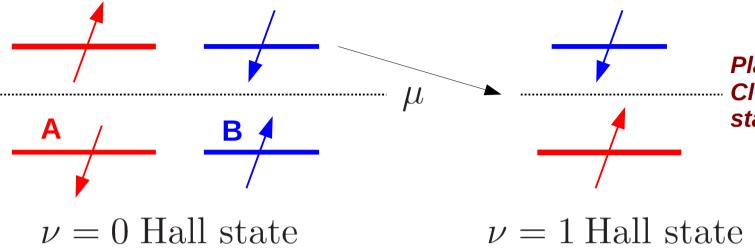
 $\Rightarrow R_{xx}$ decreases: observed experimentally



Nat. Phys. 8, 550 (2012)

Quite difficult to destroy CSB ground state

<u>Nu=1 Hall state</u>



Placing chemical potential Close to the first excited state

- Simultaneous sublattice & staggered spin degeneracy lifting
- Sublattice degeneracy lifting: charge-density-wave (CDW) \Rightarrow charge gap $\Delta_1^{ch} \equiv C$ (scales only with B_{\perp})
- Staggered spin degeneracy lifting: easy-axis AFM (N_3)

$$\Rightarrow \text{ spin gap } \Delta_1^{sp} = 2(\lambda + m)\frac{N_3}{\Delta_0} + \mathcal{O}(N_3^2) \approx 2(\lambda + m)\frac{N_3}{|\vec{N}_{\perp}|} + \mathcal{O}(N_3^2)$$

Coexistence of two chiral symmetry breaking orders

<u>Nu=1 Hall state in tilted magnetic field</u>

- Half(1/4) ZLL contributes to $N_{\perp}(N_3) \Rightarrow \frac{N_3}{N_{\perp}} < 1$
 - N_3, N_\perp scales only with B_\perp

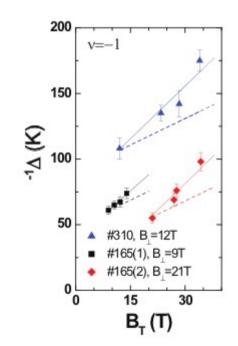
C or charge gap (Δ_1^{ch}) does not scale with B_{\parallel}

 \Rightarrow In tilted field $\Delta_1^{sp} \sim (m+\lambda) \sim B_T$

but with a slope bigger than λ (Zeeman)

• In graphene: $C \sim V_1 \sim U/2 \rightarrow C \gg (\lambda + m)$

 \Rightarrow In perpendicular B field: $\Delta_1^{ch} = C \gg \Delta_1^{sp}$



Nat. Phys. 8, 550 (2012)

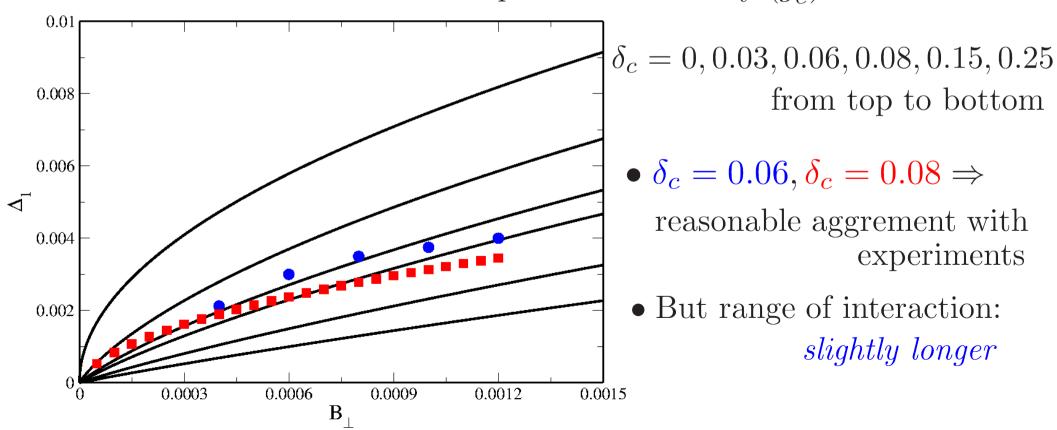
<u>Self consistent theory for CDW @ nu=1</u>

