ICFA mini-workshop on "Electromagnetic wake fields and impedances in particle accelerators" - Erice, Sicily, 23-29 April 2014

2D wall impedance theory

Nicolas Mounet & Elias Métral

Acknowledgments: N. Biancacci, G. Rumolo, B. Salvant, C. Zannini, B. Zotter.

- Motivation
- Outline of the theory
- Examples of impedance results
- Computation of wake functions
- Possible extensions
- Conclusions

- 3D simulation tools can nowadays solve EM problems taking into account material electromagnetic properties, BUT:
 - > difficult to have in single simulation both low and high frequency content,
 - usually difficult to mix small and large scale features (e.g. thin coating on top of thick jaw),
 - always useful to compare with analytical formulas for benchmark and/or better understanding,

- 3D simulation tools can nowadays solve EM problems taking into account material electromagnetic properties, BUT:
 - > difficult to have in single simulation both low and high frequency content,
 - usually difficult to mix small and large scale features (e.g. thin coating on top of thick jaw),
 - always useful to compare with analytical formulas for benchmark and/or better understanding,
 - \rightarrow analytical approaches are useful in particular for resistive effects,
 - \rightarrow but can handle only simple geometries.

- 3D simulation tools can nowadays solve EM problems taking into account material electromagnetic properties, BUT:
 - > difficult to have in single simulation both low and high frequency content,
 - usually difficult to mix small and large scale features (e.g. thin coating on top of thick jaw),
 - always useful to compare with analytical formulas for benchmark and/or better understanding,
 - → analytical approaches are useful in particular for resistive effects,
 - \rightarrow but can handle only simple geometries.
- In 2D axisymmetric, Zotter's theory (CERN-AB-2005-043) is the most general theory to date, but it's numerical implementation was still an issue.

- 3D simulation tools can nowadays solve EM problems taking into account material electromagnetic properties, BUT:
 - bifficult to have in single simulation both low and high frequency content,
 - usually difficult to mix small and large scale features (e.g. thin coating on top of thick jaw),
 - always useful to compare with analytical formulas for benchmark and/or better understanding,
 - \rightarrow analytical approaches are useful in particular for resistive effects,
 - \rightarrow but can handle only simple geometries.
- In 2D axisymmetric, Zotter's theory (CERN-AB-2005-043) is the most general theory to date, but it's numerical implementation was still an issue.
- For flat infinite plates (~collimator jaws), several formalisms exist (Piwinski DESY 84-097 & DESY-HERA 92-04, Henke-Napoly EPAC'90 p.1046, Gluckstern et al Phys. Rev. E 47:656, Yokoya Part. Acc. 41:221, Burov-Lebedev EPAC'02 p. 1455), all with limitations in number of layers, materials properties or frequency range.

- 3D simulation tools can nowadays solve EM problems taking into account material electromagnetic properties, BUT:
 - > difficult to have in single simulation both low and high frequency content,
 - usually difficult to mix small and large scale features (e.g. thin coating on top of thick jaw),
 - always useful to compare with analytical formulas for benchmark and/or better understanding,
 - \rightarrow analytical approaches are useful in particular for resistive effects,
 - \rightarrow but can handle only simple geometries.
- In 2D axisymmetric, Zotter's theory (CERN-AB-2005-043) is the most general theory to date, but it's numerical implementation was still an issue.
- For flat infinite plates (~collimator jaws), several formalisms exist (Piwinski DESY 84-097 & DESY-HERA 92-04, Henke-Napoly EPAC'90 p.1046, Gluckstern et al Phys. Rev. E 47:656, Yokoya Part. Acc. 41:221, Burov-Lebedev EPAC'02 p. 1455), all with limitations in number of layers, materials properties or frequency range.

 \Rightarrow develop here axisym. and flat 2D theories based on Zotter's formalism (details in EPFL PhD thesis 5305, 2012).

- 2D models: consider a longitudinally smooth element in the ring, of infinite length, and integrate the EM force from the source particle to the test particle, over a finite length.
 - \Rightarrow Neglect thus all edge effects.

- 2D models: consider a longitudinally smooth element in the ring, of infinite length, and integrate the EM force from the source particle to the test particle, over a finite length.
 - \Rightarrow Neglect thus all edge effects.
- Main advantage: for simple geometries, EM fields obtained (semi-) analytically without any other assumptions (except linearity, isotropy and homogeneity).

- 2D models: consider a longitudinally smooth element in the ring, of infinite length, and integrate the EM force from the source particle to the test particle, over a finite length.
 - \Rightarrow Neglect thus all edge effects.
- Main advantage: for simple geometries, EM fields obtained (semi-) analytically without any other assumptions (except linearity, isotropy and homogeneity).
- Cross sections studied here: multilayer axisymmetric and flat chambers

- 2D models: consider a longitudinally smooth element in the ring, of infinite length, and integrate the EM force from the source particle to the test particle, over a finite length.
 - \Rightarrow Neglect thus all edge effects.
- Main advantage: for simple geometries, EM fields obtained (semi-) analytically without any other assumptions (except linearity, isotropy and homogeneity).
- Cross sections studied here: multilayer axisymmetric and flat chambers

- 2D models: consider a longitudinally smooth element in the ring, of infinite length, and integrate the EM force from the source particle to the test particle, over a finite length.
 - \Rightarrow Neglect thus all edge effects.
- Main advantage: for simple geometries, EM fields obtained (semi-) analytically without any other assumptions (except linearity, isotropy and homogeneity).
- Cross sections studied here: multilayer axisymmetric and flat chambers

- Essence of the formalism initially from **B. Zotter** (1969), in axisymmetric only.
- Start from Maxwell equations in frequency domain:

- Essence of the formalism initially from B. Zotter (1969), in axisymmetric only.
- Start from Maxwell equations in frequency domain:

$$\begin{aligned} \operatorname{div} \vec{D} &= \rho, \\ \operatorname{curl} \vec{H} - j\omega \vec{D} &= \vec{J}, \\ \operatorname{curl} \vec{E} + j\omega \vec{B} &= 0, \\ \operatorname{div} \vec{B} &= 0, \end{aligned}$$

- Essence of the formalism initially from **B. Zotter** (1969), in axisymmetric only.
- Start from Maxwell equations in frequency domain:

$$\begin{aligned} \operatorname{div} \vec{D} &= \rho, \text{ with} \\ \operatorname{curl} \vec{H} - j\omega \vec{D} &= \vec{J}, \\ \operatorname{curl} \vec{E} + j\omega \vec{B} &= 0, \\ \operatorname{div} \vec{B} &= 0, \end{aligned}$$

$$\vec{D} = \varepsilon_c(\omega)\vec{E} = \varepsilon_0\varepsilon_1(\omega)\vec{E}, \vec{B} = \mu(\omega)\vec{H} = \mu_0\mu_1(\omega)\vec{H},$$

- Essence of the formalism initially from B. Zotter (1969), in axisymmetric only.
- Start from Maxwell equations in frequency domain:
 Complex permittivity

$$\begin{array}{rcl} \operatorname{div}\vec{D} &=& \rho, \\ \operatorname{curl}\vec{H} - j\omega\vec{D} &=& \vec{J}, \\ \operatorname{curl}\vec{E} + j\omega\vec{B} &=& 0, \\ \operatorname{div}\vec{B} &=& 0, \end{array} \right|^{\text{with}} & \begin{array}{rcl} \vec{D} &=& \varepsilon_{0}\varepsilon_{1}(\omega)\vec{E}, \\ \vec{B} &=& \mu(\omega)\vec{H} = \mu_{0}\mu_{1}(\omega)\vec{H}, \end{array} \right|^{\text{Complex permeability}}$$

