

B theory overview

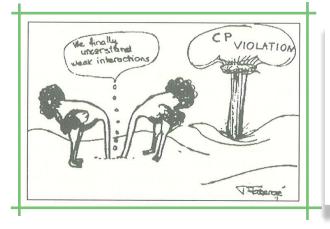
Emi Kou (LAL-IN2P3)

Comprendre le monde, construire l'avenir®

LHC Days 2014 @ Split 2nd October 2014

Outline

- ★ Introduction: Flavour physics as a window to new physics
- \star New physics search in b-> d transition
- \star New physics search in b-> s transitions
- \star Searching new physics in b->sy processes
- \star Conclusions


Introduction:

Flavour Physics as a window to physics beyond the SM

Flavour Physics in SM

In SM, the difference between mass and interaction basis explains, the GIM mechanism, the CP Violation! Very concise!

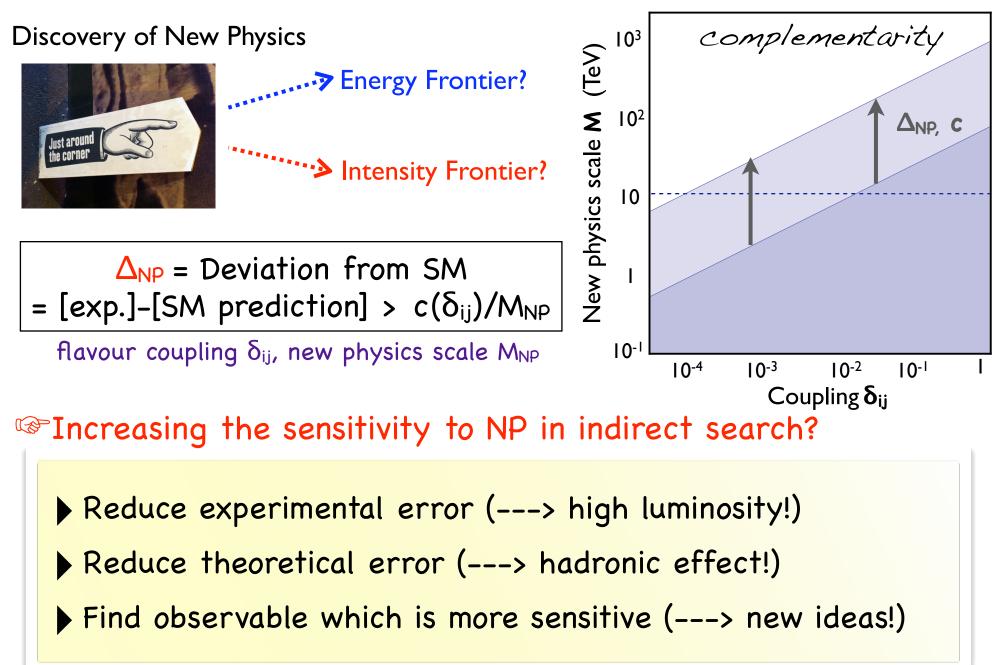
$$\mathcal{L}_{Y} = \sum_{ij} Y_{ij}^{u} Q_{iL} \begin{pmatrix} \phi^{0} \\ \phi^{-} \end{pmatrix} u_{jR} + \sum_{ij} Y_{ij}^{d} Q_{jL} \begin{pmatrix} -\phi^{-\dagger} \\ \phi^{0\dagger} \end{pmatrix} d_{jR} + h.c.$$
Stashow, Illiopolous, Maiani '70
$$(U_{L,R}^{u})^{\dagger} U_{L,R}^{u} \equiv \mathbf{1}, \quad (U_{L,R}^{d})^{\dagger} U_{L,R}^{d} \equiv \mathbf{1}$$
Neutral current: GIM mechanism!
$$(U_{L}^{u})^{\dagger} U_{L}^{d} \equiv V_{CKM}$$
Charged current:
CKM matrix
Origin of CP Violation!

Simple explanation of flavour physics up to now! Hundreds of observables (including dozens of CPV) are explained by this single matrix.

Flavour Physics beyond SM

The indirect search of new physics through quantum loop effect: very powerful tool to search for new physics signal!

Such a simple picture does not exist in most of the extensions of SM: suppression of the FCNC is not automatic and also unwanted CP violation parameters appear. N.B.: SM also has an "unwanted" CP parameter (strong CP problem).

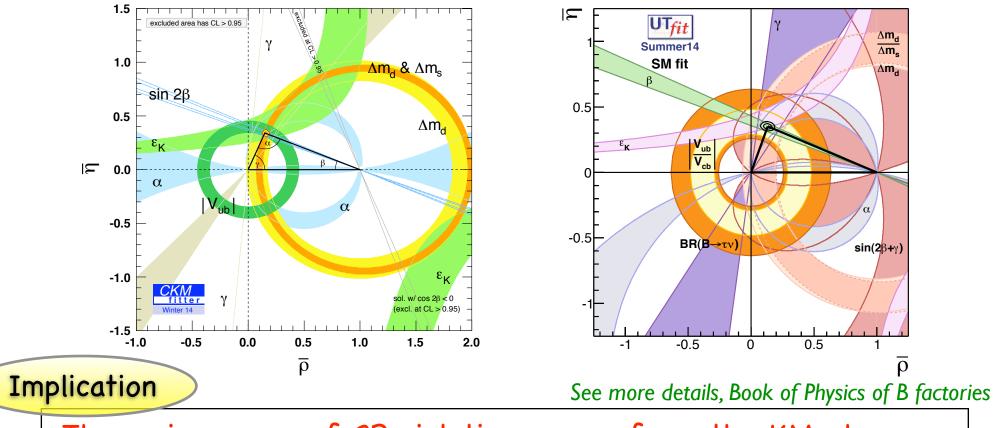

SUSY: Quark and Squark mass matrices can not be diagonalized at the same time ---> many unwanted FCNC and CP violation

Mutli-Higgs model, Left-Right symmetric model: Many Higgs appearing in this model ---> tree level FCNC Warped extra-dimension with flavour in bulk: Natural FCNC suppression though, K-K mixing is still too large due to the chiral enhancement

In reverse, new physics models predict naturally deviation of SM in flavour and CP violating phenomena.

But then, what is the indication of the non-appearance of new physics? And where/how to search now?

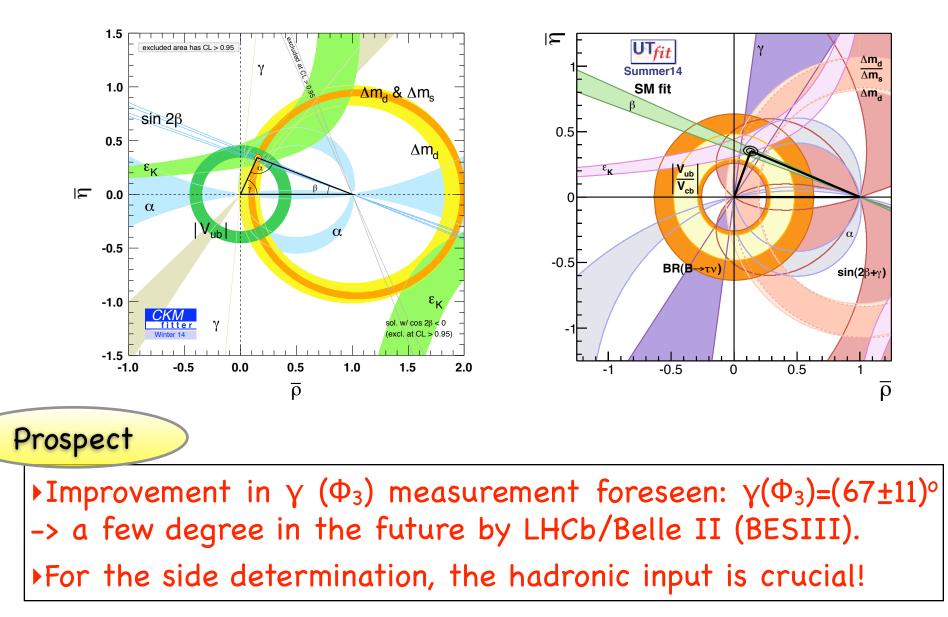
Flavour Physics beyond SM


New physics search in b->d transition:

