

Targeted Alpha Therapy from bench to bedside - overview of activities at JRC-ITU

F. Bruchertseifer, A. Morgenstern, C. Apostolidis

European Commission
Joint Research Centre
Institute for Transuranium Elements
Karlsruhe
Germany

Therapeutic advantages of alpha emitting radionuclides

 Alpha radiation has high energy (4–9 MeV), high LET (~100 keV/μm) and short range in human tissue (< 0,1 mm)

=> Alpha radiation provides very effective and selective cell kill

Choice of alpha emitter

- Clinically relevant alpha emitters include
 ²²³Ra, ²²⁵Ac/²¹³Bi, ²¹¹At, ²¹²Pb/²¹²Bi
- Clinical experience in targeted alpha therapy available mostly with 225 Ac ($T_{1/2}=9.9$ days) and 213 Bi ($T_{1/2}=46$ min)
- ²¹³Bi is available from an established ²²⁵Ac / ²¹³Bi radionuclide generator
- ²¹³Bi and ²²⁵Ac readily form stable complexes with antibodies and peptides; imaging with ⁶⁸Ga-labeled analogs possible

Production of ²²⁵Ac / ²¹³Bi

- To date: Radiochemical extraction from ²²⁹Th sources
- 3 suppliers available worldwide (ITU, ORNL, IPPE)
- Yearly supply (approx. 60 GBq) sufficient for treatment of up to 200 patients

The future: Accelerator driven production of ²²⁵Ac / ²¹³Bi

- Proton irradiation of ²²⁶Ra in medium energy cyclotrons ²²⁶Ra(p,2n)²²⁵Ac
- Thick target yield: 18 MBq/µAh at 25 MeV
 - => basis for widespread commercial application

²²⁵Ac/²¹³Bi generator operation

Today: semi-automated generator operation and radioconjugate synthesis

Future: fully automated generator operation and radioconjugate synthesis

(in

(image courtesy of Dr. R. Knopp, Eurotope)

ITU's pre-clinical and clinical collaborations

²¹³Bi-DOTATOC therapy of NETs

- Therapeutic options for metastatic NET refractory to betaradiation PRRT (90Y/177Lu) are limited
- Alpha-emitters have been shown to break radioresistance to beta- and gamma-radiation as well as resistance to chemotherapy in vitro*
 - => NET patients refractory to beta therapy might benefit from peptide receptor alpha therapy
- Drugs labeled with the short-lived alpha emitter 213 Bi $(T_{1/2} = 46 \text{ min})$ require rapid tumor targeting
- Intra-arterially administration of DOTATOC accelerates and increases tumor-uptake

Clinical testing – Methods

- Patients: 21 patients with unresectable NET refractory to standard therapies, including beta-emitter labeled DOTATOC, received ²¹³Bi-DOTATOC as experimental therapy
- Mode of administration: Intra-arterial injection into the main tumor feeding vessel
- Kidney protection: amino acid co-infusion, gelofundin
- Response assessment: MRI, ⁶⁸Ga-DOTATOC-PET/CT, Digital subtraction angiography, contrast enhanced ultrasound, Chromogranin A

Dose escalation:

Single dose: ≤ 10.5 GBq

Cumulative dose: ≤ 21 GBq

Toxicity (1.5 – 3 years follow up):

- 2 cases of Radiation induced pneumonitis
 10.5 GBq single dose (1/1) => dose escalation halted
 15 GBq in 3 cycles within 16 weeks (1/7)
 mild symptoms, outpatient treatment with good response to steroids
- 1 case of AML with typical radiation induced chromosomal aberrations 2 years after initiation of ²¹³Bi-DOTATOC (pre-treatment 3 x 4 GBq Y-90-DOTATOC, 4 x 2 GBq Y-90 + 4 GBq Lu-177-DOTATOC, 8 GBq Lu-177-DOTATOC)

 Death 5 months later
- Temporary hair loss > 6 GBq single dose (4/7)
- Grade 1-2 kidney toxicity (4/21)

Case (61y, f)
Partial response to 3 cycles of ⁹⁰Y-DOTATOC, then refractory

=> CR in liver lesions and primary tumor (ongoing, 37 months)