- Essence of the formalism initially from **B. Zotter** (1969), in axisymmetric only.
- Start from Maxwell equations in frequency domain: Complex permittivity

$$\begin{array}{rcl} \operatorname{div}\vec{D} &=& \rho, \\ \operatorname{curl}\vec{H} - j\omega\vec{D} &=& \vec{J}, \\ \operatorname{curl}\vec{E} + j\omega\vec{B} &=& 0, \\ \operatorname{div}\vec{B} &=& 0, \end{array} \text{ with } \begin{array}{rcl} \vec{D} &=& \varepsilon_{c}(\omega)\vec{E} = \varepsilon_{0}\varepsilon_{1}(\omega)\vec{E}, \\ \vec{B} &=& \mu(\omega)\vec{H} = \mu_{0}\mu_{1}(\omega)\vec{H}, \end{array} \end{array}$$

- Essence of the formalism initially from B. Zotter (1969), in axisymmetric only.
- Start from Maxwell equations in frequency domain: Complex permittivity

$$\begin{array}{rcl} \operatorname{div}\vec{D} &=& \rho, \\ \operatorname{curl}\vec{H} - j\omega\vec{D} &=& \vec{J}, \\ \operatorname{curl}\vec{E} + j\omega\vec{B} &=& 0, \\ \operatorname{div}\vec{B} &=& 0, \end{array} \text{ with } \begin{array}{rcl} \vec{D} &=& \varepsilon_{c}(\omega)\vec{E} = \varepsilon_{0}\varepsilon_{1}(\omega)\vec{E}, \\ \vec{B} &=& \mu(\omega)\vec{H} = \mu_{0}\mu_{1}(\omega)\vec{H}, \end{array} \end{array}$$

$$\begin{array}{rcl} \operatorname{Complex \ permeability} \\ \operatorname{Complex \ permeability}$$

• Playing with vector operations, get wave equations: e.g. for *E*

$$\nabla^2 \vec{E} + \omega^2 \varepsilon_c \mu \vec{E} = \frac{1}{\varepsilon_c} \operatorname{grad} \rho + j \omega \mu \rho v \vec{e_s}.$$

- Essence of the formalism initially from **B. Zotter** (1969), in axisymmetric only.
- Start from Maxwell equations in frequency domain: Complex permittivity

 $\begin{array}{rcl} \operatorname{div}\vec{D}&=&\rho,\\ \operatorname{curl}\vec{H}-j\omega\vec{D}&=&\vec{J},\\ \operatorname{curl}\vec{E}+j\omega\vec{B}&=&0,\\ \operatorname{div}\vec{B}&=&0,\\ \end{array} \text{ with } \begin{array}{rcl} \vec{D}&=&\varepsilon_{0}\varepsilon_{1}(\omega)\vec{E},\\ \vec{B}&=&\mu_{0}\mu_{1}(\omega)\vec{H},\\ \end{array} \text{ Complex permeability}\\ \end{array}$

• Playing with vector operations, get wave equations: e.g. for *E*

$$\nabla^2 \vec{E} + \omega^2 \varepsilon_c \mu \vec{E} = \frac{1}{\varepsilon_c} \overrightarrow{\operatorname{grad}} \rho + j \omega \mu \rho v \vec{e_s}.$$

Idea: decompose fields and source charge density thanks to Fourier transforms

- Essence of the formalism initially from B. Zotter (1969), in axisymmetric only.
- Start from Maxwell equations in frequency domain: Complex permittivity

 $\begin{aligned} \operatorname{div} \vec{D} &= \rho, \\ \operatorname{curl} \vec{H} - j\omega \vec{D} &= \vec{J}, \\ \operatorname{curl} \vec{E} + j\omega \vec{B} &= 0, \\ \operatorname{div} \vec{B} &= 0, \end{aligned} \quad \text{with} \quad \begin{aligned} \vec{D} &= (\varepsilon_c \omega) \vec{E} = \varepsilon_0 \varepsilon_1(\omega) \vec{E}, \\ \vec{B} &= (\mu(\omega) \vec{H} = \mu_0 \mu_1(\omega) \vec{H}, \end{aligned} \quad \textbf{Complex permeability} \\ \textbf{Complex permeability} \end{aligned}$

• Playing with vector operations, get wave equations: e.g. for *E*

$$\nabla^2 \vec{E} + \omega^2 \varepsilon_c \mu \vec{E} = \frac{1}{\varepsilon_c} \vec{\text{grad}} \rho + j \omega \mu \rho v \vec{e_s}.$$

• Idea: decompose fields and source charge density thanks to Fourier transforms axisymmetric $\rho(r, \theta, s; \omega) = \int_{-\infty}^{\infty} dk' e^{-jk's} \delta(k'-k) \sum_{m=0}^{\infty} \frac{Q\cos(m\theta)}{\pi v a_1(1+\delta_{m0})} \delta(r-a_1),$

- Essence of the formalism initially from B. Zotter (1969), in axisymmetric only.
- Start from Maxwell equations in frequency domain: Complex permittivity

• Playing with vector operations, get wave equations: e.g. for *E*

$$\nabla^2 \vec{E} + \omega^2 \varepsilon_c \mu \vec{E} = \frac{1}{\varepsilon_c} \vec{\text{grad}} \rho + j \omega \mu \rho v \vec{e_s}.$$

• Idea: decompose fields and source charge density thanks to Fourier transforms axisymmetric $\rho(r, \theta, s; \omega) = \int_{-\infty}^{\infty} dk' e^{-jk's} \delta(k'-k) \sum_{m=0}^{\infty} \frac{Q\cos(m\theta)}{\pi v a_1(1+\delta_{m0})} \delta(r-a_1),$

flat
$$\rho(x, y, s; \omega) = \int_{-\infty}^{\infty} \mathrm{d}k' e^{-jk's} \delta(k'-k) \frac{Q}{\pi \upsilon} \int_{0}^{\infty} \mathrm{d}k_x \cos(k_x x) \delta(y-y_1),$$

- Essence of the formalism initially from B. Zotter (1969), in axisymmetric only.
- Start from Maxwell equations in frequency domain: Complex permittivity

• Playing with vector operations, get wave equations: e.g. for *E*

$$\nabla^2 \vec{E} + \omega^2 \varepsilon_c \mu \vec{E} = \frac{1}{\varepsilon_c} \operatorname{grad} \rho + j \omega \mu \rho v \vec{e_s}.$$

• Idea: decompose fields and source charge density thanks to Fourier transforms axisymmetric $\rho(r, \theta, s; \omega) = \int_{-\infty}^{\infty} dk' e^{-jk's} \delta(k' - k) \sum_{m=0}^{\infty} \frac{Q\cos(m\theta)}{\pi v a_1(1+\delta_{m0})} \delta(r - a_1),$ Fourier series decomposition

lat
$$\rho(x, y, s; \omega) = \int_{-\infty}^{\infty} \mathrm{d}k' e^{-jk's} \delta(k'-k) \frac{Q}{\pi v} \int_{0}^{\infty} \mathrm{d}k_x \cos(k_x x) \delta(y-y_1),$$