I: Unitarity triangle, legacy and prospect

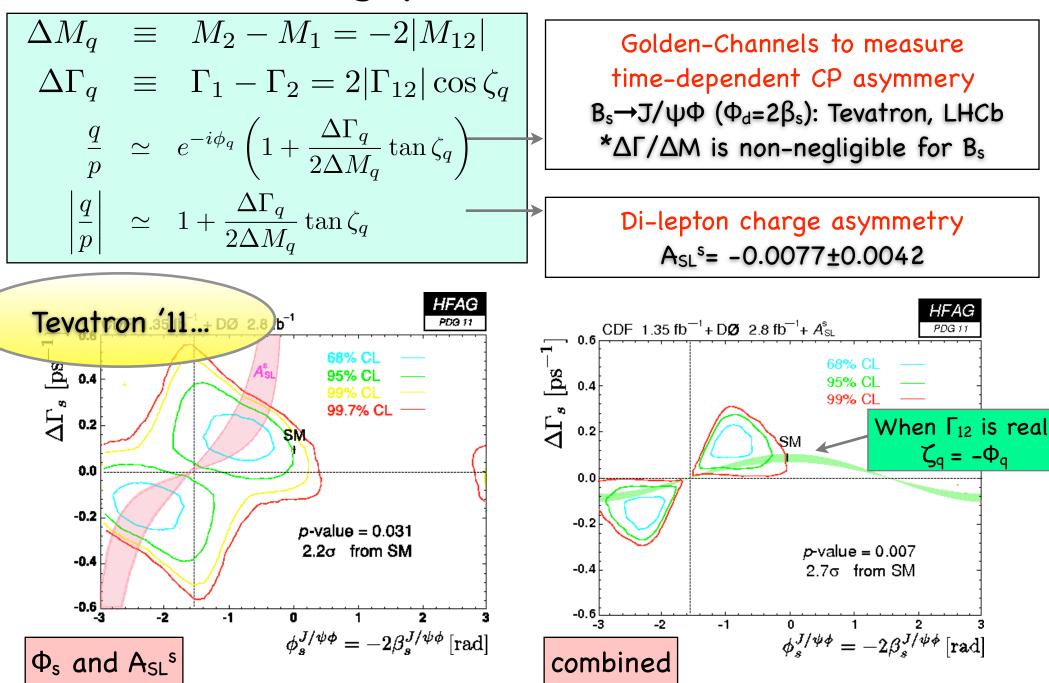
Unitarity Triangle: Legacy

The B factories measured β (Φ_1) at a very high precision (21.5±0.8)°.


HFAG

The main source of CP violation comes from the KM phase.
The so-called "approximate CP models" excluded!
Direct CP violation observed in many B decays, super-weak model excluded!

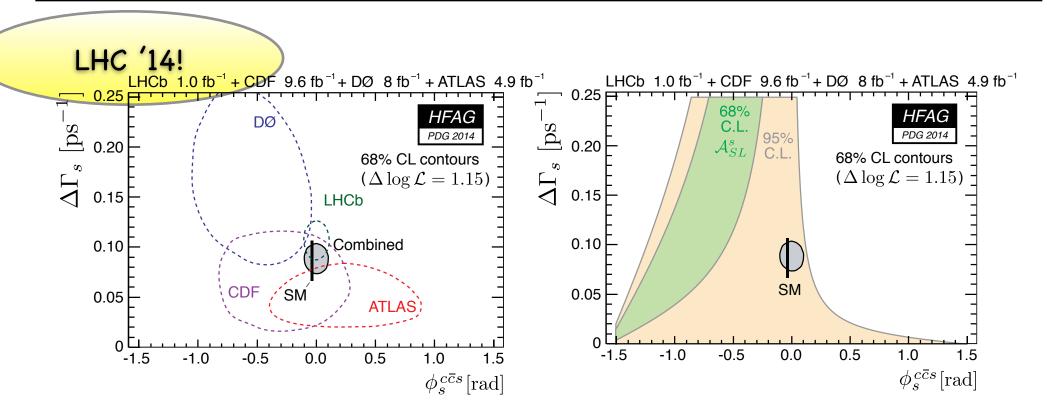
Unitarity Triangle: Prospect


Further improvement in precision foreseen in coming years at LHCb and Belle II!

New physics search in b->s transition:

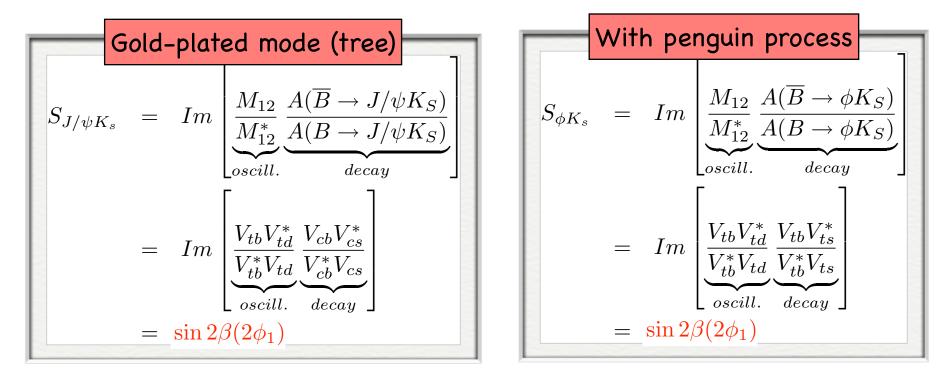
I: Measurement of the B_s mixing phase Φ_s II: Measurement of β (Φ_1) in penguin channels III: Measurement of the photon polarization of the b->sy

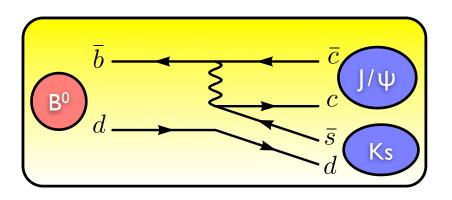
B_s mixing phase measurement

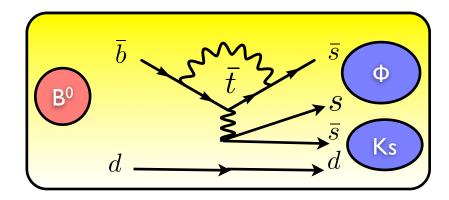

B_s mixing phase measurement

▶The experimental errors are significantly reduced by the new LHCb measurement.

The current measurement of Φ s is consistent to SM (=-0.0363±0.0016):

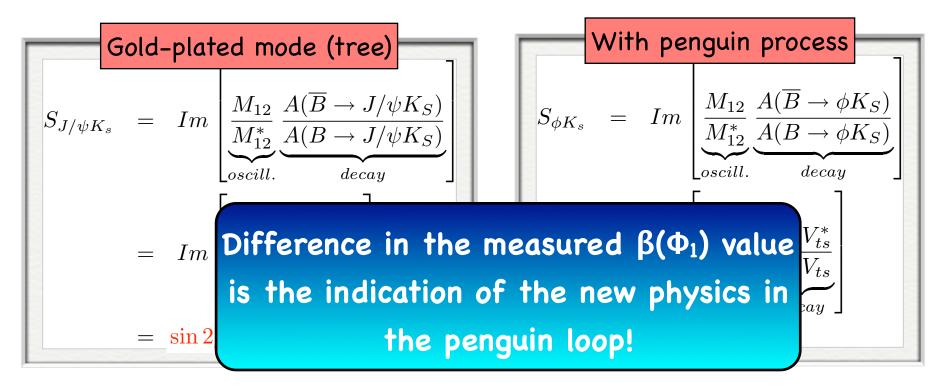

Φs=0.070±0.055

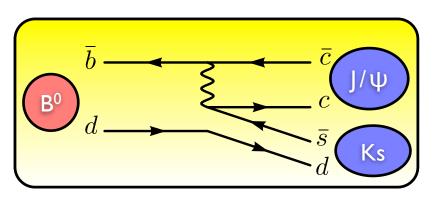

•LHCb has an ability to reach to the error down to $\delta \Phi s = \pm 0.025$ by 2018 and the upgrade can reach to the precision of $\delta \Phi s = \pm 0.009$. •So it is too early to conclude! New physics may appear here!

