Impedance Computation in the Frequency Domain

Uwe Niedermayer* and Oliver Boine-Frankenheim TEMF Institute, TU Darmstadt, Germany * niedermayer@temf.tu-darmstadt.de

ICFA mini-Workshop on "Electromagnetic wake fields and impedances in particle accelerators"

TECHNISCHE

UNIVERSITÄT DARMSTADT

Contents

- Why Computation in Frequency Domain (FD) ?
- When do we need 3D?
 →Applications of 2D impedance computation
- The dispersion relation for the fields of a beam
- Different methods
 - Finite Integration Technique (FIT)
 - Finite Element Method (FEM)
- Details for FIT and FEM
 →Implementation of 2D impedance code
- Results for test cases
- Conclusion and Outlook

Time domain vs. Frequency domain

- Time domain calculations e.g. by CST Particle Studio, GdfidL, Echo,... (Wake Potential)
- Impedances obtained by FFT
- Limitation by uncertainty relation
- Long wake length for low frequency
- Time step *dt* is limited by CFL critereon (for explicit timestepping) → Resolving structure details makes *dt* small...
- Total computation time proportional to #timesteps
- High computational effort for low velocity (large extension of source fields)
- Time domain simulation requires fitting of dispersive material data (FD) on some impulse response model (TD)

 $\Delta z \geq \frac{\beta c}{\Delta f} \approx 300 \text{ m} @ 1 \text{ MHz}$

Time domain vs. Frequency domain (2)

- FD approach does not have those problems...
 (but other ones...)
- FD is suitable for low and medium frequencies

When do we need 3D in FD? (1)

- 2D is sufficient for: Large length. What is large?
- Large longitudinal electrical length: "distributed impedance"

$$Z_{lumped} \ll Z_{dist}$$

$$\frac{\partial Z_{\parallel}(\omega,z)}{\partial z} = Z_{\parallel}^{total}(\omega)\delta(z-z_0) \qquad \quad \frac{\partial Z_{\parallel}(\omega,z)}{\partial z} = \frac{Z_{\parallel}^{total}(\omega)}{l}$$

A POSTERIORI JUSTIFICATION

When do we need 3D in FD? (2)

TECHNISCHE UNIVERSITÄT DARMSTADT

Model Equation →Ferrite Material in FD

• From Maxwell's equations we have

$$\nabla \times \mu^{-1} \nabla \times \underline{\vec{E}} + i\omega\kappa\underline{\vec{E}} - \omega^2\varepsilon\underline{\vec{E}} = -i\omega\underline{\vec{J}}_{ext}$$

• Charge implicitly included by continuity eq.

 $\underline{\mu} = \mu' - i\mu'' \leftarrow \text{Magnetization / Polarization Losses}$ $\underline{\varepsilon} = \varepsilon' - i\varepsilon'' \leftarrow \underline{\mu}$

- → Unbiased small-signal complex permeability
 → Linearized! Hysteresis loop approximated by ellipse in H-B space
- → Remanence neglected
 → Scalar!

Maxwell-Grid-Equations (MGE)

$$\nabla \times \underline{\mu}^{-1} \nabla \times \underline{\vec{E}} + i\omega\kappa \underline{\vec{E}} - \omega^2 \varepsilon \underline{\vec{E}} = -i\omega \underline{\vec{J}}_{ext}$$

$\oint_{\partial A} \vec{E} \cdot d\vec{s} = -\frac{d}{dt} \int_{A} \vec{B} \cdot d\vec{A}$		$\mathbf{C}\widehat{\mathbf{e}} = -\frac{d}{dt}\widehat{\widehat{\mathbf{b}}}$
$\oint_{\partial J} \vec{H} \cdot d\vec{s} = \int_{\partial I} (\frac{\partial \vec{D}}{\partial t} + \vec{J}) \cdot d\vec{A}$		$\widetilde{\mathbf{C}}\widehat{\mathbf{h}} = \frac{d}{dt}\widehat{\widehat{\mathbf{d}}} + \widehat{\widehat{\mathbf{j}}}$
$\oint_{\partial V} \vec{D} \cdot d\vec{A} = \int_{V} \rho dV$	FIT	$\widetilde{\mathbf{S}}\widehat{\widehat{\mathbf{d}}} = \mathbf{q}$
$\oint_{\partial V} \vec{B} \cdot d\vec{A} = 0$		$\mathbf{S}\widehat{\mathbf{\hat{b}}} = 0$