- Essence of the formalism initially from **B. Zotter** (1969), in axisymmetric only.
- Start from Maxwell equations in frequency domain: Complex permittivity

 $\begin{array}{rcl} \operatorname{div}\vec{D} &=& \rho, \\ \operatorname{curl}\vec{H} - j\omega\vec{D} &=& \vec{J}, \\ \operatorname{curl}\vec{E} + j\omega\vec{B} &=& 0, \\ \operatorname{div}\vec{B} &=& 0, \end{array} \text{ with } \begin{array}{rcl} \vec{D} &=& \varepsilon_{c}(\omega)\vec{E} = \varepsilon_{0}\varepsilon_{1}(\omega)\vec{E}, \\ \vec{B} &=& (\mu(\omega)\vec{H} = \mu_{0}\mu_{1}(\omega)\vec{H}, \end{array} \end{array}$

• Playing with vector operations, get wave equations: e.g. for *E*

$$\nabla^2 \vec{E} + \omega^2 \varepsilon_c \mu \vec{E} = \frac{1}{\varepsilon_c} \overrightarrow{\operatorname{grad}} \rho + j \omega \mu \rho v \vec{e_s}.$$

Idea: decompose fields and source charge density thanks to Fourier transforms

$$\begin{array}{ll} \text{axisymmetric} & \rho(r,\theta,s;\omega) = \int_{-\infty}^{\infty} \mathrm{d}k' e^{-jk's} \delta(k'-k) \sum_{m=0}^{\infty} \frac{Q\cos(m\theta)}{\pi v a_1(1+\delta_{m0})} \delta(r-a_1), \\ \text{Fourier series} \\ \text{decomposition} \\ \text{flat} & \rho(x,y,s;\omega) = \int_{-\infty}^{\infty} \mathrm{d}k' e^{-jk's} \delta(k'-k) \frac{Q}{\pi v} \int_{0}^{\infty} \mathrm{d}k_x \cos(k_x x) \delta(y-y_1), \end{array}$$

Write wave equations for the longitudinal components E_s and H_s, then identify the terms (drop integrals and sums), obtaining (outside source) homogeneous second order differential equations:

Write wave equations for the longitudinal components E_s and H_s, then identify the terms (drop integrals and sums), obtaining (outside source) homogeneous second order differential equations:

axisym. (radial dependency R)
$$r^2 \frac{d^2 R}{dr^2} + r \frac{dR}{dr} - \left[m^2 + r^2 \left(k^2 - \omega^2 \varepsilon_c \mu\right)\right] R = 0, \stackrel{\rightarrow}{\text{Bessel functions}}$$

Write wave equations for the longitudinal components E_s and H_s, then identify the terms (drop integrals and sums), obtaining (outside source) homogeneous second order differential equations:

axisym. (radial dependency *R*)
$$r^{2} \frac{d^{2}R}{dr^{2}} + r \frac{dR}{dr} - \left[m^{2} + r^{2} \left(k^{2} - \omega^{2} \varepsilon_{c} \mu\right)\right] R = 0, \quad \Rightarrow \text{ modified Bessel functions}$$
flat (vertical dependency *Y*)
$$\frac{d^{2}Y}{dy^{2}} - \left[k_{x}^{2} + k^{2} - \omega^{2} \varepsilon_{c} \mu\right] Y = 0, \quad \Rightarrow \text{ exponentials}$$

Write wave equations for the longitudinal components E_s and H_s, then identify the terms (drop integrals and sums), obtaining (outside source) homogeneous second order differential equations:

axisym. (radial dependency *R*)
$$r^{2} \frac{d^{2}R}{dr^{2}} + r \frac{dR}{dr} - \left[m^{2} + r^{2} \left(k^{2} - \omega^{2} \varepsilon_{c} \mu\right)\right] R = 0, \quad \Rightarrow \text{ modified Bessel functions}$$
flat (vertical dependency *Y*)
$$\frac{d^{2}Y}{dy^{2}} - \left[k_{x}^{2} + k^{2} - \omega^{2} \varepsilon_{c} \mu\right] Y = 0, \quad \Rightarrow \text{ exponentials}$$

• Transverse components obtained from the longitudinal ones, thanks to Maxwell eqs.

Write wave equations for the longitudinal components E_s and H_s, then identify the terms (drop integrals and sums), obtaining (outside source) homogeneous second order differential equations:

 $\begin{array}{l} \text{axisym. (radial dependency } R) \\ \text{flat (vertical dependency } Y) \\ \hline \frac{d^2 Y}{dy^2} - \left[k_x^2 + k^2 - \omega^2 \varepsilon_c \mu\right] Y = 0, \\ \hline \text{dependency } Y \\ \hline \frac{d^2 Y}{dy^2} - \left[k_x^2 + k^2 - \omega^2 \varepsilon_c \mu\right] Y = 0, \\ \hline \text{dependency } Y \\ \hline \text{depe$

- Transverse components obtained from the longitudinal ones, thanks to Maxwell eqs.
- Integration constants determined from field matching (continuity of tangential field components) between adjacent layers. Instead of solving the full system by "brute force", use analytical trick: relate constants between adjacent layers by 4 x 4 matrices:

Constants (layer p+1) = M_p^{p+1} . constants (layer p)

Write wave equations for the longitudinal components E_s and H_s, then identify the terms (drop integrals and sums), obtaining (outside source) homogeneous second order differential equations:

 $\begin{array}{l} \text{axisym. (radial dependency } R) \\ \text{flat (vertical dependency } Y) \\ \hline \frac{d^2 Y}{dy^2} - \left[k_x^2 + k^2 - \omega^2 \varepsilon_c \mu\right] Y = 0, \\ \hline \text{dependency } Y \\ \hline \frac{d^2 Y}{dy^2} - \left[k_x^2 + k^2 - \omega^2 \varepsilon_c \mu\right] Y = 0, \\ \hline \text{dependency } Y \\ \hline \text{depe$

- Transverse components obtained from the longitudinal ones, thanks to Maxwell eqs.
- Integration constants determined from field matching (continuity of tangential field components) between adjacent layers. Instead of solving the full system by "brute force", use analytical trick: relate constants between adjacent layers by 4 x 4 matrices:

Constants (layer p+1) = M_p^{p+1} . constants (layer p)

In the end:

Constants (last layer) = M. constants (first layer).

 \Rightarrow Only need to multiply 4x4 matrices and do a final inversion, to get all the constants.

Write wave equations for the longitudinal components E_s and H_s, then identify the terms (drop integrals and sums), obtaining (outside source) homogeneous second order differential equations:

 $\begin{array}{l} \text{axisym. (radial dependency } R) \\ \text{flat (vertical dependency } Y) \\ \hline \frac{d^2 Y}{dy^2} - \left[k_x^2 + k^2 - \omega^2 \varepsilon_c \mu\right] Y = 0, \\ \hline \text{dependency } Y \\ \hline \frac{d^2 Y}{dy^2} - \left[k_x^2 + k^2 - \omega^2 \varepsilon_c \mu\right] Y = 0, \\ \hline \text{dependency } Y \\ \hline \text{depe$

- Transverse components obtained from the longitudinal ones, thanks to Maxwell eqs.
- Integration constants determined from field matching (continuity of tangential field components) between adjacent layers. Instead of solving the full system by "brute force", use analytical trick: relate constants between adjacent layers by 4 x 4 matrices:

Constants (layer p+1) = M_p^{p+1} . constants (layer p)

In the end:

Constants (last layer) = M . constants (first layer).

