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Outline of the talk

Approximations in the theory of wakefields

Optical model

Parabolic equation (PE) for calculation of wakefields

Scaling properties of the impedance in PE

How to calculate wakefield of point charge in simulations?

I will talk about geometrical impedance assuming perfectly
conducting walls.
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Motivation: short bunches

RMS bunch lengths in future lepton accelerators

PEP-X 5 mm

CEPC 3 mm

TLEP-W 2.2 mm

ILC 300 µm

LCLS-II 25 µm

We have to compute wakefields for shorter and shorter bunches!

Calculation of wakefields is more difficult for long, small-angle
tapers.

The difficulty is associated with a small parameter σz/b, where b
is the typical size of the structure (in the vacuum chamber) that
generates the impedance. On the other hand the small parameter
allows us to develop approximate analytical theories and use them
for numerical calculations.
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Perturbation theory and precise calculations

There is nothing bad in using approximate equations!

Theory: QED
Small parameter: α ≈ 1/137
Relative precision of calculations: 10−11
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Optical approximation

The wake in bunch of length σz is formed by wavelengths k ∼ 1/σz.

In electromagnetic theory the
limit k→ ∞ corresponds to
optics (the wavelength is much
smaller than the size of the
objects). Hence in the limit
σz → 0 there should be an analog
of optical theory for wakefields.

A general theory of wakefields in optical approximation was
developed in1. The advantage of this approach is that it allows to
easily calculate the wakes for even 3D, non-axisymmetric
geometries.

1
Stupakov, Bane, Zagorodnov, PRST-AB 10, 054401 (2007); Bane, Stupakov, Zagorodnov, PRST-AB 10,

074401 (2007).
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Impedance and wake in optical approximation

In the optical regime:
Z‖ is real and independent of fre-

quency; wake of a point charge w‖ ∝
δ(z) and wake of a bunch with distribu-
tion λ(z):

W‖(z) ∝ λ(z)

Z⊥ is also real and depends on fre-

quency as ω−1; point charge wake w⊥ ∝
h(z), and wake of bunch distribution is

W⊥(z) ∝
∫z
λ(z ′)dz ′ The longitudinal impedance of a

step transition does not depend on
ω at high frequencies.

(Figure from 2).

2
Heifets, Kheifets, RMP, 63, 631, 1991.
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Limitations of the optical model

The optical theory neglects the diffraction effects. It predicts zero
impedance for the pillbox cavity.

Pillbox cavity. Diffraction theory
gives the longitudinal impedance
for a cavity

Z‖,diff =
2(1+ i)

π1/2

√
l

cb2ω
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Example: σz = 6 and 2 mm, transverse wake
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Depth h: 1 cm (blue), 0.5 cm (magenta) and 0.25 cm (blue). The
dashed lines of the same color show the corresponding wakes computed
with the optical model.
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More Complicated Transitions

X1: misaligned flat beam pipes 
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Cases considered:

misaligned flat beam pipes

LCLS rectangular-to-round
transition

Cross-section view (left) and longitu-
dinal view (right) of rectangular-to-
round transition.
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A pair of LCLS transitions in perspec-
tive view.
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Parabolic equation

The parabolic equation is used:

In diffraction theory. Proposed by M. A. Leontovich in 1944.
Applied to various diffraction problems by V. Fock in 40-50.

In the FEL theory.

To compute synchrotron radiation of relativistic particles in
toroidal pipe3.

Synchrotron radiation of relativistic particles can be treated using
the parabolic equation 4.

3
Stupakov, Kotelnikov, PRST-AB 6, 034401 (2003); Agoh, Yokoya, PRST-AB 7, 054403 (2004).

4
Geloni et al., DESY Report 05-032, (2005).
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Parabolic equation

The Fourier transformed electric field Ê and the longitudinal component
of the current ĵs are written with the additional factor e−iks:

Ê(x, y, s,ω) = e−iks
∫∞
−∞ dt e

iωt E(x, y, s, t)

ĵs(x, y, s,ω) = e−iks
∫∞
−∞ dt e

iωt js(x, y, s, t)

where k ≡ ω/c. One also introduces the transverse component of the
electric field Ê⊥ as a two-dimensional vector Ê⊥ = (Êx, Êy), and the
longitudinal component of the electric field Ês.