FIT is a mimetic discretization based on the INTEGRAL FORMULATION of Maxwell's equations (Weiland 1977)

$$\widetilde{\mathbf{C}}\mathbf{M}_{\mu^{-1}}\mathbf{C}\underline{\widehat{\mathbf{e}}} + i\omega\mathbf{M}_{\kappa}\underline{\widehat{\mathbf{e}}} - \omega^{2}\mathbf{M}_{\epsilon}\underline{\widehat{\mathbf{e}}} = -i\omega\underline{\widehat{\mathbf{j}}}_{ext}$$

Constitutive work of B.Doliwa on impedance computation with FIT has to be acknowledged \rightarrow "Maxwell iteration"

Finite Integration Technique (FIT) in FD

Mimetic Discretization by *Finite Integration Technique* (diagonal material matrices)

$$\widetilde{\mathbf{C}}\mathbf{M}_{\mu^{-1}}\mathbf{C}\underline{\widehat{\mathbf{e}}} + i\omega\mathbf{M}_{\kappa}\underline{\widehat{\mathbf{e}}} - \omega^{2}\mathbf{M}_{\epsilon}\underline{\widehat{\mathbf{e}}} = -i\omega\underline{\widehat{\mathbf{j}}}_{ext}$$

Complex linear system of size $3N_p$, indefinite ill-conditioned matrix

- Matrix can be symmetrized but still Non-Hermitean in case of lossy material (complex Eigenvalues)
- Longitudinal Phaseshift given a priori
 →Periodic boundary conditions:

More details: U.Niedermayer and O. Boine Frankenheim, Proc. of ICAP 2012 and references therein

26 April 2014 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Uwe Niedermayer | 9

CST

→ Volume integral definition best applicable on mesh

Displacement of the beam

Uniform cylindrical beam:

$$\sigma(\varrho,\varphi) \approx \frac{q}{\pi a^2} (\Theta(a^2-\varrho) + \delta(a-\varrho)d_x^{\mu}\cos\varphi)$$

Radius of the beam

$$\underline{J}_{s,z}(\varrho,\varphi,z,\omega) = \sigma e^{-i\omega z/v}$$
$$\varrho_z(\varrho,\varphi,z,\omega) = \frac{1}{v}\sigma e^{-i\omega z/v}$$

- Rigid beam
- Finite integration length due to decay of scattered fields

$$\underline{Z}_{\parallel}(\omega) = -\frac{1}{q^2} \int_{beam} \underline{\vec{E}} \cdot \underline{\vec{J}}_{\parallel}^* \mathrm{d}V$$
$$Z_{\parallel}(\underline{\widehat{\mathbf{e}}}(\omega)) = \frac{1}{q^2} \underline{\widehat{\mathbf{e}}} \cdot \underline{\widehat{\mathbf{j}}}_s^*$$

$$\underline{Z}_{\perp,x}(\omega) = -\frac{v}{(qd_x)^2\omega} \int_{beam} \underline{\vec{E}} \cdot \underline{\vec{J}}_{dip}^* \mathrm{d}V$$
$$Z_{\perp}(\underline{\widehat{\mathbf{e}}}(\omega)) = \frac{\beta c}{\omega (q \cdot 2d_x)^2} \underline{\widehat{\mathbf{e}}} \cdot \underline{\widehat{\mathbf{j}}}_s^{\mathrm{dip}*}$$

Imaginary part dominated by SPACE CHARGE for low beta!