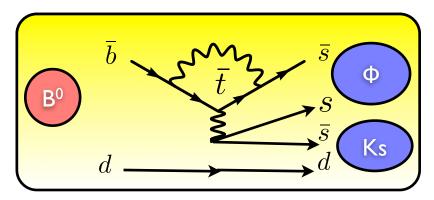


β (Φ_1) measurements with b \rightarrow sss modes

Time dependent CP asymmetry in the B_d system (c.f. similar measurement for Bs)







β (Φ_1) measurements with b \rightarrow sss modes

Time dependent CP asymmetry in the B_d system (c.f. similar measurement for Bs)

β (Φ₁) measurements with b→sss channels

▶B factories measured various channels.

▶The experimental errors are statistics dominant. Thus, Belle II and LHCb will improve the measurement (~2%).

► Theoretical errors are small especially for $B \rightarrow \Phi K_S$ and $\eta' K_S$ (table : theoretical CP errors). ► Similar study can be done for the B_S system with, e.g. $B_S \rightarrow \Phi \Phi$, $B_S \rightarrow \eta' \Phi$ etc. ► New physics contributions for difference channels can be

significantly different.

						PRELIMINARY
b→ccs	World Average	;	÷		:	0.68 ± 0.02
φ Κ ⁰	Average			 F	★ 1	0.74 ^{+0.11} -0.13
η΄ Κ ⁰	Average			I ★I		0.63 ± 0.06
$K_{S} K_{S} K_{S}$	Average			I	-	0.72 ± 0.19
$\pi^0 \ K^0$	Average			⊢★	-1	0.57 ± 0.17
$ ho^0 K_S$	Average			*	4	0.54 ^{+0.18} -0.21
ωK _S	Average				← 1	0.71 ± 0.21
f ₀ K _S	Average			 -	 1	0.69 ^{+0.10} -0.12
$f_2 K_S$	Average	Ļ.		*		0.48 ± 0.53
f _x K _s	Average		*		4	0.20 ± 0.53
π ⁰ π ⁰ K _S	Average					-0.72 ± 0.71
$\phi \pi^0 K_S^{}$	Average			I	*	0.97 ^{+0.03} -0.52
$\pi^+ \pi^- K_S$	NAverage					0.01 ± 0.33
K ⁺ K ⁻ K ⁰	Average		:			0.68 ^{+0.09} _{-0.10}
-1.6 -1.4 -	1.2 -1 -0.8 -0.6 -0.4	-0.2 0	0.2	0.4 0.6	0.8 1	1 1.2 1.4 1.6

 $sin(2\beta^{eff}) \equiv sin(2\phi_1^{eff})$

β (Φ₁) measurements with b→sss channels

▶ B factories measured various channels.

▶The experimental errors are statistics dominant. Thus, Belle II and LHCb will improve the measurement (~2%).

Theoretical errors are small

 ϕK_S

 $\eta' K_S$

 πK_S

 ωK_S

 ρK_S

especially for $B \rightarrow \Phi K$ (table : theoretical C > Similar study can be the B_s system with, e $B_s \rightarrow \Phi \Phi$, $B_s \rightarrow \eta' \Phi$ etc. > New physics contrib difference channels of significantly different

$sin(2\beta^{eff})$	$= \sin(2\phi_1^{\text{eff}})$	^f)	HFAC Moriond 20 PRELIMINA
---------------------	--------------------------------	----------------	---------------------------------

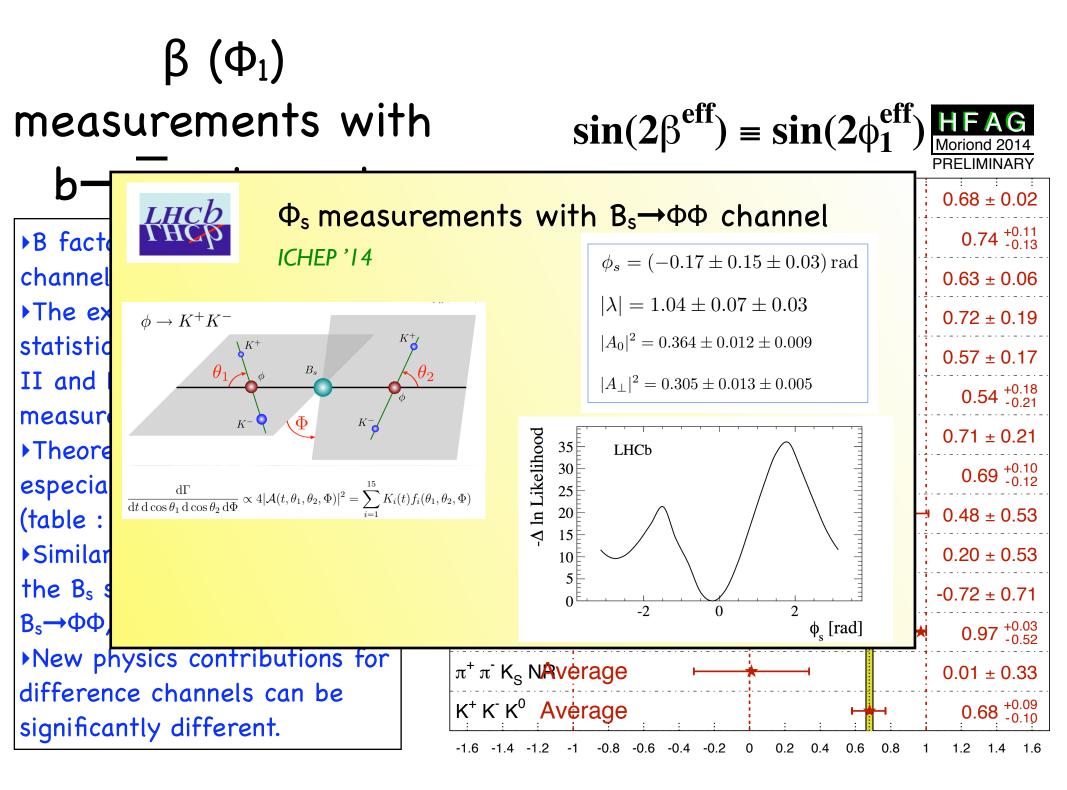
E.K CKM'06

_					
S	b→ccs	World Average			0.68 ± 0.02
S	φ K ⁰	Average		+ + -	0.74 ^{+0.11} -0.13
	η' Κ ⁰	Average	ł	*	0.63 ± 0.06
	K _s K _s K _s	Average	F		0.72 ± 0.19
e	$\pi^0 K^0$	Average	⊢_ ★	 -1	0.57 ± 0.17
	$\rho^0 K_S$	Average	⊢★		0.54 ^{+0.18} -0.21
	ω	Average			0.71 ± 0.21
	pQCD	QCDF	SD	SD+	-LD
	$0.02\substack{+0.01\\-0.01}$	$0.04\substack{+0.01\\-0.01}$	$0.02\substack{+0.00\\-0.04}$	0.03^{+0}_{-0}	0.01+0.01 0.04-0.01
	$0.01\substack{+0.01 \\ -0.01}$		$0.01\substack{+0.00 \\ -0.04}$		0.00+0.00 0.04-0.00
	$0.07\substack{+0.05 \\ -0.04}$	$0.07\substack{+0.02 \\ -0.03}$	$0.06\substack{+0.02 \\ -0.04}$	0.04^{+0}_{-0}	0.02 + 0.01 0.03 - 0.01
	$0.13\substack{+0.08 \\ -0.08}$	$0.17\substack{+0.03 \\ -0.07}$	$0.12\substack{+0.05 \\ -0.06}$	0.01^{+0}_{-0}	0.02+0.02 0.04-0.01
_	$-0.08\substack{+0.08\-0.12}$	$-0.17\substack{+0.01 \\ -0.06}$	$-0.09\substack{+0.03\\-0.07}$	0.04^{+0}_{-0}	0.09+0.08 0.10-0.11
				_	V CULUOI

β (Φ₁) measurements with b→sss channels

▶B factories measured various channels.

▶The experimental errors are statistics dominant. Thus, Belle II and LHCb will improve the measurement ($^{\sim}2\%$).


Theoretical errors are small especially for $B \rightarrow \Phi K_s$ and $\eta' K_s$ (table : theoretical CP errors). Similar study can be done for the B_s system with, e.g. $B_s \rightarrow \Phi \Phi$, $B_s \rightarrow \eta' \Phi$ etc. ▶New physics contributions for

difference channels can be significantly different.