- \Rightarrow Only need to multiply 4x4 matrices and do a final inversion, to get all the constants.
- Finally, **put back the Fourier transforms and/or series**. In flat case, additional algebra to get a simpler form.

• Electric field longitudinal component in the vacuum:

• Electric field longitudinal component in the vacuum:

axisym. $E_s^{vac} = \mathcal{C}e^{-jks} \left[K_0 \left(\frac{k}{\gamma} \sqrt{a_1^2 + r^2 - 2a_1 r \cos \theta} \right) - 2 \sum_{m=0}^{\infty} \frac{\alpha_{\text{TM}}^m \cos(m\theta)}{1 + \delta_{m0}} I_m \left(\frac{ka_1}{\gamma} \right) I_m \left(\frac{kr}{\gamma} \right) \right],$

• Electric field longitudinal component in the vacuum:

axisym. $E_s^{vac} = \mathcal{C}e^{-jks} \left[K_0 \left(\frac{k}{\gamma} \sqrt{a_1^2 + r^2 - 2a_1 r \cos \theta} \right) - 2 \sum_{m=0}^{\infty} \frac{\alpha_{\text{TM}}^m \cos(m\theta)}{1 + \delta_{m0}} I_m \left(\frac{ka_1}{\gamma} \right) I_m \left(\frac{kr}{\gamma} \right) \right],$

flat

$$E_s^{vac} = \mathcal{C}e^{-jks} \left[K_0 \left(\frac{k}{\gamma} \sqrt{x^2 + (y - y_1)^2} \right) - 4 \sum_{m,n=0}^{\infty} \frac{\alpha_{mn} \cos\left[n\left(\theta - \frac{\pi}{2}\right)\right]}{(1 + \delta_{m0})(1 + \delta_{n0})} I_m \left(\frac{ky_1}{\gamma}\right) I_n \left(\frac{kr}{\gamma}\right) \right],$$

• Electric field longitudinal component in the vacuum:

axisym.
$$E_{s}^{vac} = Ce^{-jks} \left[K_{0} \left(\frac{k}{\gamma} \sqrt{a_{1}^{2} + r^{2} - 2a_{1}r\cos\theta} \right) - 2\sum_{m=0}^{\infty} \frac{\alpha_{\text{TM}}^{m}\cos(m\theta)}{1 + \delta_{m0}} I_{m} \left(\frac{ka_{1}}{\gamma} \right) I_{m} \left(\frac{kr}{\gamma} \right) \right]$$

Direct space-charge term
$$\mathbf{flat} \qquad E_{s}^{vac} = Ce^{-jks} \left[K_{0} \left(\frac{k}{\gamma} \sqrt{x^{2} + (y - y_{1})^{2}} \right) - 4\sum_{m,n=0}^{\infty} \frac{\alpha_{mn}\cos[n(\theta - \frac{\pi}{2})]}{(1 + \delta_{m0})(1 + \delta_{n0})} I_{m} \left(\frac{ky_{1}}{\gamma} \right) I_{n} \left(\frac{kr}{\gamma} \right) \right],$$

In the "wall term": only first terms of the sums are relevant when sufficiently close to the orbit \rightarrow linear terms (*m*≤1, *n*≤2).

In the "wall term": only first terms of the sums are relevant when sufficiently close to the orbit \rightarrow linear terms (*m*≤1, *n*≤2).

• From *E*_s alone we can get the **EM force** in the vacuum:

In the "wall term": only first terms of the sums are relevant when sufficiently close to the orbit \rightarrow linear terms (*m*≤1, *n*≤2).

• From *E*_s alone we can get the EM force in the vacuum:

longitudinal $F_s = qE_s$,

In the "wall term": only first terms of the sums are relevant when sufficiently close to the orbit \rightarrow linear terms (*m*≤1, *n*≤2).

• From *E*_s alone we can get the EM force in the vacuum:

 $\begin{aligned} \text{longitudinal} \qquad F_s &= qE_s,\\ \text{transverse (cyl. coordinates)} \end{aligned}$ $F_r &= q \left(E_r - \upsilon \mu_0 H_\theta \right) = \frac{jq\gamma^2}{k} \left(1 - \beta^2 \right) \frac{\partial E_s}{\partial r} = \frac{jq}{k} \frac{\partial E_s}{\partial r},\\ F_\theta &= q \left(E_\theta + \upsilon \mu_0 H_r \right) = \frac{jq\gamma^2}{k} \frac{1 - \beta^2}{r} \frac{\partial E_s}{\partial \theta} = \frac{jq}{kr} \frac{\partial E_s}{\partial \theta}. \end{aligned}$

Electric field longitudinal component in the vacuum:
axisym.
$$E_{s}^{vac} = Ce^{-jks} \left[K_{0} \left(\frac{k}{\gamma} \sqrt{a_{1}^{2} + r^{2} - 2a_{1}r\cos\theta} \right) - 2 \sum_{m=0}^{\infty} \frac{\alpha_{\text{TM}} \cos(m\theta)}{(1 + \delta_{m0})} I_{m} \left(\frac{ka_{1}}{\gamma} \right) I_{m} \left(\frac{kr}{\gamma} \right) \right],$$
Direct space-charge term Constants Wall term
flat
$$E_{s}^{vac} = Ce^{-jks} \left[K_{0} \left(\frac{k}{\gamma} \sqrt{x^{2} + (y - y_{1})^{2}} \right) - \sum_{m,n=0}^{\infty} \frac{\alpha_{mn} \cos[n(\theta - \frac{\pi}{2})]}{(1 + \delta_{m0})(1 + \delta_{n0})} I_{m} \left(\frac{ky_{1}}{\gamma} \right) I_{n} \left(\frac{kr}{\gamma} \right) \right],$$

In the "wall term": only first terms of the sums are relevant when sufficiently close to the orbit \rightarrow linear terms (*m*≤1, *n*≤2).

