Analytical methods for inserts of finite length as benchmarkers

ICFA mini-Workshop on "Electromagnetic wake fields and impedances in particle accelerators"

Nicolò Biancacci 26th April 2014, Erice, Italy

Acknowledgements: V.G. Vaccaro, E. Métral, B. Salvant, M. Migliorati, L. Palumbo.

Outline

Motivation

The Mode Matching method

Benchmarks

CERN → Studies of collimator impedance reduction by segmentation in modules.

CERN → Studies of collimator impedance reduction by segmentation in modules.

What is the dependence of the impedance on length?

Pipe flanges → Thin inserts → numerical simulators encounter meshing problems!

Pipe flanges → Thin inserts → numerical simulators encounter meshing problems!

Impedance of thin inserts?

CST model

Model

Model → Cavity loaded with a toroidal insert connected to the beam pipes.

- **Assumptions** \rightarrow
- \checkmark Any relativistic β
- ✓ Any insert length, pipe/cavity radius
- ✓ Any frequency range
- ✓ Linear, isotropic, homogeneous, dispersive material

Targets \rightarrow

★ Longitudinal and transverse dipolar (or driving) impedances

Past work

Past studies already done in order to assess the impedance of finite length devices.

Year	Authors	Note
2004	S. Krinsky et al., Phys. Rev. ST Accel. Beams 7.	Leontovich approx.
2005	G. Stupakov, Phys. Rev. ST Accel. Beams 8.	Leontovich approx.
2006	R.L. Gluckstern and B. Zotter, unpublished.	Unpublished
2009	Y. Shobuda et al. Phys. Rev. ST Accel. Beams 12.	Short length approx.

Past work

Past studies already done in order to assess the impedance of finite length devices.

Year	Authors	Note
2004	S. Krinsky et al., Phys. Rev. ST Accel. Beams 7.	Leontovich approx.
2005	G. Stupakov, Phys. Rev. ST Accel. Beams 8.	Leontovich approx.
2006	R.L. Gluckstern and B. Zotter, unpublished.	Unpublished
2009	Y. Shobuda et al. Phys. Rev. ST Accel. Beams 12.	Short length approx.

See also previous talk
"Impedance of a ceramic break
and its resonance structure"
by Y. Shobuda

We solved it applying the...

Mode Matching method

Splitting volumes:

We have 4 unknowns for the 4 volumes → We need 4 matching conditions!

Mode Matching method

Splitting volumes:

We have 4 unknowns for the 4 volumes → We need 4 matching conditions!

Matching conditions:

3 Conditions: Field Matching of Magnetic fields at separation surfaces.

$$H_{S_1}^{(I)} = H_{S_1}^{(IV)} \quad H_{S_2}^{(II)} = H_{S_2}^{(IV)} \quad H_{S_3}^{(III)} = H_{S_3}^{(IV)}$$

Mode Matching method

Splitting volumes:

We have 4 unknowns for the 4 volumes \rightarrow We need 4 matching conditions!

Matching conditions:

3 Conditions: Field Matching of Magnetic fields at separation surfaces.

$$H_{S_1}^{(I)} = H_{S_1}^{(IV)} \quad H_{S_2}^{(II)} = H_{S_2}^{(IV)} \quad H_{S_3}^{(III)} = H_{S_3}^{(IV)}$$

1 Condition: Mode Matching in the cavity volume.

Modes in volume IV solenoidal + irrotational PEC boundary conditions¹

$$E = \sum_{n} \mathbf{V}_{n} e_{n} + \sum_{n} \mathbf{F}_{n} f_{n} \quad \Box$$

Coefficients² in function of external fields (adiacent volumes)

$$\begin{cases} \mathbf{V}_n = \frac{k_n}{k^2 - k_n^2} \int_S (\mathbf{E} \times h_n^*) \cdot \hat{n}_0 \, \mathrm{d}S \\ \mathbf{F}_n = -j \frac{Z_o}{k} \int_S (\mathbf{H} \times f_n^*) \cdot \hat{n}_0 \, \mathrm{d}S \end{cases}$$

N. B.:

 $II(\varepsilon_0\mu_0)$

 $\text{III}\left(\varepsilon_{0}\varepsilon_{f},\;\mu_{0}\mu_{f},\sigma_{c}\right)$

 $\text{III}\left(\varepsilon_0\varepsilon_f,\ \mu_0\mu_f,\sigma_c\right)$

 $IV(\varepsilon_0\mu_0)$

PEC

¹⁾ The series converges non-uniformly at the boundaries.

²⁾Coefficients would be null with a standard electric Field Matching.

See also previous talk
"2D wall impedance theory"
by N.Mounet

- ✓ Impedance dependence on length.
- ✓ Protrusion trapped modes below cut-off.
- ✓ Insert trapped modes at cut-off.

- ✓ Impedance dependence on length.
- ✓ Protrusion trapped modes below cut-off.
- ✓ Insert trapped modes at cut-off.

- > Studied the impedance dependence on length L.
- Taking the ratio w.r.t. the 2D impedance model.

- > Studied the impedance dependence on length L.
- Taking the ratio w.r.t. the 2D impedance model.
- ➤ Difference apparent only in the transverse impedance at low frequency, and very narrow gaps → for the moment an academical case.

- ✓ Impedance dependence on length.
- ✓ Protrusion trapped modes below cut-off.
- ✓ Insert trapped modes at cut-off.

Trapped modes below cut-off

- > Small empty cylindrical beam pipe protrusion.
- ➤ A trapped mode close to cut-off appears at frequency:

$$f_{trap} \simeq f_{\mathrm{TM}_{01}} + \Delta f_{\mathrm{TM}_{01}}$$

➤ Theory¹ predicts:

1) G. Stupakov and S. S. Kurennoy. Trapped electromagnetic modes in a waveguide with a small discontinuity. Phys. Rev. E , Jan 1994.

