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Motivations for 2D analytical 
impedance models

 3D simulation tools can nowadays solve EM problems taking into account material 
electromagnetic properties, BUT:

➢ difficult to have in single simulation both low and high frequency content,
➢ usually difficult to mix small and large scale features (e.g. thin coating on top of 

thick jaw),
➢ always useful to compare with analytical formulas for benchmark and/or better  

understanding,
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 3D simulation tools can nowadays solve EM problems taking into account material 
electromagnetic properties, BUT:

➢ difficult to have in single simulation both low and high frequency content,
➢ usually difficult to mix small and large scale features (e.g. thin coating on top of 

thick jaw),
➢ always useful to compare with analytical formulas for benchmark and/or better  

understanding,

→ analytical approaches are useful in particular for resistive effects,

→ but can handle only simple geometries.
 In 2D axisymmetric, Zotter's theory (CERN-AB-2005-043) is the most general theory 

to date, but it's numerical implementation was still an issue.
 For flat infinite plates (~collimator jaws), several formalisms exist (Piwinski DESY 84-

097 & DESY-HERA 92-04, Henke-Napoly EPAC'90 p.1046, Gluckstern et al Phys. Rev. E 
47:656, Yokoya Part. Acc. 41:221, Burov-Lebedev EPAC'02 p. 1455), all with limitations in 
number of layers, materials properties or frequency range.

⇒ develop here axisym. and flat 2D theories based on Zotter's formalism (details in 
EPFL PhD thesis 5305, 2012).
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2D wall impedance theory

 2D models: consider a longitudinally smooth element in the ring, of infinite length, and 
integrate the EM force from the source particle to the test particle, over a finite length.

⇒ Neglect thus all edge effects.
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Outline of the theory

 Essence of the formalism initially from B. Zotter (1969), in axisymmetric only. 

 Start from Maxwell equations in frequency domain:
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 Essence of the formalism initially from B. Zotter (1969), in axisymmetric only. 

 Start from Maxwell equations in frequency domain:

with

Complex permittivity

Complex permeability

and (point-like 
source)

Fourier series 
decomposition

 Playing with vector operations, get wave equations: e.g. for E

 Idea: decompose fields and source charge density thanks to Fourier transforms

axisymmetric
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Outline of the theory

 Essence of the formalism initially from B. Zotter (1969), in axisymmetric only. 

 Start from Maxwell equations in frequency domain:

with

Complex permittivity

Complex permeability

and (point-like 
source)

Continuous Fourier transforms
Fourier series 
decomposition

 Playing with vector operations, get wave equations: e.g. for E

 Idea: decompose fields and source charge density thanks to Fourier transforms

axisymmetric

flat
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Outline of the theory

 Write wave equations for the longitudinal components E
s
 and H

s
,then identify the terms 

(drop integrals and sums), obtaining (outside source) homogeneous second order 
differential equations:
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 Write wave equations for the longitudinal components E
s
 and H

s
,then identify the terms 

(drop integrals and sums), obtaining (outside source) homogeneous second order 
differential equations:

axisym. (radial 
dependency R)

flat (vertical 
dependency Y)

→ modified 
Bessel functions

→ exponentials

 Transverse components obtained from the longitudinal ones, thanks to Maxwell eqs.

 Integration constants determined from field matching (continuity of tangential field 
components) between adjacent layers. Instead of solving the full system by ”brute 
force”, use analytical trick: relate constants between adjacent layers by 4 x 4 matrices:

Constants (layer p+1) = M
p
p+1 . constants (layer p)

In the end:
Constants (last layer) = M . constants (first layer).

⇒ Only need to multiply 4x4 matrices and do a final inversion, to get all the constants.

 Finally, put back the Fourier transforms and/or series. In flat case, additional algebra to 
get a simpler form.
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 Electric field longitudinal component in the vacuum:

Direct space-charge term Wall termConstants

axisym.

flat

In the ”wall term”: only first terms of the sums are relevant when sufficiently close to 
the orbit → linear terms (m≤1, n≤2).
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Final wall impedances

 From EM force in vacuum, upon integration over a finite length L and normalization 
(by the test and sources charges) we obtain the beam-coupling impedances as 
simple functions of the first few 

TM
m (axisymmetric) or 

mn
 (flat) (freq. dependent).
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Final wall impedances

 From EM force in vacuum, upon integration over a finite length L and normalization 
(by the test and sources charges) we obtain the beam-coupling impedances as 
simple functions of the first few 
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2
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2
):

Quadrupolar term also 
in axisymmetric !
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 From EM force in vacuum, upon integration over a finite length L and normalization 
(by the test and sources charges) we obtain the beam-coupling impedances as 
simple functions of the first few 
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Constant term in vertical 
when no top-bottom symmetry
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Final wall impedances

 From EM force in vacuum, upon integration over a finite length L and normalization 
(by the test and sources charges) we obtain the beam-coupling impedances as 
simple functions of the first few 

TM
m (axisymmetric) or 

mn
 (flat) (freq. dependent).