From E_s alone we can get the EM force in the vacuum:

$$\begin{array}{ll} \mbox{longitudinal} \\ \mbox{transverse (cyl. coordinates)} \\ F_r = q \left(E_r - v\mu_0 H_\theta \right) = \frac{jq\gamma^2}{k} \left(1 - \beta^2 \right) \frac{\partial E_s}{\partial r} = \frac{jq}{k} \frac{\partial E_s}{\partial r}, \\ F_\theta = q \left(E_\theta + v\mu_0 H_r \right) = \frac{jq\gamma^2}{k} \frac{1 - \beta^2}{r} \frac{\partial E_s}{\partial \theta} = \frac{jq}{kr} \frac{\partial E_s}{\partial \theta}. \end{array} \right) \\ F_y = q \left(E_y + v\mu_0 H_x \right) = \frac{jq\gamma^2}{k} \left(1 - \beta^2 \right) \frac{\partial E_s}{\partial x} = \frac{jq}{k} \frac{\partial E_s}{\partial y}, \\ F_y = q \left(E_y + v\mu_0 H_x \right) = \frac{jq\gamma^2}{k} \left(1 - \beta^2 \right) \frac{\partial E_s}{\partial y} = \frac{jq}{k} \frac{\partial E_s}{\partial y}, \end{array}$$

Electric field longitudinal component in the vacuum:
axisym.
$$E_{s}^{vac} = Ce^{-jks} \left[K_{0} \left(\frac{k}{\gamma} \sqrt{a_{1}^{2} + r^{2} - 2a_{1}r\cos\theta} \right) + 2\sum_{m=0}^{\infty} \frac{\alpha_{\text{TM}}\cos(m\theta)}{(1 + \delta_{m0})} I_{m} \left(\frac{ka_{1}}{\gamma} \right) I_{m} \left(\frac{kr}{\gamma} \right) \right],$$
Direct space-charge term Constants Wall term
flat
$$E_{s}^{vac} = Ce^{-jks} \left[K_{0} \left(\frac{k}{\gamma} \sqrt{x^{2} + (y - y_{1})^{2}} \right) + \sum_{m,n=0}^{\infty} \frac{\alpha_{mn}\cos[n(\theta - \frac{\pi}{2})]}{(1 + \delta_{m0})(1 + \delta_{n0})} I_{m} \left(\frac{ky_{1}}{\gamma} \right) I_{n} \left(\frac{kr}{\gamma} \right) \right],$$

In the "wall term": only first terms of the sums are relevant when sufficiently close to the orbit \rightarrow linear terms (*m*≤1, *n*≤2).

• From E_s alone we can get the EM force in the vacuum:

$$F_{r} = q (E_{r} - \upsilon \mu_{0}H_{r}) = \frac{jq\gamma^{2}}{k} (1 - \beta^{2}) \frac{\partial E_{s}}{\partial r} = \frac{jq}{k} \frac{\partial E_{s}}{\partial r},$$

$$F_{\theta} = q (E_{\theta} + \upsilon \mu_{0}H_{r}) = \frac{jq\gamma^{2}}{k} \frac{1 - \beta^{2}}{r} \frac{\partial E_{s}}{\partial \theta} = (\frac{jq}{kr} \frac{\partial E_{s}}{\partial \theta}.$$

$$F_{r} = q (E_{y} + \upsilon \mu_{0}H_{y}) = \frac{jq\gamma^{2}}{k} (1 - \beta^{2}) \frac{\partial E_{s}}{\partial x} \neq \frac{jq}{k} \frac{\partial E_{s}}{\partial x},$$

$$F_{y} = q (E_{y} + \upsilon \mu_{0}H_{x}) = \frac{jq\gamma^{2}}{k} (1 - \beta^{2}) \frac{\partial E_{s}}{\partial y} \neq \frac{jq}{k} \frac{\partial E_{s}}{\partial y},$$

• From EM force in vacuum, upon integration over a finite length *L* and normalization (by the test and sources charges) we obtain the **beam-coupling impedances** as simple functions of the first few α_{TM}^{m} (axisymmetric) or α_{mn} (flat) (freq. dependent).

- From EM force in vacuum, upon integration over a finite length *L* and normalization (by the test and sources charges) we obtain the **beam-coupling impedances** as simple functions of the first few α_{TM}^{m} (axisymmetric) or α_{mn} (flat) (freq. dependent).
- Keeping only constant & linear terms (dipolar terms proportional to source coordinates x₁ & y₁, quadrupolar ones to test coordinates x₂ & y₂):

- From EM force in vacuum, upon integration over a finite length *L* and normalization (by the test and sources charges) we obtain the **beam-coupling impedances** as simple functions of the first few α_{TM}^{m} (axisymmetric) or α_{mn} (flat) (freq. dependent).
- Keeping only constant & linear terms (dipolar terms proportional to source coordinates $x_1 \& y_1$, quadrupolar ones to test coordinates $x_2 \& y_2$):

$$\begin{array}{l} \text{mmetric} \\ Z_{\parallel}^{Wall} \approx \frac{j\omega\mu_{0}L}{2\pi\beta^{2}\gamma^{2}}\alpha_{\mathrm{TM}}^{0}(\omega), \\ \\ Z_{x}^{Wall} \approx \frac{jk^{2}Z_{0}L}{4\pi\beta\gamma^{4}} \left(\alpha_{\mathrm{TM}}^{1}(\omega)x_{1} + \alpha_{\mathrm{TM}}^{0}(\omega)x_{2}\right), \end{array}$$

Axisy

case

- From EM force in vacuum, upon integration over a finite length L and normalization (by the test and sources charges) we obtain the **beam-coupling impedances** as simple functions of the first few α_{TM}^{m} (axisymmetric) or α_{mn} (flat) (freq. dependent).
- Keeping only constant & linear terms (dipolar terms proportional to source coordinates $x_1 \& y_1$, quadrupolar ones to test coordinates $x_2 \& y_2$):

Axisymmetric case
$$Z_{\parallel}^{Wall} \approx \frac{j\omega\mu_{0}L}{2\pi\beta^{2}\gamma^{2}} \alpha_{\mathrm{TM}}^{0}(\omega),$$

$$Z_{x}^{Wall} \approx \frac{jk^{2}Z_{0}L}{4\pi\beta\gamma^{4}} \left(\alpha_{\mathrm{TM}}^{1}(\omega)x_{1} + \alpha_{\mathrm{TM}}^{0}(\omega)x_{2}\right),$$

case

- From EM force in vacuum, upon integration over a finite length *L* and normalization (by the test and sources charges) we obtain the **beam-coupling impedances** as simple functions of the first few α_{TM}^{m} (axisymmetric) or α_{mn} (flat) (freq. dependent).
- Keeping only constant & linear terms (dipolar terms proportional to source coordinates $x_1 \& y_1$, quadrupolar ones to test coordinates $x_2 \& y_2$):

mmetric

$$Z_{\parallel}^{Wall} \approx \frac{j\omega\mu_{0}L}{2\pi\beta^{2}\gamma^{2}}\alpha_{\mathrm{TM}}^{0}(\omega),$$

$$Z_{x}^{Wall} \approx \frac{jk^{2}Z_{0}L}{4\pi\beta\gamma^{4}} \left(\alpha_{\mathrm{TM}}^{1}(\omega)x_{1} + \alpha_{\mathrm{TM}}^{0}(\omega)x_{2}\right),$$

Axisv

case

- From EM force in vacuum, upon integration over a finite length *L* and normalization (by the test and sources charges) we obtain the **beam-coupling impedances** as simple functions of the first few α_{TM}^{m} (axisymmetric) or α_{mn} (flat) (freq. dependent).
- Keeping only constant & linear terms (dipolar terms proportional to source coordinates $x_1 \& y_1$, quadrupolar ones to test coordinates $x_2 \& y_2$):

