

Superconducting Links for the LHC machine

A. Ballarino, CERN

JRT-CERN Collaboration Workshop CERN, 27 January 2014

Outline

- Introduction to the activity
- SC Links for LHC: project overview
 - Motivations, application to LHC upgrades
 - Conductor, cables and system development
 - Project timeline
- Funded European Projects
 - Collaborations (industry and laboratory)
 - Electrical transmission via SC links: from accelerator technology to smart energy network

TE-MSC

Magnets, Superconductors & Cryostats Staff Members

Superconductors & Superconducting Devices:

SC materials, wires, tapes and cables for the CERN accelerators (HTS and LTS).

SC devices.

3ANUARY 2014

SC laboratory. ITER Reference Laboratory

Electrical transfer in LHC

LHC Powering Layout

Superconducting Links for LHC:

Remote powering of LHC superconducting magnets

Removal of current leads and power converters to easily accessible radiation-free areas

LHC P7

LHC P7: Cleaning Insertions

Underground Installation

Superconducting Link at LHC P1 and P5

Superconducting Links Characteristics

LHC P7

2 Links, Each ~ 500 m long
50 Cables per link rated at 600 A

Removal of LHC cryostats from tunnel Underground installation

LHC P1 and P5

2+2 Links, Each ~ 300 m long

42 Cables per link rated at up to 20 kA

Upgrade of Hi-Luminosity Triplets Surface Installation

Superconducting Links Characteristics

Maximum operating temperature of the cable = 25 K Operation in self-field (B <1 T)

MgB₂ Conductor

- ➤ Low cost (Euro/kA·m). This makes possible applications where a significant quantity of conductor is required
- ➢ Good electrical performance in the fields of interest for electrical transfer lines (< 1T)</p>
- Possibility of operating at higher temperatures (Tc=39 K)
 relaxed conditions for the cryogenic system (temperature margin)
- Possibility of using He gas for cooling the cold powering system – from room temperature down to the liquid helium magnets environment

MgB₂ Round wire development

 $1.6 \times 1.6 \text{ mm}^2$ $1.1 \times 1.1 \text{ mm}^2$

Ni Matrix 12 MgB₂ filaments Cu core – Fe barrier ff \sim 14 %

Monel Matrix $30 \text{ MgB}_2 \text{ filaments}$ Nb + Ni barrier $ff \sim 10.4 \%$

 Φ = 0.85 mm

- With Cu stabilizer
- With Coating for controlled surface resistance

Monel Matrix 37 MgB₂ filaments Nb + Ni barrier ff up to \sim 18 %

4 years of development with Columbus Superconductors

MgB₂ Cables

Mass \sim 11 kg/m (880 kg for Δ H=80 m)

Semi-flexible cryostat external diameter = 220 mm

Superconducting Link Test Station at CERN

Recent demonstration at CERN 5 kA @ 20 K in 10 m long MgB₂ cables

Superconducting Link Project-Timeline

Development Program

SC Links: European funded Projects

FP7-EuCARD 1 (April 2009-March 2013), WP 7 (High Field Magnets), Task 5: HTS Link for LHC P7 (I~30 kA). Coordinated by CERN with participants from industry and laboratories

> Hi-Lumi LHC FP7 Design Study (Nov 2011-Oct 2015),

WP6: Cold Powering HTS Link for LHC P1 and P5

(I~150 kA, MgB₂ links). Coordinated by CERN with participants from laboratories
 Smart energy network FP7 proposal (Jan 2014- Dec 2017) Innovative prospective for electricity transport. High power, long distance MgB₂ links. Coordinated by Nexans, with participants from industry (RTE French

Transmission System Operator,..) and laboratories (CERN,

JRT-CERN Collaboration Workshop

A.Ballarino, 27/01/2014

IASS Institute for Advanced Sustainability Studies, ...)

Smart Energy Network FP7 proposal

From high-voltage AC cables to high capacity DC superconducting power transmission cables (> 5 GW)

IASS: scientific coordination and dissemination

With hydrogen cooling (~ 20 K): hybrid lines transferring electric energy via superconducting cables, transporting hydrogen as fuel and providing intermediate energy storage

at the site of energy production (use of intermittent energy

CERN: 20 kA @ 20 K MgB₂ demonstrator

Columbus: MgB₂ conductor

Nexans: 320 kV DC system design and test

RTE: integration into transmission grid, reliability

sources)

Acknowledgments

The CERN SCD team
The CERN SM-18 team

The collaboration with:

IASS (institute for Advanced Sustainability Studies) the University of Southampton the team at Columbus Superconductors