• Free energy:
$$F_1 = \frac{C^2}{4g_c} - D \left[\frac{C}{2} + 2\sum_{n \ge 1} E_n^C \right]$$

$$g_c \sim V_1$$
$$E_n^C = \sqrt{2nB + C^2}$$

• Minimize F_1 w.r.t $C \Rightarrow$ gap equaiton for C : displays UV divergence

• Regularization: $\delta_c = \sqrt{\pi} \left[(g_c \Lambda)^{-1} - (g_c^c \Lambda)^{-1} \right] \qquad (g_c^c)^{-1} = \int_{\Lambda^{-1}}^{\infty} ds \, s^{-3/2}$: distance from zero field CDW quantum criticality (g_c^c)



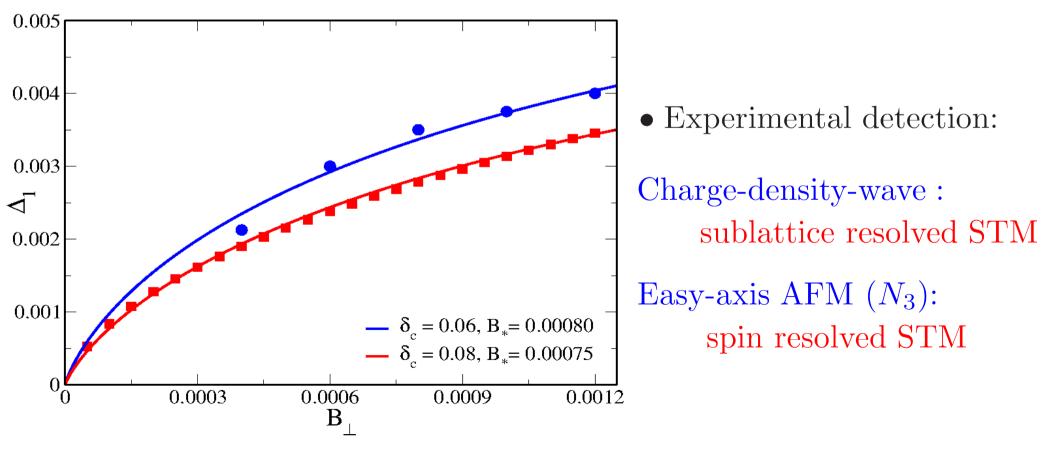
<u>Correction due to long-range Coulomb tail</u>

 \bullet Long range Coulomb interaction: logarithmic correction to v

 $v_F = v_F^0 \left[1 + \frac{e^2}{8\epsilon v_F^0} \log \left(B_* / B \right) \right]$ v_F^0 : bare Fermi velocity

 $1/\sqrt{B_*}$: characteristic length scale for the measured value of v_F

• Δ_1 : measured in units of $v_F \Lambda \Rightarrow$ gap acquires logarithmic correction



Summary & Future directions

- In the absence of magnetic fields monolayer graphene is susceptible to chiral-symmetry-breaking mass generations, such as charge-densitywave, antiferromagnet etc. @ strong couplings.
- Magnetic fields: conducive to formation of CSB vacuum even for weak repulsive interactions.
- Subcritical onsite repulsion → AFM, but Zeeman coupling → easyplane AFM + easy-axis FM: ground state for nu=0 Hall state.
- As *interaction gets stronger*: smooth crossover from *linear* \rightarrow *sublinear* $\rightarrow \sqrt{B}$: excellent agreement with multiple experiments.
- Weak *nearest-neighbor* repulsion → *CDW*, *onsite-U* → *easy-axis AFM* for nu=1 Hall state: agreement with experiments in *perpendicular and tilted* magnetic fields (respectively).
- Search for an explanation of experimental data naturally leads to CSB orders as a minimal explanation.
- Generalization for *fractional Hall states* (composite Dirac fermions).
- Similar mechanism applicable for graphene-based layered systems; bilayer & trilayer graphene (BR, PRB, 2014) Weyl semimetals (1406.4501)