- From EM force in vacuum, upon integration over a finite length *L* and normalization (by the test and sources charges) we obtain the **beam-coupling impedances** as simple functions of the first few α_{TM}^{m} (axisymmetric) or α_{mn} (flat) (freq. dependent).
- Keeping only constant & linear terms (dipolar terms proportional to source coordinates $x_1 \& y_1$, quadrupolar ones to test coordinates $x_2 \& y_2$):

$$\mathbf{ic} \begin{array}{l} Z_{\parallel}^{Wall} \approx \frac{j\omega\mu_{0}L}{2\pi\beta^{2}\gamma^{2}}\alpha_{\mathrm{TM}}^{0}(\omega), \\ Z_{x}^{Wall} \approx \frac{jk^{2}Z_{0}L}{4\pi\beta\gamma^{4}} \left(\alpha_{\mathrm{TM}}^{1}(\omega)x_{1} + \alpha_{\mathrm{TM}}^{0}(\omega)x_{2}\right), \end{array}$$

Axisymmetric

case

Flat case

$$\begin{split} Z_{\parallel}^{Wall} &\approx \frac{jkZ_{0}L}{2\pi\beta\gamma^{2}}\alpha_{00}(\omega), \\ Z_{x}^{Wall} &\approx \frac{jk^{2}Z_{0}L}{4\pi\beta\gamma^{4}} \left[-\left(\alpha_{00}(\omega) - \alpha_{02}(\omega)\right)x_{1} + \left(\alpha_{00}(\omega) - \alpha_{02}(\omega)\right)x_{2} \right], \\ Z_{y}^{Wall} &\approx \frac{jkZ_{0}L}{2\pi\beta\gamma^{3}} \left[\alpha_{01}(\omega) + \frac{\alpha_{11}(\omega)k}{\gamma}y_{1} + k\frac{\alpha_{00}(\omega) + \alpha_{02}(\omega)}{2\gamma}y_{2} \right]. \end{split}$$

- From EM force in vacuum, upon integration over a finite length *L* and normalization (by the test and sources charges) we obtain the **beam-coupling impedances** as simple functions of the first few α_{TM}^{m} (axisymmetric) or α_{mn} (flat) (freq. dependent).
- Keeping only constant & linear terms (dipolar terms proportional to source coordinates $x_1 \& y_1$, quadrupolar ones to test coordinates $x_2 \& y_2$):

Axisymmetric
case
$$Z_{\parallel}^{Wall} \approx \frac{j\omega\mu_{0}L}{2\pi\beta^{2}\gamma^{2}}\alpha_{\mathrm{TM}}^{0}(\omega),$$

$$Z_{x}^{Wall} \approx \frac{jk^{2}Z_{0}L}{4\pi\beta\gamma^{4}} \left(\alpha_{\mathrm{TM}}^{1}(\omega)x_{1} + \alpha_{\mathrm{TM}}^{0}(\omega)x_{2}\right),$$
Flat case
$$Z_{x}^{Wall} \approx \frac{jkZ_{0}L}{2\pi\beta\gamma^{2}} \left(\alpha_{00}(\omega) - \alpha_{02}(\omega)\right)x_{1} + \left(\alpha_{00}(\omega) - \alpha_{02}(\omega)\right)x_{2}\right],$$

$$Z_{y}^{Wall} \approx \frac{jkZ_{0}L}{4\pi\beta\gamma^{4}} \left[-\left(\alpha_{01}(\omega) - \alpha_{02}(\omega)\right)x_{1} + k\frac{\alpha_{00}(\omega) + \alpha_{02}(\omega)}{2\gamma}y_{2}\right].$$

- From EM force in vacuum, upon integration over a finite length *L* and normalization (by the test and sources charges) we obtain the **beam-coupling impedances** as simple functions of the first few α_{TM}^{m} (axisymmetric) or α_{mn} (flat) (freq. dependent).
- Keeping only constant & linear terms (dipolar terms proportional to source coordinates $x_1 \& y_1$, quadrupolar ones to test coordinates $x_2 \& y_2$):

Axisymmetric
Case
$$\begin{aligned}
Z_{\parallel}^{Wall} \approx \frac{j\omega\mu_{0}L}{2\pi\beta^{2}\gamma^{2}}\alpha_{\mathrm{TM}}^{0}(\omega), \\
Z_{x}^{Wall} \approx \frac{jk^{2}Z_{0}L}{4\pi\beta\gamma^{4}} \left(\alpha_{\mathrm{TM}}^{1}(\omega)x_{1} + \alpha_{\mathrm{TM}}^{0}(\omega)x_{2}\right), \\
Z_{\parallel}^{Wall} \approx \frac{jkZ_{0}L}{2\pi\beta\gamma^{2}}\alpha_{00}(\omega), \quad \begin{array}{c} \text{Constant term in vertical} \\
\text{when no top-bottom symmetry} \\
Z_{x}^{Wall} \approx \frac{jk^{2}Z_{0}L}{4\pi\beta\gamma^{4}} \left[-\left(\alpha_{00}(\omega) - \alpha_{02}(\omega)\right)x_{1} + \left(\alpha_{00}(\omega) - \alpha_{02}(\omega)\right)x_{2}\right], \\
Z_{y}^{Wall} \approx \frac{jkZ_{0}L}{2\pi\beta\gamma^{3}} \left[\alpha_{01}(\omega) + \frac{\alpha_{11}(\omega)k}{\gamma}y_{1} + k\frac{\alpha_{00}(\omega) + \alpha_{02}(\omega)}{2\gamma}y_{2}\right].
\end{aligned}$$

N. Mounet & E. Métral - 2D wall impedance theory - ICFA workshop in Erice - 26/04/2014

- From EM force in vacuum, upon integration over a finite length *L* and normalization (by the test and sources charges) we obtain the **beam-coupling impedances** as simple functions of the first few α_{TM}^{m} (axisymmetric) or α_{mn} (flat) (freq. dependent).
- Keeping only constant & linear terms (dipolar terms proportional to source coordinates $x_1 \& y_1$, quadrupolar ones to test coordinates $x_2 \& y_2$):

$$\begin{array}{l} \mbox{Axisymmetric}\\ \mbox{case} \end{array} \begin{array}{l} Z_{\parallel}^{Wall} \approx \frac{j\omega\mu_0 L}{2\pi\beta^2\gamma^2} \alpha_{\rm TM}^0(\omega), \\ Z_{w}^{Wall} \approx \frac{jk^2 Z_0 L}{4\pi\beta\gamma^4} \left(\alpha_{\rm TM}^1(\omega) x_1 + \alpha_{\rm TM}^0(\omega) x_2 \right), \end{array}$$

$$\begin{array}{l} \mbox{Flat case} \end{array} \begin{array}{l} Z_{\parallel}^{Wall} \approx \frac{jk Z_0 L}{2\pi\beta\gamma^2} \alpha_{00}(\omega), \\ Z_{\parallel}^{Wall} \approx \frac{jk^2 Z_0 L}{4\pi\beta\gamma^4} \left[(\alpha_{00}(\omega) - \alpha_{02}(\omega)) x_1 + (\alpha_{00}(\omega) - \alpha_{02}(\omega)) x_2 \right], \\ Z_{y}^{Wall} \approx \frac{jk Z_0 L}{2\pi\beta\gamma^3} \left[\alpha_{01}(\omega) + \frac{\alpha_{11}(\omega)k}{\gamma} y_1 + k \frac{\alpha_{00}(\omega) + \alpha_{02}(\omega)}{2\gamma} y_2 \right]. \end{array}$$