$sin(2\beta^{eff}) \equiv sin(2\phi_1^{eff})$ HFAG

							••
b→ccs	World Average	1			0.6	68 ± 0.0	02
φ Κ ⁰	Average			+ + 1	(0.74 ⁺⁰	.11 .13
η΄ Κ ⁰	Average			⊢★	0.6	63 ± 0.0	06
K _S K _S K _S	, Average			•	⊣ 0.7	72 ± 0.	19
$\pi^0 K^0$	Average			* 1	0.5	57 ± 0.	17
$\rho^0 K_S$	Average		—	★	().54 ⁺⁰	.18 .21
ωK _S	Average		•		→ 0.7	71 ± 0.5	21
f ₀ K _S	Average			I	(0. 69 ⁺⁰	.10 .12
$f_2 K_S$	Average	H-	*		0.4	l8 ± 0.	53
f _x K _S	Average ⊢		*		0.2	20 ± 0.	53
π ⁰ π ⁰ K _S	Average				-0.7	72 ± 0.	71
$\phi \ \pi^0 \ K_S$	Average		-1		→ (0.97 ⁺⁰ -0	.03 .52
π ⁺ π ⁻ K _S	N A verage ⊢				0.0)1 ± 0.3	33
$\mathbf{K}^+_{\mathbf{H}} \mathbf{K}^{\mathbf{H}} \mathbf{K}^0$	Average		::		(0. <mark>68</mark> +0	.09 .10
-1.6 -1.4 -	-1.2 -1 -0.8 -0.6 -0.4 -	0.2 0	0.2 0.4	0.6 0.8	1 1.3	2 1.4	1.6

β (Φ₁) measurements with b→sss channels

▶B factories measured various channels.

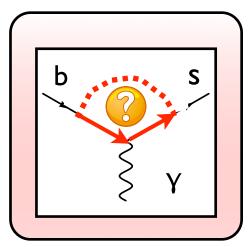
▶The experimental errors are statistics dominant. Thus, Belle II and LHCb will improve the measurement ($^{\sim}2\%$).

Theoretical errors are small especially for $B \rightarrow \Phi K_s$ and $\eta' K_s$ (table : theoretical CP errors). Similar study can be done for the B_s system with, e.g. $B_s \rightarrow \Phi \Phi$, $B_s \rightarrow \eta' \Phi$ etc. ▶New physics contributions for

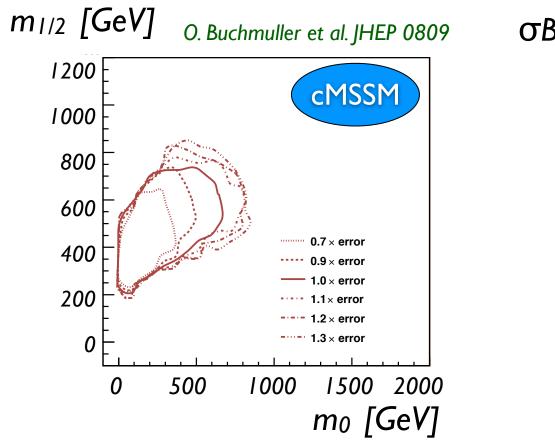
difference channels can be significantly different.

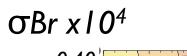
$sin(2\beta^{eff}) \equiv sin(2\phi_1^{eff})$ HFAG

							••
b→ccs	World Average	:			0.6	68 ± 0.0	02
φ Κ ⁰	Average			+ + 1	(0.74 ⁺⁰	.11 .13
η΄ Κ ⁰	Average			⊢★	0.6	63 ± 0.0	06
K _S K _S K _S	, Average			•	⊣ 0.7	72 ± 0.	19
$\pi^0 K^0$	Average			* 1	0.5	57 ± 0.	17
$\rho^0 K_S$	Average		—	★	().54 ⁺⁰	.18 .21
ωK _S	Average		•		→ 0.7	71 ± 0.5	21
f ₀ K _S	Average			I	(0. 69 ⁺⁰ -0	.10 .12
$f_2 K_S$	Average	H-	*		0.4	l8 ± 0.	53
f _x K _S	Average ⊢		*		0.2	20 ± 0.	53
π ⁰ π ⁰ K _S	Average				-0.7	72 ± 0.	71
$\phi \ \pi^0 \ K_S$	Average		-1		→ (0.97 ⁺⁰ -0	.03 .52
π ⁺ π ⁻ K _S	N A verage ⊢				0.0)1 ± 0.3	33
$\mathbf{K}^+_{\mathbf{H}} \mathbf{K}^{\mathbf{H}} \mathbf{K}^0$	Average		::		(0. <mark>68</mark> +0	.09 .10
-1.6 -1.4 -	-1.2 -1 -0.8 -0.6 -0.4 -	0.2 0	0.2 0.4	0.6 0.8	1 1.3	2 1.4	1.6

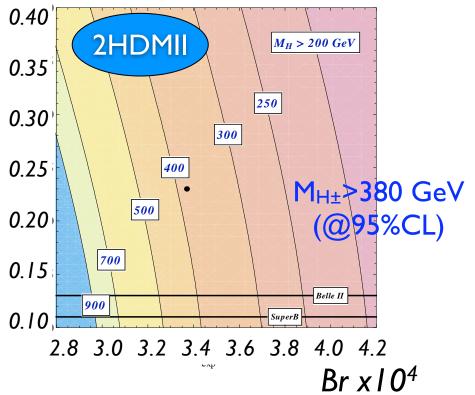

New physics search in b→sγ processes

I: Branching ratio measurement

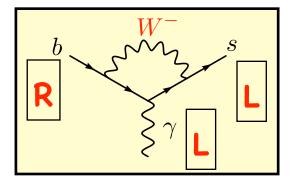

II: Photon polarization measurement

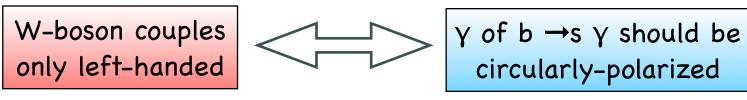

Searching new physics with $b \rightarrow s\gamma$ modes

 The branching ratio measurement of b →sγ process has been offering important constraints on physics within and beyond the SM (CKM, top mass, new particle mass etc.).



Experiment: $Br(B \rightarrow Xs\gamma) = (3.43 \pm 0.21 \pm 0.07) \times 10^{-4}$





Photon polarization of $b \rightarrow s\gamma$ modes

- The photon polarization of b \rightarrow sy process has an unique sensitivity to BSM with right-handed couplings.
- However, the photon polarization has never been measured at a hight precision so far: an important challenge for future experiments such as LHCb and Belle II.

In SM

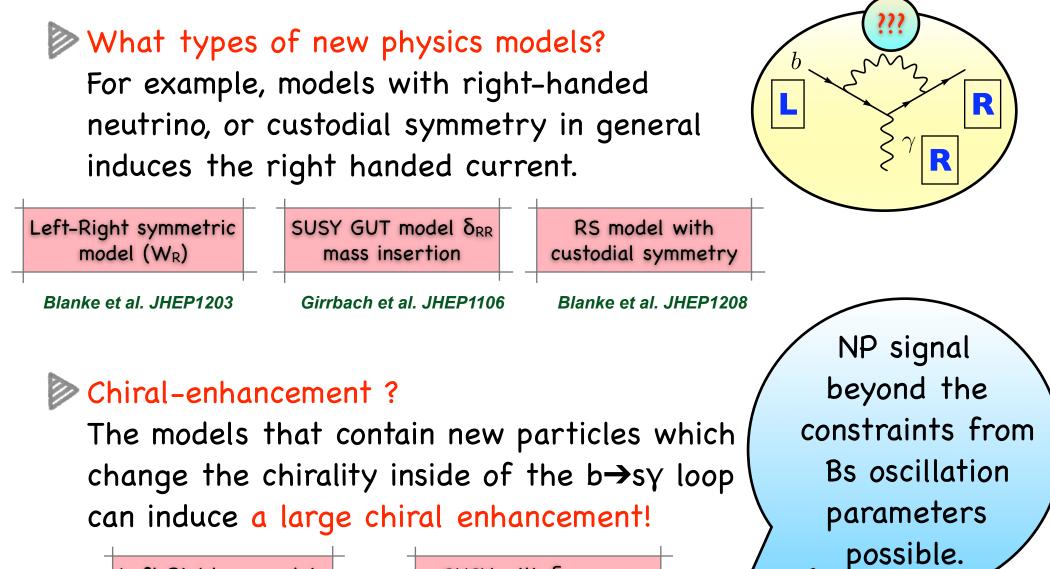
b →s γ_L (left-handed polarization) *b* →s γ_R (right-handed polarization)