22

Trapped modes below cut-off

- > Small empty cylindrical beam pipe protrusion.
- A trapped mode close to cut-off appears at frequency:

$$f_{trap} \simeq f_{\mathrm{TM}_{01}} + \Delta f_{\mathrm{TM}_{01}}$$

Theory predicts:

1) G. Stupakov and S. S. Kurennoy. Trapped electromagnetic modes in a waveguide with a small discontinuity. Phys. Rev. E, Jan 1994.

- ✓ Impedance dependence on length.
- ✓ Protrusion trapped modes below cut-off.
- ✓ Insert trapped modes at cut-off.

- ightharpoonup Cylindrical cavity filled with material of $\sigma=10^2\,\mathrm{S/m}$
- ➤ Longitudinal impedance case.

- ightharpoonup Cylindrical cavity filled with material of $\sigma=10^2\,\mathrm{S/m}$
- ➤ Longitudinal impedance case.
- \blacktriangleright A kink at cut-off appears for insert shorter than the cut-off wavelength $\lambda_{co}^{\rm TM}=c/f_{co}^{\rm TM}$

Longitudinal case: resistive wall

ightharpoonup Insert impedance: inductive $R_i + j\omega L_i$

Longitudinal case: resistive wall

- ightharpoonup Insert impedance: inductive $R_i + j\omega L_i$
- **Beam pipe impedance:**

Below cut off: capacitive
$$C_p = \frac{Y_o}{2\pi\sqrt{f_{co}^2 - f^2}}$$

Above cut off: resistive
$$R_p = Z_o \frac{\sqrt{f^2 - f_{co}^2}}{f}$$

Longitudinal case: resistive wall

- ightharpoonup Insert impedance: inductive $R_i + j\omega L_i$
- **Beam pipe impedance:**

Below cut off: capacitive
$$C_p = \frac{Y_o}{2 \pi \sqrt{f_{co}^2 - f^2}}$$

Above cut off: resistive
$$R_p = Z_o \frac{\sqrt{f^2 - f_{co}^2}}{f}$$

Longitudinal case: resistive wall

- \triangleright Insert impedance: inductive $R_i + j\omega L_i$
- **Beam pipe impedance:**

Below cut off: capacitive
$$C_p = \frac{Y_o}{2 \pi \sqrt{f_{co}^2 - f^2}}$$

Above cut off: resistive
$$R_p = Z_o \frac{\sqrt{f^2 - f_{co}^2}}{f}$$

Resonant behavior below cut-off!

Longitudinal case: cavity #1

- ► Insert impedance: inductive side of the insert resonance $R_i + j\omega L_i$
- **Beam pipe impedance:**

Below cut off: capacitive
$$C_p = \frac{Y_o}{2\pi\sqrt{f_{co}^2 - f^2}}$$

Above cut off: resistive
$$R_p = Z_o \frac{\sqrt{f^2 - f_{co}^2}}{f}$$

Flanges with Alumina

- > Trapped mode at cut off \rightarrow apparent for small conductivities $\sigma = 10^{-4} \dots 10^{-2} \, \mathrm{S/m}$
- ightharpoonup Complex permittivity \to We can define an equivalent conductivity $\sigma_{eq} = \omega_0 \varepsilon_0 \varepsilon_r \tan \delta$
- ▶ Beam pipe flanges: very thin interconnections, filled with low losses materials such as Alumina $\varepsilon_r' = 9.4$, $\tan \delta = 4 \cdot 10^{-4} \rightarrow \sigma_{eq} = \omega_0 \varepsilon_0 \varepsilon_r \tan \delta = 5 \cdot 10^{-4} \, \text{S/m}$ at cut-off.

Demonstrated the presence of a **trapped mode** close to cut-off due to the reactive load of the pipes.

 $R_i + j\omega L$

Flanges with Alumina

- > Trapped mode at cut off \rightarrow apparent for small conductivities $\sigma = 10^{-4} \dots 10^{-2} \, \mathrm{S/m}$
- ightharpoonup Complex permittivity \to We can define an equivalent conductivity $\sigma_{eq} = \omega_0 \varepsilon_0 \varepsilon_r \tan \delta$
- ▶ Beam pipe flanges: very thin interconnections, filled with low losses materials such as Alumina $\varepsilon_r' = 9.4$, $\tan \delta = 4 \cdot 10^{-4} \rightarrow \sigma_{eq} = \omega_0 \varepsilon_0 \varepsilon_r \tan \delta = 5 \cdot 10^{-4} \, \text{S/m}$ at cut-off.

 $R_i + j\omega L$

Conclusions and outlook

Conclusions:

- ✓ Demonstrated Mode Matching capabilities and performance with extensive benchmarks.
- ✓ Demonstrated a non relevant (for the moment) impact of segmentation on collimator impedance reduction.
- ✓ Demonstrated potentially harmful existence of trapped mode at the beam pipe cutoff for low conductivity (or equivalent conductivity) materials.

➤ Outlook:

- ✓ Extension of the Mode Matching to more complicated models.
- ✓ Interface with CST Eigenmode solver for automatic eigenmode decomposition.
- ✓ Including surface losses.
- ✓

Many thanks!

Backup slides

Transverse case: cavity #1-2

- ➤ Insert impedance: More complicated model, we can have resonances for both cases
- **Beam pipe impedance:**

Below cut off: inductive
$$L_p = \frac{Z_o}{2\pi\sqrt{f_{co}^2 - f^2}}$$

Above cut off: resistive
$$R_p = Z_o \frac{\sqrt{f^2 - f_{co}^2}}{f}$$

The simple circuital approach is here **not sufficient**