It is assumed that Ê⊥ ĵs are “slow” functions of s, such that ∂/∂s� k.
It means that we are interested in components of the field propagating in
the positive direction of s at small angles to the axis. In particular, we
neglect a part of the field propagating in the negative direction of s.
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Parabolic equation

From the wave equation for the field it follows that 5

∂

∂s
Ê⊥ =

i

2k

(
∇2⊥Ê⊥ +

2k2x

R
Ê⊥ −

4π

c
∇⊥ ĵs

)
where ∇⊥ = (∂/∂x, ∂/∂y), R is the radius of curvature (for a straight
pipe R−1 → 0, s→ z). The longitudinal electric field can be expressed
through the transverse one and the current

Ês =
i

k

(
∇⊥ · Ê⊥ −

4π

c
ĵs

)
A remarkable feature of this equation is that Ê⊥ varies in s over the
distance much larger than λ = k−1.
In contrast to the optical approximation PE takes into account diffraction
effects (the pillbox impedance is derivable from PE). It is valid for high
frequencies, and especially good for small-angle transitions.

5
G. Stupakov, New Journal of Physics 8, 280 (2006); G. Stupakov, Reviews of Accelerator Science and

Technology 3, 3956 (2010).
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Impedance scaling in PE

Analysis shows that the longitudinal impedance ZL(ω) in a small-angle
geometry (3D, in general), with characteristic length L in z-direction is

ZL(ω) = F
(ω
L

)
Compute impedance for a short structure, Z 1

n
L, and use the scaling law

ZL(ω) = ZL/n

(ω
n

)
Translating the impedance into the longitudinal wake we find

wL,σz
(s) = nwL/n,nσz

(ns)

For the transverse wake

w
(t)
L,σz

(s) = w
(t)
L/n,nσz

(ns)

The computational time in 2D reduces by n3.
14/35



Practical example of using the scaling property

The nominal LCLS-II bunch length is σz = 25 µm. The beam is
accelerated in SC RF cavities, with a cryomodule housing 8
nine-cell cavities. The length of the cryomodule is ∼12 m. It is
important to calculate the cavity heating due to the energy
deposited by the beam through the wakefield.
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Practical example of using the scaling property

One wake was calculated with σz = 25 µm for two cryomodules
(3.5 days run time), the other was calculated for σz = 200 µm in
the cryomodule geometry shrunk 8 times longitudinally (40 min
run time).
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Real geometry (left) and scaled geometry (right).
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Practical example of using the scaling property

Surprisingly, the scaling works very well for the cavities.

wL(s) = 8w 1
8
L (8s)
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After rescaling the results agree very well!
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How to calculate wakefield of point charge in simulations?

In paper6 we suggested a method how to calculate short bunch
wake-potentials, and even point-charge wakefields, running an EM
solver for a relatively long bunch. This approach can save greatly
on calculation speed and provides physics insights.

The idea behind the method is to use a combination of computer
simulations with an analytical form of the wakefield for a given
geometry in the limit σz → 0.

6
Podobedov, Stupakov, PRST-AB 16, 024401 (2013)
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Basic idea illustrated on step-out transition

Consider a particular example of the wake-potential of a short
bunch passing through a step-out transition from radius rmin to
rmax.

The plot of the wake-potential Wσ(z) in this case, for several
values of σ, is shown. With decreasing σ, the wake-potential
becomes larger inside the bunch; in the limit σ→ 0, it diverges as
1/σ. The singular part of the wake in the limit σ→ 0 is provided
by the optical model.
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Basic idea

In the limit σ→ 0 the optical model gives

Wδ
s (z) = −

Z0c

π
δ(z) ln

rmax

rmin

Using this as a Green function,

Wσ
s = −

Z0c

21/2π3/2σ
ln
rmax

rmin
e−z

2/2σ2

Subtracting it from the wake we introduce the difference

Dσ(z) =Wσ(z) −Wσ
s
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Basic idea

Plot of Dσ(z)

When σ→ 0 this function approaches a well defined limit shown
by the solid line. We denote this limit by Dδ(z),
Dδ(z) = limσ→0Dσ(z).
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Basic idea

In the vicinity of point z = 0 Dδ can be approximated

Dδ(z) ≈ (α+ βz)h(z),

where H(z) is the step function (h = 1 for z > 0 and h = 0
otherwise). Then

Dσ(z) =

∫
dz ′λ(z+ z ′)Dδ(z ′)

=
α+ βz

2

(
1+ erf

(
z√
2σ

))
+
βσ√
2π
e−z

2/2σ2

The crucial element of the method is that α and β can be
obtained from simulations running a relatively long bunch through
the system and fitting to the formula above.
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Basic idea

Comparing this with the simulated Dσ(z) in the region z < 3σ one
can find the parameters α and β and thus to establish the
dependence of Dδ(z) in this region. After Dδ(z) is found, we have
the wakefield of the point charge

Wδ(z) =Wδ
s +Dδ(z),

[note that Wδ
s is a delta-function].