Current status on the constraint on the right-handed contribution

We can write the amplitude including RH contribution as:

$$\mathcal{M}(b \to s\gamma) \simeq -\frac{4G_F}{\sqrt{2}} V_{ts}^* V_{tb} \left[\underbrace{(C_{7\gamma}^{\mathrm{SM}} + C_{7\gamma}^{\mathrm{NP}}) \langle \mathcal{O}_{7\gamma} \rangle}_{\propto \mathcal{M}_L} + \underbrace{C_{7\gamma}^{\prime \mathrm{NP}} \langle \mathcal{O}_{7\gamma}^{\prime} \rangle}_{\propto \mathcal{M}_R} \right]$$

We have a constraint from inclusive branching ratio measurement:


$$Br(B \to X_S \gamma) \propto |C_{7\gamma}^{\rm SM} + C_{7\gamma}^{\rm NP}|^2 + |C_{7\gamma}^{\prime \rm NP}|^2$$

While the polarization measurement carries information on

$$\frac{\mathcal{M}_R}{\mathcal{M}_L} \simeq \frac{C_{7\gamma}^{\prime \rm NP}}{C_{7\gamma}^{\rm SM} + C_{7\gamma}^{\rm NP}}$$

Note: new physics contributions, C_{7Y}^{NP} and/or C'_{7Y}^{NP} can be complex numbers!

Right-handed: which NP model?

Left-Right symmetric model: mt/mb

Cho, Misiak, PRD49, '94 Babu et al PLB333 '94 SUSY with δ_{RL} mass insertions: m_{SUSY}/mb

Gabbiani, et al. NPB477 '96 Ball, EK, Khalil, PRD69 '04

How do we measure the polarization?!

proposed methods

► Method I: Time dependent CP asymmetry in $B_d \rightarrow K_S \pi^0 \gamma B_s \rightarrow K^+ K^- \gamma$ (called $S_{KS\pi0\gamma}, S_{K+K-\gamma}$)

► Method II: Transverse asymmetry in $B_d \rightarrow K^* I^+ I^-$ (called $A_T^{(2)}, A_T^{(im)}$)

Method III: $B \rightarrow K_1 (\rightarrow K \pi \pi) \gamma$ (called λ_{γ})

► Method IV: $\Lambda_b \rightarrow \Lambda^{(*)} \gamma$, $\Xi_b \rightarrow \Xi^* \gamma$...

Atwood et.al. PRL79

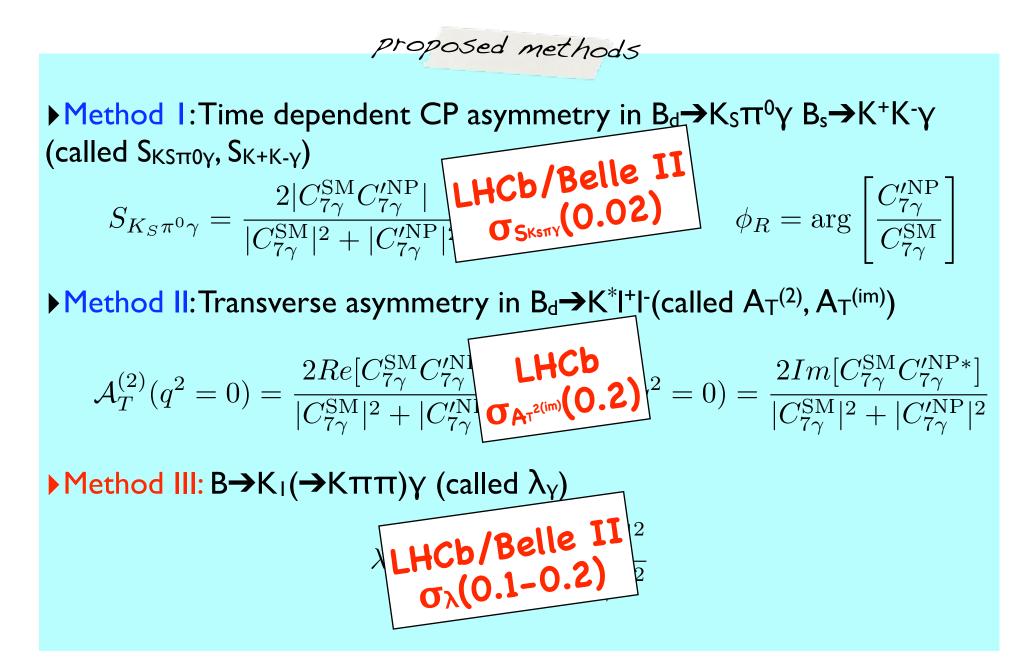
Kruger, Matias PRD71 Becirevic, Schneider, NPB854

Gronau et al PRL88 E.K. Le Yaouanc, Tayduganov PRD83

Gremm et al.'95, Mannel et al '97, Legger et al '07, Oliver et al '10

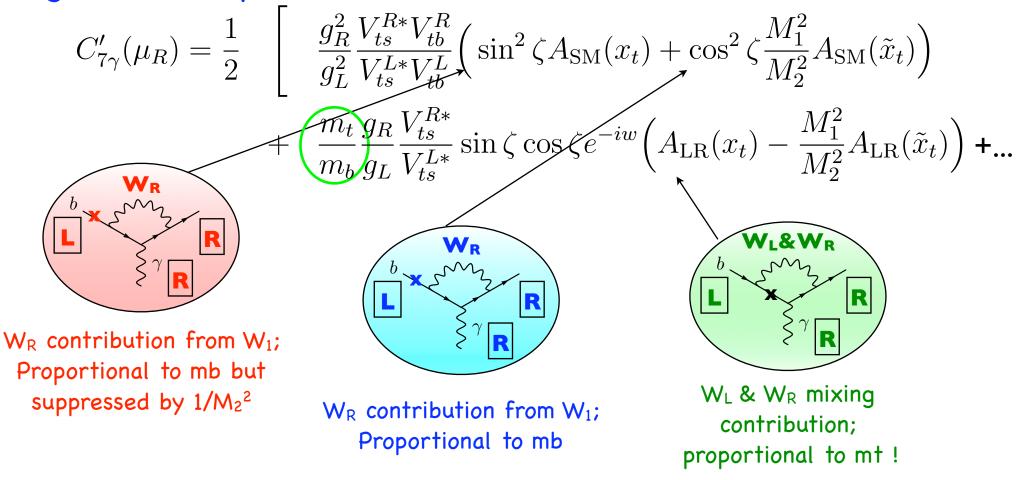
How to measure the polarization?

proposed methods


► Method I: Time dependent CP asymmetry in $B_d \rightarrow K_S \pi^0 \gamma B_s \rightarrow K^+ K^- \gamma$ (called $S_{KS\pi0\gamma}$, $S_{K+K-\gamma}$)

$$S_{K_S \pi^0 \gamma} = \frac{2|C_{7\gamma}^{\rm SM} C_{7\gamma}^{\prime \rm NP}|}{|C_{7\gamma}^{\rm SM}|^2 + |C_{7\gamma}^{\prime \rm NP}|^2} \sin(2\phi_1 - \phi_R) \qquad \phi_R = \arg\left[\frac{C_{7\gamma}^{\prime \rm NP}}{C_{7\gamma}^{\rm SM}}\right]$$

► Method II: Transverse asymmetry in $B_d \rightarrow K^*I^+I^-$ (called $A_T^{(2)}$, $A_T^{(im)}$)