A glance on the dispersion relation

Simplified numerical method (according to "radial model")

Coil measurement (according to "radial model")

Numerical calculation for SIS100 dipole chamber (FD power loss calculation)

U.Niedermayer and O. Boine-Frankenheim, Analytical and numerical calculations of resistive wall impedances for thin beam pipe structures at low frequencies, NIM A, 2012

FIT in 2D (...back to full Maxwell)

Consider the a setup that is one cell long and has periodic boundary conditions $P_{z, \exp} = e^{\frac{-i\omega(L + \Delta z_{\rm e})}{\beta c}}$ \mathbf{P}_{z} \underline{q}_{s} Real positi $\underline{\widehat{\mathbf{e}}}_{z}$ $P_{z,\exp}$ The 2D solution also serves as $\Delta \tilde{z}$ boundary condition for 3D $\mathbf{P_z} = -1 + \mathbf{e}^{-\mathbf{i}\omega riangle \mathbf{z}/\mathbf{v}}$ → Similar as waveguide port $ilde{\mathbf{P}}_{\mathbf{z}} = -\mathbf{P}_{\mathbf{z}}^{\mathbf{H}}$ but enforced mode instead of **Eigen-mode**

Space charge impedance as test-case (plain perfectly conducting beam pipe)

26 April 2014 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Uwe Niedermayer | 16

Implementation

Finite Element Method (FEM)

 Approximate a basis in a function space by a finite number of basis functions ("finite elements")

$$u(x) \approx \overline{u}(x) = \sum_{j=1}^{N} u_j \varphi_j(x)$$

- The elements should have the following properties
 - \rightarrow compact support
 - \rightarrow continuous
 - \rightarrow linearly independent
- Usually on unstructured tetrahedral / triangular mesh
- Unstructured mesh approximates arbitrary geometry well
- Nondiagonal material matrices do not matter as much as in TD
- A large effort to implement from scratch!

FEniCS (www.fenicsproject.org)

(A. Logg, K. Mardal, A. Wells)

- Use a compiler instead of a PhD student to go from weak formulation of PDE to running code! ^(C)
- Automated solution of PDE
 - → compiler for weak formulations of PDE (UFL/FFC)
- Can be run by Python script
- Creates C++ code that runs the linear algebra backend
- Provides a Functional Analysis framework
 → work with "continuous" functions on the mesh
- Mesh from GMSH (C. Geuzaine, J. Remacle) http://geuz.org/gmsh/

FEM for the 2D impedance problem

$$\underline{\nu} = \frac{1}{\underline{\mu}} = \frac{\mu' + i\mu''}{|\underline{\mu}|^2}$$

TECHNISCHE

UNIVERSITÄT DARMSTADT

$$\underline{\vec{E}} = \begin{pmatrix} \vec{E}_{\perp}^{r} \\ E_{z}^{r} \end{pmatrix} + i \begin{pmatrix} \vec{E}_{\perp}^{i} \\ E_{z}^{i} \end{pmatrix}$$

$$\vec{E}_{\perp} imes \vec{n}|_{\partial\Omega} = 0$$

 $E_z|_{\partial\Omega} = 0$

- Nodal functions only for scalar components
- Edge functions "Nedelec elements" for vector components
 →Too much continuity for nodal elements (normal component cannot jump on material edge)
- Divergence free Nedelec elements (lowest order edge functions)

→<u>Helmholtz split</u>

Helmholtz Split

$$\begin{split} \nabla \times \frac{1}{\underline{\mu}} \nabla \times \underline{\vec{E}} + i\omega\kappa\underline{\vec{E}} - \omega^{2}\varepsilon\underline{\vec{E}} &= -i\omega\underline{\vec{J}}_{s} \\ \underline{\vec{E}} &= \underline{\vec{E}}_{curl} + \underline{\vec{E}}_{div} \qquad \underline{\vec{E}}_{div} = -\nabla\underline{\Phi} \\ \nabla \cdot \underline{\varepsilon} \nabla \underline{\Phi} &= -\underline{\varrho} = -\frac{1}{\beta c} \underline{J}_{s,z} \\ \underline{\vec{R}} &= \omega^{2}\underline{\varepsilon}\underline{\vec{E}}_{div} - i\omega\underline{\vec{J}}_{s} \qquad \boxed{\nabla \cdot \underline{\vec{R}} = 0}_{\text{`Continuity Equation''}} \\ \nabla \times \frac{1}{\underline{\mu}} \nabla \times \underline{\vec{E}}_{curl} + i\omega\kappa\underline{\vec{E}}_{curl} - \omega^{2}\varepsilon\underline{\vec{E}}_{curl} = \underline{\vec{R}} \end{split}$$