Case: (40y, f) pulmonal carcinoid with hepatic metastases Pre-treatment: Chemotherapy (carboplatin/vepesid), "cold" octreotide, ⁹⁰Y-DOTATOC; progressive; risk of occlusion of caval and hepatic vein

=> PR (ongoing, > 2,5 years)

Case: (60y, f) hepatic and bone metastases history of grade IV hematotoxicity after ⁹⁰Y-DOTATOC treatment

- => PR of liver lesions and bone metastases (lasting > 2 years)
- => no hematotoxicity

Peptide receptor alpha therapy of glioblastoma multiforme

- Glioblastoma multiforme (GBM) is the most common and aggressive malignant primary brain tumor in humans
- Incidence: 2–3 cases per 100,000 in Europe and North America

The median survival time is 14.6 months from time of diagnosis, in spite of aggressive surgery, radiation therapy and chemotherapy

Targeted alpha therapy with ²¹³Bi-DOTA-Substance P

- Targeting vector: DOTA-[Thi⁸, Met(O₂)¹¹] Substance P adresses NK1-receptor
- ²¹³Bi-Substance P kills GBM cells and GBM stem cells effectively in vitro
- Intracavitary / intratumoral administration of low molecular weight peptide provides rapid tumor targeting
- Pilot study conducted at University Hospital Basel has shown feasibility, safety and therapeutic efficacy of intratumoral application (Cordier et al, EJNMMI 2010;37(7):1335-44)

Treatment of recurrent GBM

- All patients receive standard treatment (surgery + radiochemotherapy)
- Recurrence => 2nd resection,
 placement and testing of catheter
- Intracavitary / intratumoral injection of 2 GBq ²¹³Bi-substance P every 2 months
 - => monitoring of toxicity and overall survival
- To date 24 recurrent GBM patients treated 1 to 5 times (since April 2012)

Administered activities of ²¹³Bi-substance P (1-5 cycles)

Interim results of phase I study

- Current follow up period: 2 to 18 months
- 24 patients with recurrent GBM treated with 1.1 to 9.2 GBq ²¹³Bi-SubstanceP in 1 to 5 cycles
- Intracavitary / intratumoral injection of ²¹³Bi-substance P is tolerated well
- Only mild, temporary adverse effects observed up to 9.2 GBq ²¹³Bi-SP (edema, epileptic seizures, aphasia)
- Co-injection of ⁶⁸Ga-DOTA-Substance P allows imaging of biodistribution with PET
- Patient recruitment and dose escalation ongoing

Alternative Radionuclides under development

U-230 / Th-226 system

- parent nuclide U-230: $T_{1/2}$ = 20.8 days => long generator lifetime
- Th-226 emits cascade of 4 alpha-particles of 27.7 MeV cumulative energy
 high cytotoxicity
- $T_{1/2}$ of daughter nuclides: 164 µs 38 s => translocation from target site limited
- tetravalent Th(IV) forms very stable complexes
 straightforward labelling protocols and high *in vivo* stability
- Th-227 ($T_{1/2}$ = 18.7 d) for biodistribution studies and Th-232 for structural characterisation of chelate complexes

Production of U-230

Th-232 (p,3n) Pa-230 \Rightarrow U-230

X-ray image of Th-232 metal disc in Al envelope

Th-232 target and water cooled high current target holder

- + simple irradiation of low radioactive Th-232 metal
- + isotopically pure U-230 product
- only moderately effective (approx. 0.24 MBq/µAh for thick targets)
- co-production of fission products (Th-232(p,f))

Acknowledgements

Institute for Transuranium Elements

Christos Apostolidis Alfred Morgenstern Mirjam Weis

Oak Ridge National Laboratory

Rose Boll Saed Mirzadeh Karen Murphy

Medical University Warsaw

Leszek Krolicki Bartosz Krolicki Jolanta Kunikowska Henryk Koziara

University Hospital Heidelberg

Clemens Kratochwil Frederik Giesel Uwe Haberkorn

Institute for Health and Consumer Protection Ispra

Kamel Abbas, Uwe Holzwarth, Frederica Simonelli

The authors are indebted for use of Ac-225/Bi-213 to the U.S. Department of Energy's, Office of Nuclear Physics, Isotope Development and Production for Research and Applications Program