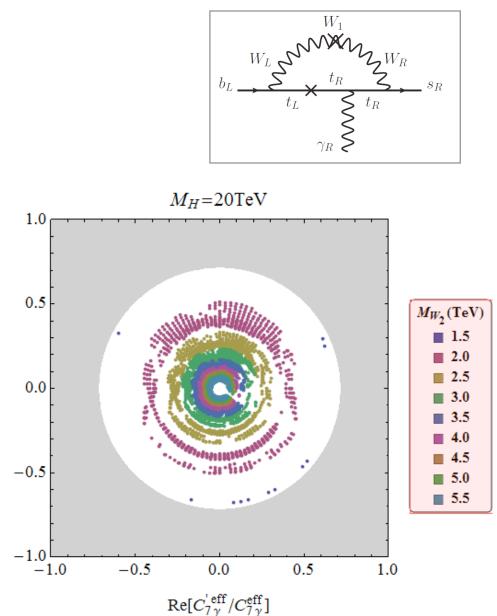

 $\mathcal{A}_{T}^{(2)}(q^{2}=0) = \frac{2Re[C_{7\gamma}^{\mathrm{SM}}C_{7\gamma}^{\prime\mathrm{NP}*}]}{|C_{7\gamma}^{\mathrm{SM}}|^{2} + |C_{7\gamma}^{\prime\mathrm{NP}}|^{2}} \qquad \mathcal{A}_{T}^{(im)}(q^{2}=0) = \frac{2Im[C_{7\gamma}^{\mathrm{SM}}C_{7\gamma}^{\prime\mathrm{NP}*}]}{|C_{7\gamma}^{\mathrm{SM}}|^{2} + |C_{7\gamma}^{\prime\mathrm{NP}}|^{2}}$ $\wedge \text{Method III: B} \rightarrow \mathsf{K}_{\mathsf{I}}(\rightarrow \mathsf{K}\pi\pi) \gamma \text{ (called } \lambda_{\gamma}) \qquad \text{Assumption for } \gamma^{*}/\mathsf{Z} \text{ penguin} \\ \mathcal{L}_{\mathsf{SM}}(\neg \mathsf{L}_{\mathsf{SM}}) = \frac{|C_{7\gamma}^{\prime\mathrm{NP}}|^{2} - |C_{7\gamma}^{\mathrm{SM}}|^{2}}{|C_{7\gamma}^{\prime\mathrm{NP}}|^{2} + |C_{7\gamma}^{\mathrm{SM}}|^{2}}$

How to measure the polarization?

Example: Left-Right Symmetric Model

Right handed-photon contribution

Chiral enhancement term


β (Φ_1) measurements with $b \rightarrow s\gamma$ modes

 $\operatorname{Im}[C_{\gamma\gamma}^{,\,\mathrm{eff}}/C_{\gamma\gamma}^{\,\mathrm{eff}}]$

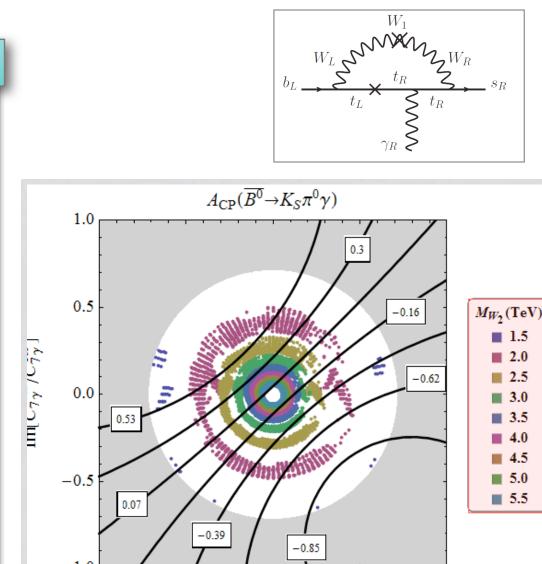
Left-Right symmetric model

- Left-right symmetric model with general V_{CKM}^R: SU(2)_L x SU(2)_R x U(1)_{B-L}
- Constrained by various flavour phenomena and new LHC data.
- Chiral enhancement for C_{7Y}' occurs with an enhancement factor:

 $(m_t/m_s) \times (V_{ts}^R/V_{ts}^L)$

E. K., C. Lu and F. Yu JHEP '13

β (Φ_1) measurements with $b \rightarrow s\gamma$ modes


-1.0

-0.5

Left-Right symmetric model

- Left-right symmetric model with general V_{CKM}^R: SU(2)_L x SU(2)_R x U(1)_{B-L}
- Constrained by various flavour phenomena and new LHC data.
- Chiral enhancement for C_{7Y}' occurs with an enhancement factor:

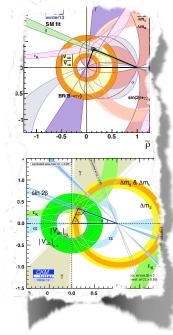
 $(m_t/m_s) \times (V_{ts}^R/V_{ts}^L)$

0.0

 $\operatorname{Re}[C_{7\gamma}^{'\,\mathrm{eff}}/C_{7\gamma}^{\mathrm{eff}}]$

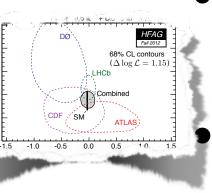
E. K., C. Lu and F. Yu JHEP '13

1.0

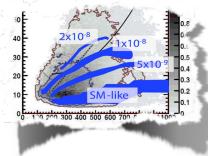

0.5

Conclusions

★ Era of B factories 2000-2010

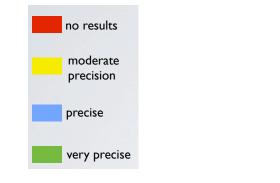


- The precise $\beta(\Phi_1)$ measurement is the most important success at the B factories.
- Some hints of new physics were announced but it had never exceeded more than 2–3 sigma deviations and most of them are now consistent to the SM.
- The exotic state is one of the surprises we ended up with. Starting with X(3872), a possible candidate of its charged partner is also Z_c⁺ discovered at BESIII.
- Physics of B Factories Book, which summarizes all the achievements at B factories, is now COMPLETED!



★ Era of LHCb (run @7–8 TeV) 2010–2012

- Bs oscillation has been explored at a higher precision at LHC. Unfortunately, what we see so far is consistent to the SM...
 - At the LHC with its extremely high luminosity, many rare decays are also observed.


- Many new results on the charmonium are improving rapidly the pioneer works by Tevatron.
- Constructing new benchmark models and establishing the search strategies for them See m

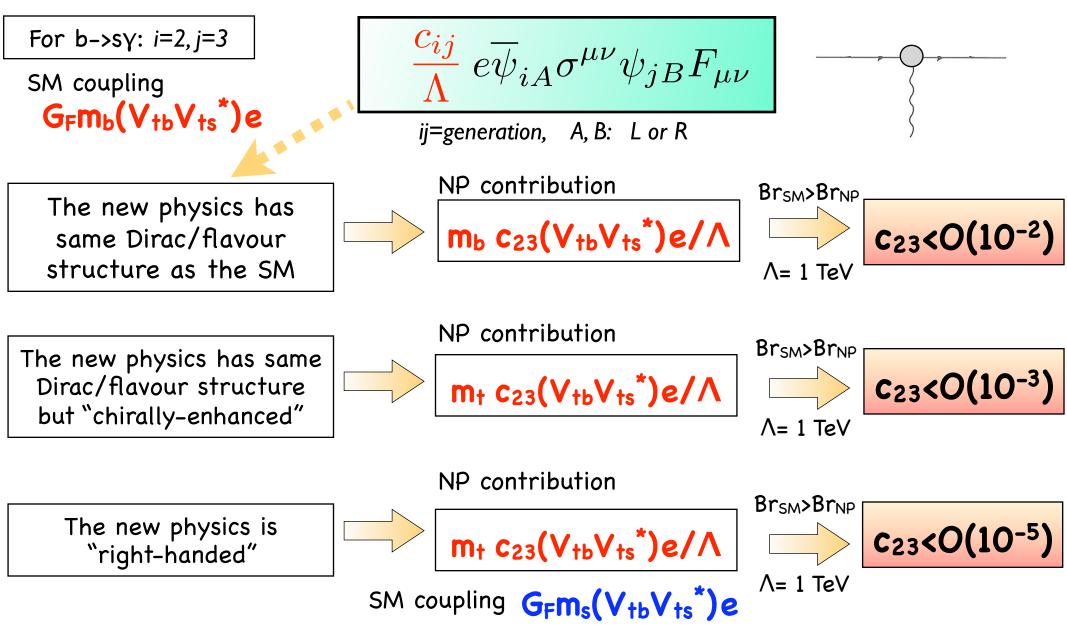
is the urgent tasks for theorists.

