

## JRC-CERN Collaboration Workshop CERN, January 27, 2014

# Data Size Issues in **Structural Assessment and Security**



# Artur PINTO Philippe CAPERAN

(Credits: all Colleagues at ELSA)

**ELSA-IPSC** 

#### **Joint Research Centre**

The European Commission's in-house science service

Serving society

Stimulating innovation

Supporting legislation

www.jrc.ec.europa.eu



#### **Outline**

- Data from Laboratory Experiments
   (Volume, Processing and Share with users)
- Complex Computational Models for Blast Simulation (Computation, Volume of results, Visualization)
- Data from Wireless Sensor Networks
   (Container security, infrastructure management, ...)



# **Full-scale Tests**





# **Critical Infrastructures:**

#### Energy, Lifelines, Transport and Communications, ...



European
guidelines for
the protection of
physical
infrastructure





# **Numerical simulations**



#### **EUROPLEXUS** code, developed in collaboration with CEA

- **Explicit** finite element code for fast dynamic response of structures (**explosions**, **impacts**, crashes, etc.)
- Specialized in modelling of Fluid-Structure Interaction phenomena
- Free version available for research and education



# **Explosion** inside a station













# Simulation of metro station explosion scenario with Europlexus code



FP7 Project: SECUR-ED
Secured Urban Transport – European Demonstration

Joint Research Centre





## Simulation of explosion scenario

- Example: Real metro station
- Data for calculation and post treatment:

| Number of finite elements | Memory peak<br>for the<br>calculation<br>[GB] | Memory peak<br>for the post<br>treatment<br>[GB] | Size of the output data [GB] | CPU needed for the calculation [s] | CPU needed for the post treatment [s] |
|---------------------------|-----------------------------------------------|--------------------------------------------------|------------------------------|------------------------------------|---------------------------------------|
| 3,800,178                 | 10.07                                         | 24.44                                            | 253.51                       | 828771<br>(9.59 days)              | 46577<br>(0.54 days)                  |

- Parametric studies increase output data and calculation time
- Parallelization reduces calculation time
  - → Parameter studies are possible in reasonable time
- BUT: e.g. 10 runs with different parameters: 2.5 TB data



# **Emerging Areas in Container Security Research**

Composites Technology

Wireless Sensor Networks

**Eugenio Gutiérrez**European Commission
Joint Research Centre

Presented at the ISO TC104 SC2 WG2 Meeting 30/09/13-02/10/13, Atlanta, GA, USA















# Wireless Network Topologies and Functionalities















# **Summary**

|                                     | Volume<br>(Disk) | Processing<br>(Memory +<br>Parallelization) | 'Next'          |
|-------------------------------------|------------------|---------------------------------------------|-----------------|
| Laboratory<br>Photogrametry         | 100 TB           | High                                        | GPU<br>+Cluster |
| <b>Blast Simulation</b>             | 100 TB           | Very High                                   | Cluster         |
| <b>Containers Wireless Networks</b> | PB>??>           | Very High →                                 | Big Data<br>??  |



# Optical Measurements during Large Structure Reference Tests

#### Aim:

Provide accurate data field for validating numerical simulation

#### **Requirements:**

- "Temporal" resolution: 2000-13000 images/run, x20 when oversampling
- Large displacements: ~20 cm
- Small deformation: 5e-5 or less
- Cracks: ~10 μm resolution (pixel scale 1.5-3 mm)
- Large dimension of the specimen: from 3 to 16 m, 3D



# **Experimental Settings**





**Data Acquisition** 

**Data Processing** 

**Data Quality?** 

**Data Flow (Flood?)** 





#### **IRIS**

# **Data Acquisition**



One Stereo rig
One run

270 MB/s 1.6 TB/run

14 MB/s

80 GB/run





## **Processing: Local Tracking & Optical Flow**



**Local Tracking:** on Sub-Windows, Objective Function + Warping Model, e.g. (Minimize ∫Squared Difference [Linear Deformation + Light Correction])

**Optical Flow:** on Full Window, Objective Function (e.g. ∫Squared Difference, ∫Absolute Difference) + Regularization Term controlling smoothness



# **Local Tracking**





#### **Present Data Flow**

Simultaneous Tracking on N templates through use of GPU C2075:

Acceleration by a factor 10 to 30 depending on the templates size and number





# **Texture Quality**

Lagrangian Tracking: following material points from reference to current state



Camera Sampling:
Optical Blurring
Grey level Rounding
Pixelisation→Aliasing





Texture Quality <

Density
Characteristic Scale
Smoothness
...Spectrum

27 January 2014 Research Centre 23



### "Hardware Brush"



Caliper Template Gauge

 $\frac{1}{2P}$   $\frac{1}{P}$ 

Our reference



Bias ← Aliasing



**INTERPOLATOR Thin Plate Spline** 

**Nota-Bene:** 

The pixel scales to [1:3] mm in our experiments



**Our Current State** 



### **Dream: "Software Brush"**



27 January 2014 Research Centre 25



# **Practical application: "Software Brush"**

High resolution "Gauge" Design



"Gauge" fresco applied on the structure







#### **Future Data Flow**

Simultaneous Tracking on N sub-windows, using the high resolution template as reference:





#### **Conclusion**

#### **Data Volume:**

- Large primary data volume per experiment, with complex secondary results generating 3D displacement fields, deformation field and 3D cracking network and aperture as function of time.
- Primary and secondary data need to be archived in a reference data repository.

#### **Data Processing:**

- Parallelisation of processing,
- Use of "digital brush" to reduce processing burden and increase accuracy.
- E.g. use internal invariants of the digital pattern to recognise the corresponding points on the structure and their orientation in space





#### Thank you for your attention

#### IRIS: Cracks Mapping