Statics solver (combined E-static and stationary current)

$$\frac{\mathbf{\nabla}\cdot\underline{\varepsilon}\nabla\underline{\Phi} = -\varrho}{\underline{\varepsilon} = \varepsilon + \frac{\kappa}{i\omega}} \quad \nabla\cdot\varepsilon\nabla\Phi^r + \nabla\cdot\frac{\kappa}{\omega}\nabla\Phi^i = -\varrho^r}{\nabla\cdot\varepsilon\nabla\Phi^i - \nabla\cdot\frac{\kappa}{\omega}\nabla\Phi^r = -\varrho^i}$$

Boundary Conditions

$$\begin{split} &\int_{\Omega} \varepsilon \nabla \Phi^{r} \cdot \nabla v^{r} \mathrm{d}V + \int_{\Omega} \nabla \frac{\kappa}{\omega} \Phi^{i} \cdot \nabla v^{r} \mathrm{d}V + \int_{\partial \Omega} \dots = \int_{\Omega} \varrho^{r} v^{r} \mathrm{d}V \\ &\int_{\Omega} \varepsilon \nabla \Phi^{i} \cdot \nabla v^{i} \mathrm{d}V - \int_{\Omega} \nabla \frac{\kappa}{\omega} \Phi^{r} \cdot \nabla v^{i} \mathrm{d}V + \int_{\partial \Omega} \dots = \int_{\Omega} \varrho^{i} v^{i} \mathrm{d}V \end{split}$$

Solve with Galerkin approach and nodal-functions, then project gradients on H(curl) \vec{r}

Nodal functions (2D) Lowest order: "Hat functions"

- Local Basis
- a, b, c such that $N_i(\vec{x}_j) = \delta_{ij}$
- Local to Global map required

Rotational part (1) (Edge elements)

- Nedelec Elements
 - → Tangential continuity (H(curl)-conforming)

$$\vec{E}_{\perp}^{r}(\vec{x}) = \sum_{i=1}^{N} e_{i}^{r} \vec{w}_{i}(\vec{x})$$
$$\vec{w}_{i}(\vec{x}) = N_{k} \nabla N_{l} - N_{l} \nabla N_{k}$$

$$N_i = a_i + b_i x + c_i y$$

$$\int_{l_j} \vec{\omega}_i \cdot \vec{t}_j \mathrm{d}s = \delta_{ij}$$

Rotational part (2) Rewriting the curlcurl Operator

$$\nabla \times \underline{\vec{E}} = \begin{pmatrix} 0 & -\partial_z & \partial_y \\ \partial_z & 0 & -\partial_x \\ \hline -\partial_y & \partial_x & 0 \end{pmatrix} \underline{\vec{E}} = \begin{pmatrix} iZ & A \\ \hline B & 0 \end{pmatrix} \underline{\vec{E}} \quad \partial_z \to -i\frac{\omega}{\beta c}$$
$$Z = \begin{pmatrix} 0 & +\frac{\omega}{\beta c} \\ -\frac{\omega}{\beta c} & 0 \end{pmatrix} \quad Z^2 = -\frac{\omega^2}{\beta^2 c^2} \quad A = \begin{pmatrix} \partial_y \\ -\partial_x \end{pmatrix} = -B^T$$
$$\nabla \times \underline{\nu} \nabla \times \underline{\vec{E}} = \begin{pmatrix} A\nu_r B - \nu_r Z^2 & -Z\nu_i A \\ -B\nu_i Z & B\nu_r A \end{pmatrix} \begin{pmatrix} \vec{E}_{\perp} \\ E_z^r \end{pmatrix} - \begin{pmatrix} A\nu_i B - \nu_i Z^2 & Z\nu_r A \\ B\nu_r Z & B\nu_i A \end{pmatrix} \begin{pmatrix} \vec{E}_{\perp} \\ E_z^i \end{pmatrix}$$
$$+ i \begin{pmatrix} A\nu_r B - \nu_r Z^2 & -Z\nu_i A \\ -B\nu_i Z & B\nu_r A \end{pmatrix} \begin{pmatrix} \vec{E}_{\perp} \\ E_z^i \end{pmatrix} + i \begin{pmatrix} A\nu_i B - \nu_i Z^2 & Z\nu_r A \\ B\nu_r Z & B\nu_i A \end{pmatrix} \begin{pmatrix} \vec{E}_{\perp} \\ E_z^r \end{pmatrix}$$