The particular form of the singular part of the wake-potential, Wδ
s ,

is determined by the high-frequency limit of the impedance for a
given geometry; in most cases it can be found in the literature.
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Pill-box cavity

From the diffraction model, the singular part of the wake in the
limit σ→ 0

Wδ
s = κz−1/2h(z), κ = −

Z0c

π2a

√
g

2

Wσ
s =

κ

σ
1
2

f
( z
σ

)
, f(s) = e−

s2

4

√
π|s|

8

[
I− 1

4

(
s2

4

)
+ sign(s)I 1

4

(
s2

4

)]
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Pill-box cavity

Cavity wake with the singular part subtracted, Dσ(z). One can see
the same step-like structure Dδ(z) ≈ (α+ βz)h(z) in the limit
σ→ 0.
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How to choose σ for simulations? λg parameter

The representation Dδ(z) ≈ (α+ βz)H(z) is valid in some vicinity
of z = 0. For many geometries there exists a limiting length, which
we denote by λg, beyond which this representation cannot be
extended. In some cases the wake has another singularity at
z = λg, in other cases it can be a discontinuity of the wake or a
singularity of its derivative with respect to z.
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Explanation of spikes on the wake

Λg

Multiple reflections from the angles of the structure lead to
secondary wake spikes.
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Pill-box cavity

Λg

For this example λg =
√

(2a)2 + g2 − g = 1.24 cm.
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More complicated geometries

More complicated structures can be analyzed in a similar way.
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How it all works together

Determine analytical singular wake model: Wδ
s (z)&W

σ
s (z)

Determine λg

Calculate the wake-potential with your favorite EM solver for
σ0 � λg: Wσ0

ECHO(z)

Subtract the singular wake: Dσ0(z) =Wσ0
ECHO(z) −W

σ0
s (z)

Fit the remainder, Dσ0(z), with the function (fit range

|z/σ0| < 3 works well): α+βz
2

(
1+ erf

(
z√
2σ0

))
+ βσ0√

2π
e−z

2/2σ20

Short-bunch wake (for arb. σ < σ0) is then Wσ(|z| < 3σ0) =
α+βz
2

(
1+ erf

(
z√
2σ

))
+ βσ√

2π
e−z

2/2σ2 +Wσ
s (z) and

Wσ(|z| > 3σ0) =W
σ0
ECHO(z)

For point-charge: Wδ(|z| < 3σ0) = (α+βz)h(z) +Wδ
s (z) and

Wσ(|z| > 3σ0) =W
σ0
ECHO(z)
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The method was applied to many geometries

It worked well for all of them.
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Practical example: NSLS-II Landau cavity

•1.5 GHz dual cell cavity, rside pipe = 6
cm
•Final results for the short-range wakes:

To find 10 µm bunch wake:
Brute force: 480 hours of
Intel(R) Xeon(R) 5570@2.93
Ghz CPU to zmax = 1 cm.
Our method: uses only
σ = 50 µm bunch, saves a
factor of 53 on CPU time
and 52 on memory. Gives a
model of the point-charge
wake as a bonus.
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3D
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Conclusions

For large and smooth accelerator structures, and short
bunches, direct EM solver calculations can be extremely time
and memory-consuming. Using approximate methods that
employ the small geometric parameters greatly facilitates the
numerical problem.

We developed a new method to accurately obtain wakefields
of short bunches, including that of a point-charge, by
combining a (processed) long-bunch wake from an EM solver
and a singular analytical wake model.

We showed that this method often provides great savings in
computing time required to calculate wake-potentials due to
very short bunches. The method resolves an important
practical question, as to how short of a bunch one needs to
use in an EM solver, so that shortening this bunch further
would not result in any new information about the wake.
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