See more details, Book of Physics of B factories

Observable	4 ⁱⁿ gen	ZHDM	MFV	eMFV	MFV-SUSY	genSUSY	aligSUSY	BS	Little H	SM
$\frac{1}{\sin 2\phi_1}$	$\star \star \star$		***		***	*		$\star\star$	**	***
$B \to X_s \gamma$	***				**	×	***	**	***	
$B \rightarrow \tau \nu$	\star	$\star\star$	\star	\star	*	*	*	\star	*	*
$D - \overline{D}$ mixing	$\star\star$	$\star\star\star$	$\star\star\star$	$\star\star\star$	***	*	*	$\star\star$	**	**
$B \to \phi K_S$	$\star\star\star$	$\star\star$	$\star\star$	$\star\star\star$	$\star\star\star$	**	**	$\star\star\star$	*	**
g-2	\star	\star	—	—	**	**	—	$\star\star$	**	*

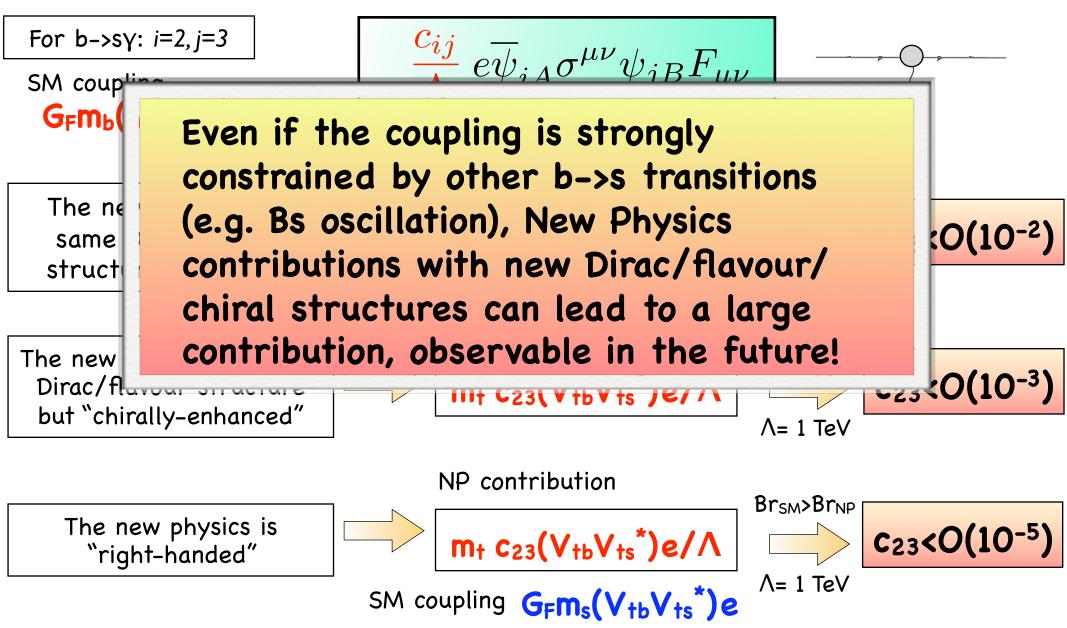
	current	LHCb 2017	Belle II 2022	LHCb upgrade	theory
observable	~ ab ⁻¹	~ 5 fb ⁻¹	50 ab ⁻¹	50 fb ⁻¹	
τ → μγ					
τ → eγ					
Β → τν, μν					
$B \rightarrow K^{(*)+} \nu \nu$					
S in $B \rightarrow K_s^0 \pi^0 \gamma$					
S (other penguins)					
A_{CP} ($B \rightarrow X_s \gamma$)					
$BR(B\toX_{s}\gamma)$					
$BR(B \rightarrow X_s II)$					
$BR(B \rightarrow K^{(*)} II)$			K*ee	К* u u	
B _s → μμ					
β_s from B $\rightarrow J/\psi \phi$					
$B_s \rightarrow \gamma \gamma$					
asl					
mixing param.					
CP violation					
$\sin^2\theta_W$ at Y(4S)					
$sin^2 \theta_W$ at Z pole					
φ₂ (α)					
$\varphi_{\perp}(\beta)$ from b \rightarrow ccs					
$B_d \rightarrow J/\psi \pi^0$					
$B_s \rightarrow J/\psi K_s^0$					
φ3 (γ)					
Vub inclusive					
Vub exclusive					
Vcb inclusive					
Vcb exclusive					

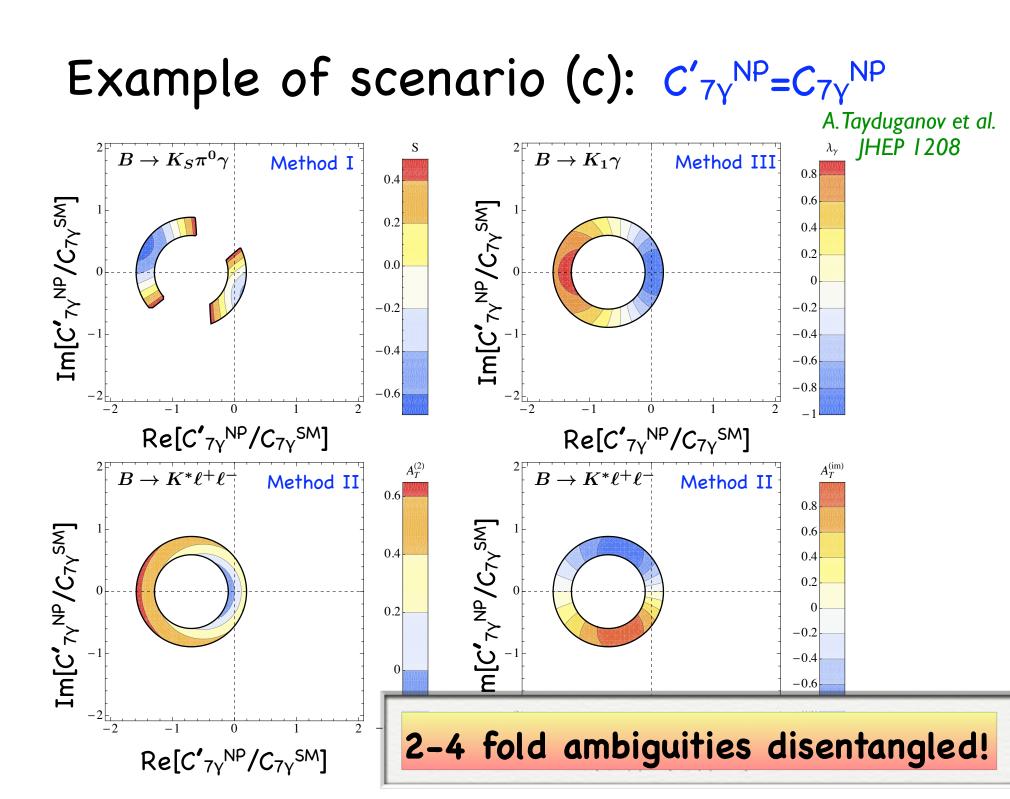
★ Future: LHCb (run @14 TeV), Belle II, LHCb upgrade


- CP violation measurements

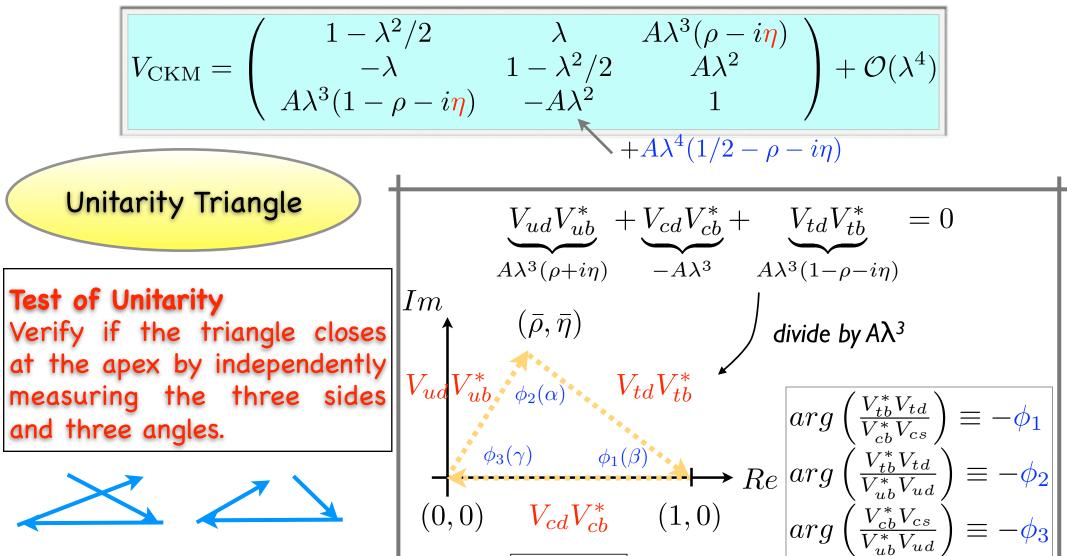
 (Bs oscillation, angle γ
 measurement, penguin B_(s) >ΦKs, η'Ks, ΦΦ, radiative b >sγ) will be improved
 significantly.
- Many more new opportunities are open and discussed intensively!