Axisymmetric 
case

Flat case

 Keeping only constant & linear terms (dipolar terms proportional to source 
coordinates x

1
 & y

1
, quadrupolar ones to test coordinates x

2
 & y

2
):

Flat case: quadrupolar 
terms not exactly 
opposite to one another 
(≠ A. Burov –V. Danilov, PRL 
1999, ultrarelativistic case)
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Final wall impedances

 From EM force in vacuum, upon integration over a finite length L and normalization 
(by the test and sources charges) we obtain the beam-coupling impedances as 
simple functions of the first few 

TM
m (axisymmetric) or 

mn
 (flat) (freq. dependent).

Axisymmetric 
case

Flat case

 Keeping only constant & linear terms (dipolar terms proportional to source 
coordinates x

1
 & y

1
, quadrupolar ones to test coordinates x

2
 & y

2
):

Note: it is easy to go to higher order than linear !
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Results in axisymmetric

 25mm-thick graphite of radius 1.5 mm (surrounded by stainless steel), 
compared to classic formula: 
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Results in axisymmetric

 25mm-thick graphite of radius 1.5 mm (surrounded by stainless steel), 
compared to classic formula: Low frequencies: 

importance of general 
theory w.r.t classic 
formula (factor ~10 for 
imag. part, >100 for real 
part)

Intermediate frequencies: 
classic formula valid 
(skin depth 
approximation).
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Results in axisymmetric

 25mm-thick graphite of radius 1.5 mm (surrounded by stainless steel), 
compared to classic formula: 

High frequencies: 
resonance + new 
quadrupolar term (in 
this theory only).

Low frequencies: 
importance of general 
theory w.r.t classic 
formula (factor ~10 for 
imag. part, >100 for real 
part)

Intermediate frequencies: 
classic formula valid 
(skin depth 
approximation).
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Flat chamber results: comparison to 
Tsutsui’s formalism

 For 3 layers (LHC copper-coated graphite collimator - 10m Cu, half-gap 
2mm), comparison with Tsuitsui’s model (LHC project note 318) on a 
rectangular geometry, the two other sides being taken far enough apart:
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Flat chamber results: comparison to 
Tsutsui’s formalism

 For 3 layers (LHC copper-coated graphite collimator - 10m Cu, half-gap 
2mm), comparison with Tsuitsui’s model (LHC project note 318) on a 
rectangular geometry, the two other sides being taken far enough apart:

 Very good 
agreement between 
the two approaches.
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Flat chamber results: comparison to 
Tsutsui’s formalism

 For 3 layers (LHC copper-coated graphite collimator - 10m Cu, half-gap 
2mm), comparison with Tsuitsui’s model (LHC project note 318) on a 
rectangular geometry, the two other sides being taken far enough apart:

 Very good 
agreement between 
the two approaches.

 Can compute 
impedance for many 
layers (particularly 
interesting for coating 
– difficult to simulate 
in 3D EM codes)
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Form factors flat / axisymmetric

 Ratio of flat chamber impedances w.r.t longitudinal and transverse dipolar 
axisymmetric ones →generalize Yokoya factors (Part. Acc., 1993, p. 511). In the 
case of a single-layer ceramic (hBN) at 450 GeV:
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Form factors flat / axisymmetric

 Ratio of flat chamber impedances w.r.t longitudinal and transverse dipolar 
axisymmetric ones →generalize Yokoya factors (Part. Acc., 1993, p. 511). In the 
case of a single-layer ceramic (hBN) at 450 GeV:

⇒In this particular case, 
frequency dependent 
form factors quite ≠ from 
the Yokoya factors (was 
first observed with other 
means by B. Salvant et al 
IPAC’10, p. 2054).

⇒We can get such form 
factors for any material or 
material combination (i.e. 
several layers).
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Wake functions

 Wake functions are the Fourier transforms of the impedances, e.g.

In principle, straighforward to obtain from the impedances: ”do an FFT”.