- From EM force in vacuum, upon integration over a finite length *L* and normalization (by the test and sources charges) we obtain the **beam-coupling impedances** as simple functions of the first few α_{TM}^{m} (axisymmetric) or α_{mn} (flat) (freq. dependent).
- Keeping only constant & linear terms (dipolar terms proportional to source coordinates $x_1 \& y_1$, quadrupolar ones to test coordinates $x_2 \& y_2$):

- From EM force in vacuum, upon integration over a finite length *L* and normalization (by the test and sources charges) we obtain the **beam-coupling impedances** as simple functions of the first few α_{TM}^{m} (axisymmetric) or α_{mn} (flat) (freq. dependent).
- Keeping only constant & linear terms (dipolar terms proportional to source coordinates $x_1 \& y_1$, quadrupolar ones to test coordinates $x_2 \& y_2$):

$$\text{ic} \begin{array}{l} Z_{\parallel}^{Wall} \approx \frac{j\omega\mu_{0}L}{2\pi\beta^{2}\gamma^{2}}\alpha_{\mathrm{TM}}^{0}(\omega), \\ \\ Z_{x}^{Wall} \approx \frac{jk^{2}Z_{0}L}{4\pi\beta\gamma^{4}} \left(\alpha_{\mathrm{TM}}^{1}(\omega)x_{1} + \alpha_{\mathrm{TM}}^{0}(\omega)x_{2}\right), \end{array}$$

Axisymmetric

case

Flat case

$$\begin{split} Z_{\parallel}^{Wall} &\approx \frac{jkZ_{0}L}{2\pi\beta\gamma^{2}}\alpha_{00}(\omega), \\ Z_{x}^{Wall} &\approx \frac{jk^{2}Z_{0}L}{4\pi\beta\gamma^{4}} \left[-\left(\alpha_{00}(\omega) - \alpha_{02}(\omega)\right)x_{1} + \left(\alpha_{00}(\omega) - \alpha_{02}(\omega)\right)x_{2} \right], \\ Z_{y}^{Wall} &\approx \frac{jkZ_{0}L}{2\pi\beta\gamma^{3}} \left[\alpha_{01}(\omega) + \frac{\alpha_{11}(\omega)k}{\gamma}y_{1} + k\frac{\alpha_{00}(\omega) + \alpha_{02}(\omega)}{2\gamma}y_{2} \right]. \end{split}$$

Note: it is easy to go to higher order than linear !

 25mm-thick graphite of radius 1.5 mm (surrounded by stainless steel), compared to classic formula:

N. Mounet & E. Métral - 2D wall impedance theory - ICFA workshop in Erice - 26/04/2014

 25mm-thick graphite of radius 1.5 mm (surrounded by stainless steel), compared to classic formula:

Low frequencies: importance of general theory w.r.t classic formula (factor ~10 for imag. part, >100 for real part)

N. Mounet & E. Métral - 2D wall impedance theory - ICFA workshop in Erice - 26/04/2014

 25mm-thick graphite of radius 1.5 mm (surrounded by stainless steel), compared to classic formula:

Low frequencies: importance of general theory w.r.t classic formula (factor ~10 for imag. part, >100 for real part)

 Intermediate frequencies: classic formula valid (skin depth approximation).

N. Mounet & E. Métral - 2D wall impedance theory - ICFA workshop in Erice - 26/04/2014

 25mm-thick graphite of radius 1.5 mm (surrounded by stainless steel), compared to classic formula:

Low frequencies: importance of general theory w.r.t classic formula (factor ~10 for imag. part, >100 for real part)

 Intermediate frequencies: classic formula valid (skin depth approximation).

High frequencies: resonance + new quadrupolar term (in this theory only).

N. Mounet & E. Métral - 2D wall impedance theory - ICFA workshop in Erice - 26/04/2014

Flat chamber results: comparison to Tsutsui's formalism

 For 3 layers (LHC copper-coated graphite collimator - 10μm Cu, half-gap 2mm), comparison with Tsuitsui's model (LHC project note 318) on a rectangular geometry, the two other sides being taken far enough apart:

N. Mounet & E. Métral - 2D wall impedance theory - ICFA workshop in Erice - 26/04/2014

Flat chamber results: comparison to Tsutsui's formalism

 For 3 layers (LHC copper-coated graphite collimator - 10μm Cu, half-gap 2mm), comparison with Tsuitsui's model (LHC project note 318) on a rectangular geometry, the two other sides being taken far enough apart:

 \Rightarrow Very good agreement between the two approaches.

N. Mounet & E. Métral - 2D wall impedance theory - ICFA workshop in Erice - 26/04/2014

Flat chamber results: comparison to Tsutsui's formalism

 For 3 layers (LHC copper-coated graphite collimator - 10μm Cu, half-gap 2mm), comparison with Tsuitsui's model (LHC project note 318) on a rectangular geometry, the two other sides being taken far enough apart:

N. Mounet & E. Métral - 2D wall impedance theory - ICFA workshop in Erice - 26/04/2014

 \Rightarrow Very good agreement between the two approaches.

⇒ Can compute
 impedance for many
 layers (particularly
 interesting for coating
 – difficult to simulate
 in 3D EM codes)

Form factors flat / axisymmetric

• Ratio of flat chamber impedances w.r.t longitudinal and transverse dipolar axisymmetric ones \rightarrow generalize Yokoya factors (Part. Acc., 1993, p. 511). In the case of a single-layer ceramic (hBN) at 450 GeV:

N. Mounet & E. Métral - 2D wall impedance theory - ICFA workshop in Erice - 26/04/2014

Form factors flat / axisymmetric

• Ratio of flat chamber impedances w.r.t longitudinal and transverse dipolar axisymmetric ones \rightarrow generalize Yokoya factors (Part. Acc., 1993, p. 511). In the case of a single-layer ceramic (hBN) at 450 GeV:

⇒In this particular case, frequency dependent form factors quite ≠ from the Yokoya factors (was first observed with other means by B. Salvant et al *IPAC'10*, p. 2054).

⇒We can get such form factors for any material or material combination (i.e. several layers).

N. Mounet & E. Métral - 2D wall impedance theory - ICFA workshop in Erice - 26/04/2014

Wake functions

• Wake functions are the Fourier transforms of the impedances, e.g.

 $W_x(\tau) = -\frac{j}{2\pi} \int_{-\infty}^{\infty} \mathrm{d}\omega e^{j\omega\tau} Z_x(\omega), \text{ for a test particle at } \tau \text{ seconds behind the source}$

In principle, straighforward to obtain from the impedances: "do an FFT". In practice, usual method with discrete Fourier transform (DFT) with evenly spaced frequency mesh not accurate enough when dealing with large frequency range.

Wake functions

• Wake functions are the Fourier transforms of the impedances, e.g.

 $W_x(\tau) = -\frac{j}{2\pi} \int_{-\infty}^{\infty} \mathrm{d}\omega e^{j\omega\tau} Z_x(\omega), \text{ for a test particle at } \tau \text{ seconds behind the source}$

In principle, straighforward to obtain from the impedances: "do an FFT". In practice, usual method with discrete Fourier transform (DFT) with evenly spaced frequency mesh not accurate enough when dealing with large frequency range.