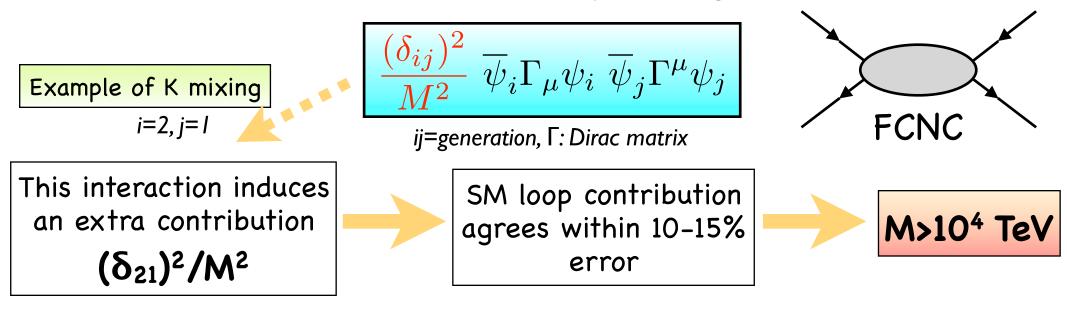
Backup


Constraint of magnetic operator


The b->s γ is induced by the electro-magnetic operator. The constraint on the coupling c_{ij} and new physics scale Λ depend on the chiral structure.

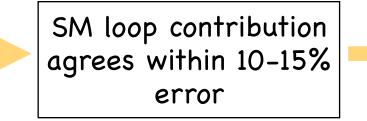
Constraint of magnetic operator


The b->s γ is induced by the electro-magnetic operator. The constraint on the coupling c_{ij} and new physics scale Λ depend on the chiral structure.

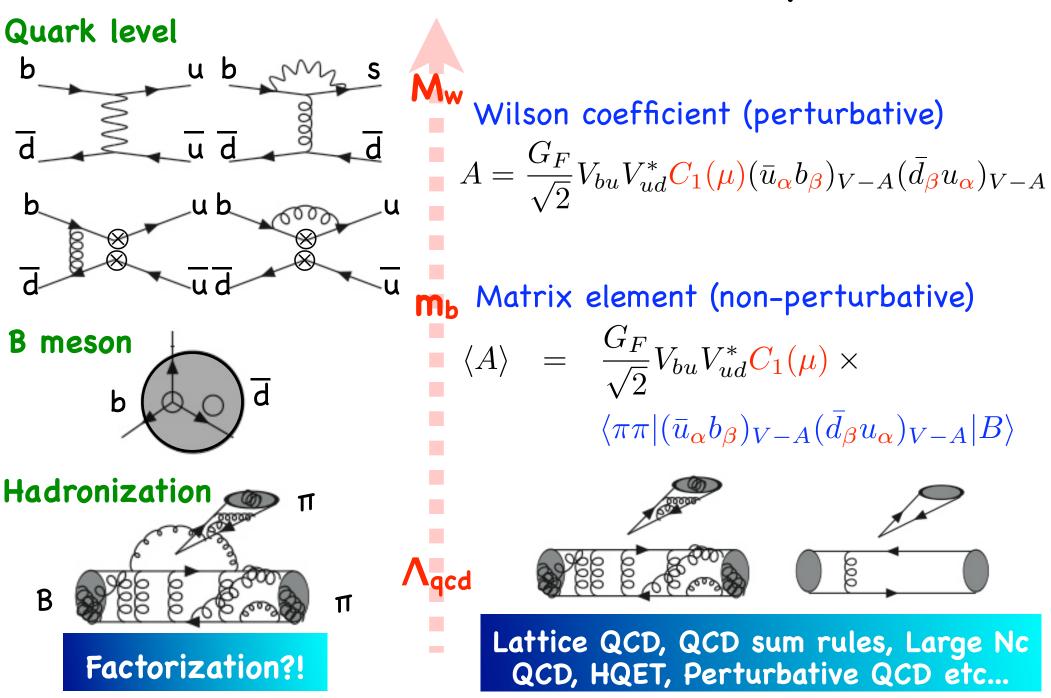

CKM matrix: test of unitarity

- The SM incorporates:
 - \checkmark Natural suppression of FCNC (i.e. GIM mechanism)
 - \checkmark A source of CP violation in the V_{CKM} matrix (i.e. KM mechanism)

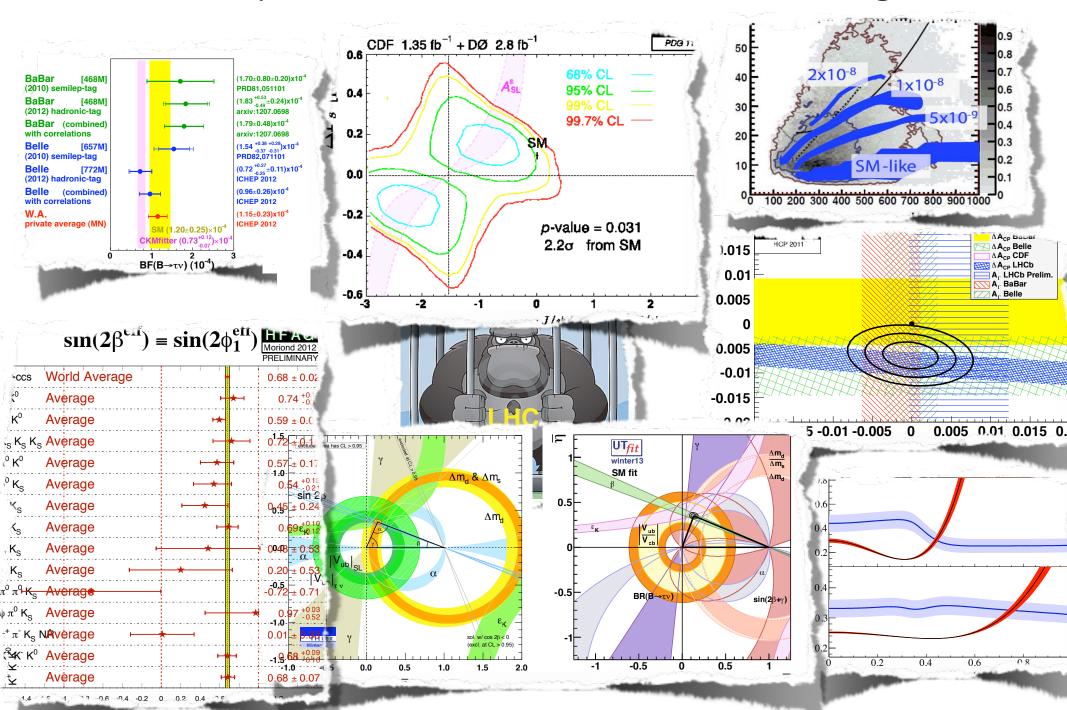
Flavour Physics beyond SM


The indirect search of new physics through quantum loop effect: very powerful tool to search for new physics signal!

The higher the precision, the higher the NP scale we can probe!


Also if the coupling is CKM like (e.g. Minimal Flavour Violation)

This interaction induces an extra contribution (VtdVts^{*})²/M²



Hadronic issues in flavour physics

Many expectations, many 2-3 sigmas...