In practice, usual method with discrete Fourier transform (DFT) with evenly spaced 
frequency mesh not accurate enough when dealing with large frequency range.

for a test particle at   seconds behind the source
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Wake functions

 Wake functions are the Fourier transforms of the impedances, e.g.

In principle, straighforward to obtain from the impedances: ”do an FFT”.

In practice, usual method with discrete Fourier transform (DFT) with evenly spaced 
frequency mesh not accurate enough when dealing with large frequency range.

for a test particle at   seconds behind the source

⇒ developped a ”new” method 
(based on idea from 1928): given any 
frequency sampling, on each 
subinterval replace the impedance by 
its cubic interpolation, and integrate it 
analytically.

Example with  

→ contrary to DFT, this method can 
correctly handle the different scales.

Z x=1 /√∣ω∣

LHC 
bunch 
length LHC intra-

bunch 
spacing 
(50ns)

LHC circumference
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Wake function: results (axisymmetric)

 25mm-thick graphite of radius 1.5 mm (surrounded by stainless steel): 
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Wake function: results (axisymmetric)

 25mm-thick graphite of radius 1.5 mm (surrounded by stainless steel): 

High frequency 
oscillations (due to 
the THz resonance).
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Wake function: results (axisymmetric)

 25mm-thick graphite of radius 1.5 mm (surrounded by stainless steel): 

High frequency 
oscillations (due to 
the THz resonance).

Long-range behaviour 
(multibunch and 
multiturn)
→ would be very 
difficult to get from EM 
”brute force” 
simulations.
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Wake function: results (axisymmetric)

 25mm-thick graphite of radius 1.5 mm (surrounded by stainless steel): 

High frequency 
oscillations (due to 
the THz resonance).

Long-range behaviour 
(multibunch and 
multiturn)
→ would be very 
difficult to get from EM 
”brute force” 
simulations.

Wake in-front can 
also be computed.
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Possible extensions

 What happens when source and test particles have different velocities ?

e.g. let's look at radial force in axisymmetric chamber:
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Thanks to G. Rumolo
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→ instead we have:
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Possible extensions

 What happens when source and test particles have different velocities ?

e.g. let's look at radial force in axisymmetric chamber:

⇒ Radial force now also depends on H
s
 and can be very different.

Example: AWAKE experiment at CERN (electron beam circulating in same 
chamber as proton beam)

Thanks to G. Rumolo

Not valid anymore

→ instead we have:
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Possible extensions

 What about multilayer elliptic chambers ?

→ in principle can be handled with the same ideas, using the following change of 
variables – or conformal map (Palumbo-Vaccaro Il Nuevo Cimento 89A:243, 
Gluckstern et al Phys. Rev. E 47:656, Piwinski DESY 94-068):

c= ellipse linear eccentricity (or 
focal distance)
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Possible extensions

 What about multilayer elliptic chambers ?

→ in principle can be handled with the same ideas, using the following change of 
variables – or conformal map (Palumbo-Vaccaro Il Nuevo Cimento 89A:243, 
Gluckstern et al Phys. Rev. E 47:656, Piwinski DESY 94-068):

⇒ provided all layer boundaries are ellipses with same eccentricities (confocal), 
we can in principle apply the same formalism as in cylindrical, replacing:

➢ cosines and sines by periodic Mathieu functions,
➢ modified Bessel functions by modified Mathieu functions,

and of course re-doing the decompositions & field matching accordingly...

 Separation of variables leads to Mathieu differential equations:

c= ellipse linear eccentricity (or 
focal distance)
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Conclusions

 For multilayer axisymmetric chambers, Zotter formalism has been extended to all 
orders of non-linearity, and its implementation improved thanks to the matrix 
formalism for the field matching → the number of layers is no longer an issue.

 For multilayer flat chambers, a new theory similar to Zotter’s has been derived, 
giving also impedances without any assumptions on the materials conductivity, 
on the frequency or on the beam velocity.

 Both these theories were benchmarked.

 An efficient algorithm to compute wake functions from impedances spreading 
over a large frequency range, using a non-equidistant discretization, has been 
developped.

 Implemented in codes (Rewall, ImpedanceWake2D, available at 
http://impedance.web.cern.ch), used for various machines (LHC, HL-LHC, PS, SPS, 
CLIC, FCC,TLEP).

 Possible extensions could be investigated:
➢ case with different source and test velocities (relatively easy),
➢ multilayer elliptic chamber (more difficult).
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Thank you for your attention !
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