 $\begin{array}{l} \underline{Only \ AB \ and \ BA \ are \ 2^{nd} \ order \ operators}}_{\int_{\Omega} (A\nu_r B\vec{E}_{\perp}^r) \cdot \vec{v}^r dV = \int_{\Omega} (\nu_r B\vec{E}_{\perp}^r) (B\vec{v}^r) dV + \int_{\partial\Omega} \underbrace{\swarrow}_{\ldots} \\ \int_{\Omega} (B\nu_r AE_z^r) v^r dV = \int_{\Omega} (\nu_r AE_z^r) \cdot (Av^r) dV + \int_{\partial\Omega} \ldots \end{array}$

Rotational part (3) Weak Formulation of the whole CurlCurl Equation

$\mathrm{SOLVE}(\mathrm{a}_{\mathrm{curlcurl}} + \mathrm{a}_{\kappa} + \mathrm{a}_{\varepsilon} == \mathrm{a}_{\mathrm{RHS}})$

28 terms in the weak formulation

#DOFs (lowest order) = 2* #edges +2* #vertices)

Z=assemble(inner(Ezr,Jzr)*dx)+i*assemble(inner(Ezi,Jzr)*dx)

Numerical Examples: Thin beam pipe (FEM)

Numerical Examples: Rectangular beam pipe (staircase FIT) (no Helmholtz split)

TECHNISCHE

UNIVERSITÄT DARMSTADT

Numerical Examples: Ferrite Ring (FEM)

Numerical Examples: Ferrite Ring (FIT)

Comparison of <u>my</u> FIT and FEM implementations

- Both solvers have recently been developed...
- Not been pushed to the limit yet!
- Not optimized, not parallelized, no nice interface
- Therefore, no performance comparison!

<u>*FIT*</u> (2D/3D)

- Windows based C++
- Linear algebra package PETSc
 →complex numbers available
- HEX mesh from CST
- Bad convergence on curved structures due to staircase mesh
- Extremely slow in 3D

<u>FEM</u> (2D)

- Linux based Python
- FEniCS framework (open source)
- Different linear algebra backends
- TET mesh from GMSH
- Helmholtz split necessary for lowest order
- No complex numbers but coupled systems can be treated easily

Conclusion and Outlook

- Both methods work well in 2D
- Convergence studies yet to be done
 - → difficult since convergence depends on frequency, beta, material parameters, dimensions...
- Small skin depth hard to treat
 →Surface impedance boundary conditions (SIBC)
- Thin layers hard to treat
 - \rightarrow Thin sheet approaches
 - \rightarrow Impedance transmission conditions

Outlook: 3D simulation in Frequency Domain

- For both FIT and FEM possible
- Good parallel LES solvers necessary
 →They have to be able to deal with ill conditioned systems
- Requires the presented 2D solvers as beam entry and exit boundary conditions
 - → Don't try to imprint analytical beampipe solution!
- For simulation above beam pipe cutoff also a waveguide port Eigenmode solver required
- <u>Large</u> development effort...

...ongoing at TEMF

THE END

Thank you for your kind attentionAny questions?

Simplified numerical method (according to "radial model")

26 April 2014 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Uwe Niedermayer | 36

Transformer Model

NUCLEAR INSTRUMENTS AND METHODS 159 (1979) 21-27 ; © NORTH-HOLLAND PUBLISHING CO.

METHODS FOR MEASURING TRANSVERSE COUPLING IMPEDANCES IN CIRCULAR ACCELERATORS

- Longitudinal impedance is zero at the center
- Both scale inversely with the Network impedance

The Kicker magnet

Figure 2.8-160: Schematic circuit diagram of a monopolar kicker

The PFN of the bipolar kicker

TECHNISCHE UNIVERSITÄT DARMSTADT

PFN Impedance determination

Can also be measured like this with NWA

Transverse impedance

Optimization with ferrite bead (saturates at kicker puls current)

TECHNISCHE UNIVERSITÄT

DARMSTADT

Cmag inside ferrites→Resonance!