N. Mounet & E. Métral - 2D wall impedance theory - ICFA workshop in Erice - 26/04/2014

N. Mounet & E. Métral - 2D wall impedance theory - ICFA workshop in Erice - 26/04/2014

N. Mounet & E. Métral - 2D wall impedance theory - ICFA workshop in Erice - 26/04/2014

N. Mounet & E. Métral - 2D wall impedance theory - ICFA workshop in Erice - 26/04/2014

Possible extensions

What happens when source and test particles have different velocities ?
 e.g. let's look at radial force in axisymmetric chamber:

$$\mathbf{F}_r = q \left(E_r - \upsilon \mu_0 H_\theta \right) = \frac{jq\gamma^2}{k} \left(1 - \beta^2 \right) \frac{\partial E_s}{\partial r} = \frac{jq}{k} \frac{\partial E_s}{\partial r},$$

Possible extensions

What happens when source and test particles have different velocities ?
 e.g. let's look at radial force in axisymmetric chamber:

$$\mathbf{F}_r = q \left(E_r - \upsilon \mu_0 H_\theta \right) = \frac{jq\gamma^2}{k} \left(1 - \beta^2 \right) \frac{\partial E_s}{\partial r} = \frac{jq}{k} \frac{\partial E_s}{\partial r}, \text{ Not valid anymore}$$

Possible extensions

What happens when source and test particles have different velocities ?
 e.g. let's look at radial force in axisymmetric chamber:

$$\mathbf{F}_r = q \left(E_r - \upsilon \mu_0 H_\theta \right) = \frac{jq\gamma^2}{k} \left(1 - \beta^2 \right) \frac{\partial E_s}{\partial r} = \frac{jq}{k} \frac{\partial E_s}{\partial r}, \text{ Not valid anymore}$$

 \rightarrow instead we have:

$$F_r = q \left(E_r - v_{test} \mu_0 H_\theta \right)$$

= $\frac{jq\gamma_{source}^2}{k} \left[\left(1 - \beta_{test} \beta_{source} \right) \frac{\partial E_s}{\partial r} + \left(\beta_{source} - \beta_{test} \right) \frac{Z_0}{r} \frac{\partial H_s}{\partial \theta} \right],$

Thanks to G. Rumolo
What happens when source and test particles have different velocities ?
 e.g. let's look at radial force in axisymmetric chamber:

$$\mathbf{F}_r = q \left(E_r - v \mu_0 H_\theta \right) = \frac{jq\gamma^2}{k} \left(1 - \beta^2 \right) \frac{\partial E_s}{\partial r} = \frac{jq}{k} \frac{\partial E_s}{\partial r}, \text{ Not valid anymore}$$

 \rightarrow instead we have:

$$F_{r} = q \left(E_{r} - v_{test}\mu_{0}H_{\theta}\right)$$

$$= \frac{jq\gamma_{source}^{2}}{k} \left[\left(1 - \beta_{test}\beta_{source}\right)\frac{\partial E_{s}}{\partial r} + \left(\beta_{source} - \beta_{test}\right)\frac{Z_{0}}{r}\frac{\partial H_{s}}{\partial \theta} \right]$$

Thanks to G. Rumolo

What happens when source and test particles have different velocities ?
 e.g. let's look at radial force in axisymmetric chamber:

$$F_r = q \left(E_r - v \mu_0 H_\theta \right) = \frac{jq\gamma^2}{k} \left(1 - \beta^2 \right) \frac{\partial E_s}{\partial r} = \frac{jq}{k} \frac{\partial E_s}{\partial r}, \text{ Not valid anymore}$$

 \rightarrow instead we have:

$$F_{r} = q \left(E_{r} - v_{test} \mu_{0} H_{\theta} \right)$$

$$= \frac{j q \gamma_{source}^{2}}{k} \left[\left(1 - \beta_{test} \beta_{source} \right) \frac{\partial E_{s}}{\partial r} + \left(\beta_{source} - \beta_{test} \right) \frac{Z_{0}}{r} \frac{\partial H_{s}}{\partial \theta} \right]$$

Thanks to G. Rumolo

 \Rightarrow Radial force now also depends on H_s and can be very different.

Example: AWAKE experiment at CERN (electron beam circulating in same chamber as proton beam)

• What about multilayer elliptic chambers ?

→ in principle can be handled with the same ideas, using the following change of variables – or conformal map (Palumbo-Vaccaro II Nuevo Cimento 89A:243, Gluckstern et al Phys. Rev. E 47:656, Piwinski DESY 94-068):

 $\begin{aligned} x &= c \cosh u \cos v, \\ y &= c \sinh u \sin v. \end{aligned}$

c= ellipse linear eccentricity (or focal distance)

• What about multilayer elliptic chambers ?

→ in principle can be handled with the same ideas, using the following change of variables – or conformal map (Palumbo-Vaccaro II Nuevo Cimento 89A:243, Gluckstern et al Phys. Rev. E 47:656, Piwinski DESY 94-068):

 $\begin{aligned} x &= c \cosh u \cos v, \\ y &= c \sinh u \sin v. \end{aligned}$

c= ellipse linear eccentricity (or focal distance)

Separation of variables leads to Mathieu differential equations:

$$U''(u) + U(u) \left[K_u + c^2 (k^2 - \omega^2 \varepsilon_c \mu) \cosh^2 u \right] = 0,$$

$$V''(v) + V(v) \left[K_v + c^2 (k^2 - \omega^2 \varepsilon_c \mu) \cos^2 v \right] = 0,$$

• What about multilayer elliptic chambers ?

→ in principle can be handled with the same ideas, using the following change of variables – or conformal map (Palumbo-Vaccaro II Nuevo Cimento 89A:243, Gluckstern et al Phys. Rev. E 47:656, Piwinski DESY 94-068):

 $\begin{aligned} x &= c \cosh u \cos v, \\ y &= c \sinh u \sin v. \end{aligned}$

c= ellipse linear eccentricity (or focal distance)

Separation of variables leads to Mathieu differential equations:

$$U''(u) + U(u) \left[K_u + c^2 (k^2 - \omega^2 \varepsilon_c \mu) \cosh^2 u \right] = 0,$$

$$V''(v) + V(v) \left[K_v + c^2 (k^2 - \omega^2 \varepsilon_c \mu) \cos^2 v \right] = 0,$$

 \Rightarrow provided all layer boundaries are ellipses with same eccentricities (confocal), we can in principle apply the same formalism as in cylindrical, replacing:

- cosines and sines by periodic Mathieu functions,
- modified Bessel functions by modified Mathieu functions,

and of course re-doing the decompositions & field matching accordingly...

Conclusions

- For multilayer axisymmetric chambers, Zotter formalism has been extended to all orders of non-linearity, and its implementation improved thanks to the matrix formalism for the field matching → the number of layers is no longer an issue.
- For multilayer flat chambers, a new theory similar to Zotter's has been derived, giving also impedances without any assumptions on the materials conductivity, on the frequency or on the beam velocity.
- Both these theories were benchmarked.
- An efficient algorithm to compute wake functions from impedances spreading over a large frequency range, using a non-equidistant discretization, has been developped.

 \Rightarrow Implemented in codes (Rewall, ImpedanceWake2D, available at http://impedance.web.cern.ch), used for various machines (LHC, HL-LHC, PS, SPS, CLIC, FCC,TLEP).

- Possible extensions could be investigated:
 - case with different source and test velocities (relatively easy),
 - multilayer elliptic chamber (more difficult).

Thank you for your attention !