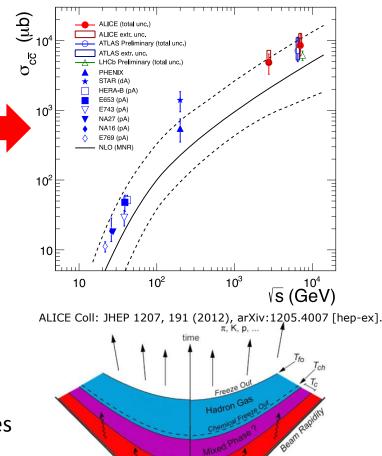


ALICE results on open-charm production and prospects for the upgrade

Cristina Terrevoli University & INFN Padova for the ALICE Collaboration

Outline

- Why heavy flavour?
 - heavy quarks (charm and beauty) probe the properties of the Quark Gluon Plasma (QGP)
- Heavy-flavour hadrons in ALICE
 - Reconstruction strategy
 - Results
- Why and how to upgrade the detector?
- Heavy-flavour prospects with upgraded detector


Why heavy flavour at the LHC ?

LHC as a heavy-flavour factory

- Large cross section for cc and bb production
 - for example: cc cross section >5 times larger than at RHIC energy

m_c ~1.5 GeV, m_b ~5 GeV

- > produced at the early stage of the collision $\Delta t < 1 / 2m_c \sim 0.1 \text{ fm/c} << \tau_0^{QGP} \sim 1 \text{ fm/c}$
 - temporal and spatial scales sufficiently small for the production to be unaffected by the properties of the medium
- while propagating through the medium heavy quarks interact with its constituents
 - elastic and inelastic QCD processes depend on the medium properties: density, opacity and extension

QGF

Pre-Equilibrium Phase (< τ₀)

Heavy-quark interaction with the QGP

Energy loss via radiative and collisional processes:

Prediction: $R_{AA}(\pi) \sim R_{AA}(D)$ (or slightly smaller)

ALICE

difficult to compare: different production kinematics and fragmentation between light

partons and charm quark tend to compensate the color-charge dependence of ΔE

and $R_{\Delta\Delta}$ (D) < $R_{\Delta\Delta}$ (B)

Y.L.Dokshitzer, D. Kharzeev Phys. Lett. B 519 (2001) 199

Heavy-quark interaction with the QGP

Energy loss via radiative and collisional processes:

Theoretical prediction: $\Delta E_g > \Delta E_{u,d,s} > \Delta E_c > \Delta E_b$ color charge and mass dependence of energy loss **Key measurement:** Nuclear modification factor: $R_{AA}(p_T) = \frac{1}{\langle N_{ooll} \rangle} \frac{dN_{AA} / dp_T}{dN_{pp} / dp_T}$

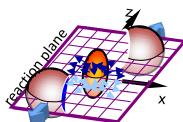
Prediction: $R_{AA}(\pi) \sim R_{AA}(D)$ (or slightly smaller)

Y.L.Dokshitzer, D. Kharzeev Phys. Lett. B 519 (2001) 199

Azimuthal anisotropy:

ALICE

sensitive to the thermalization of c and b quarks in QGP


and $R_{AA}(D) < R_{AA}(B)$

low- p_T c and b quarks participate in the collective expansion of the system?

difficult to compare: different production kinematics and fragmentation between light

partons and charm quark tend to compensate the color-charge dependence of ΔE

path-length dependence of energy loss? Key measurement: elliptic flow v_2 and R_{AA} dependence on the azimuthal angle relative to the reaction plane

Initial spatial anisotropy \rightarrow momentum anisotropy of particles

Heavy-quark interaction with the QGP

Energy loss via radiative and collisional processes:

Theoretical prediction: $\Delta E_g > \Delta E_{u,d,s} > \Delta E_c > \Delta E_b$ color charge and mass dependence of energy loss **Key measurement:** Nuclear modification factor: $R_{AA}(p_T) = \frac{1}{\langle N_{coll} \rangle} \frac{dN_{AA} / dp_T}{dN_{pp} / dp_T}$

Prediction: $R_{AA}(\pi) \sim R_{AA}(D)$ (or slightly smaller)

Y.L.Dokshitzer, D. Kharzeev Phys. Lett. B 519 (2001) 199

Azimuthal anisotropy:

ALICE

sensitive to the thermalization of c and b quarks in QGP

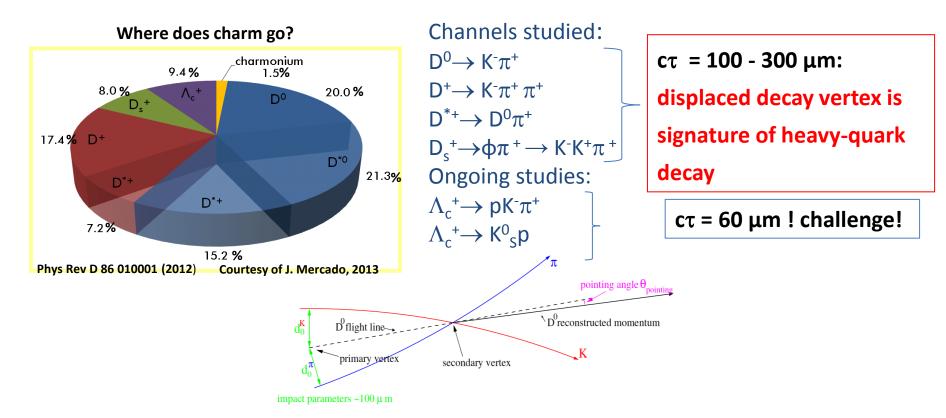
and $R_{AA}(D) < R_{AA}(B)$

 $low-p_T$ c and b quarks participate in the collective expansion of the system?

difficult to compare: different production kinematics and fragmentation between light

partons and charm quark tend to compensate the color-charge dependence of ΔE

path-length dependence of energy loss? Key measurement: elliptic flow v_2 and R_{AA} dependence on the azimuthal angle relative to the reaction plane

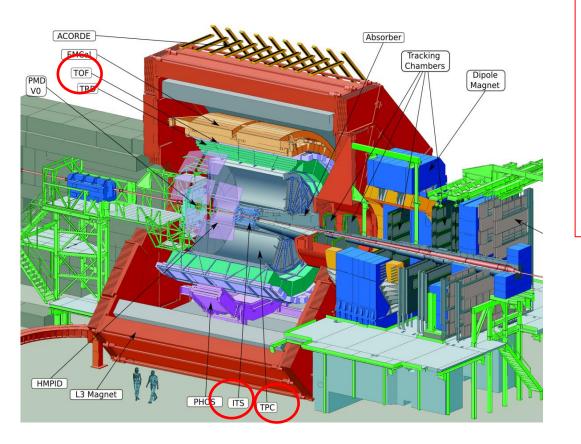

Hadronization mechanisms:

Recombination of quarks from the QGP might contribute to HF hadron production **Coalescence models** predict an increase of baryon-to-meson ratio for light and heavy flavour (S.H.Lee Phys. Rev. Lett. 100, 222301 (2008); Y. Oh, C.M.Ko et al., Phys. Rev. C79, 044905 (2009)) **Prediction:** enhancement of ratios strange/non-strange (D_{s}/D) and baryon/meson (Λ_c/D) (M. He, R. J. Fries and R. Rapp, (2012) arXiv:1204.4442; Kuznetsova, Rafelski, Eur.Phys.J. C51 (2007) 113.)

momentum anisotropy of particles

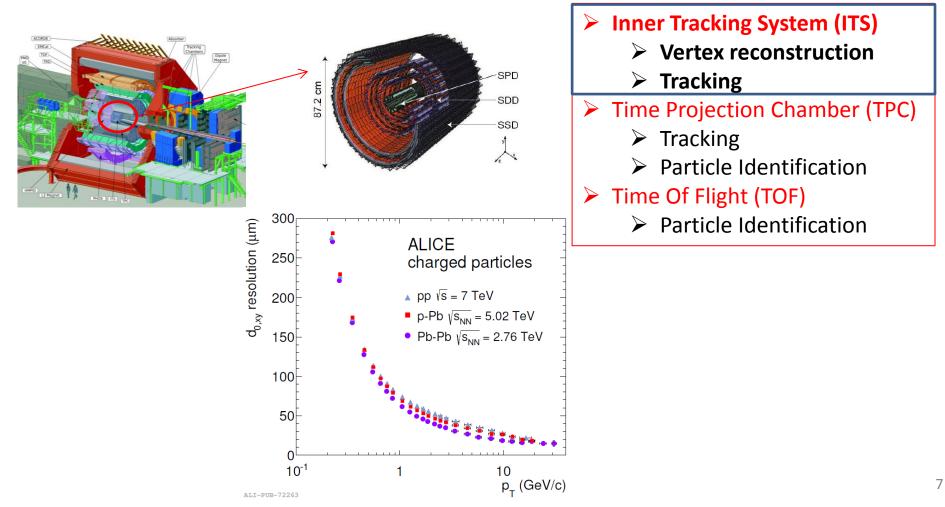
Initial spatial anisotropy \rightarrow

Reconstruction of heavy-flavour hadrons In ALICE


Open-charm reconstruction based on invariant mass analysis of the secondary vertex topology, displaced from the primary vertex, selected using geometrical cuts and particle identification

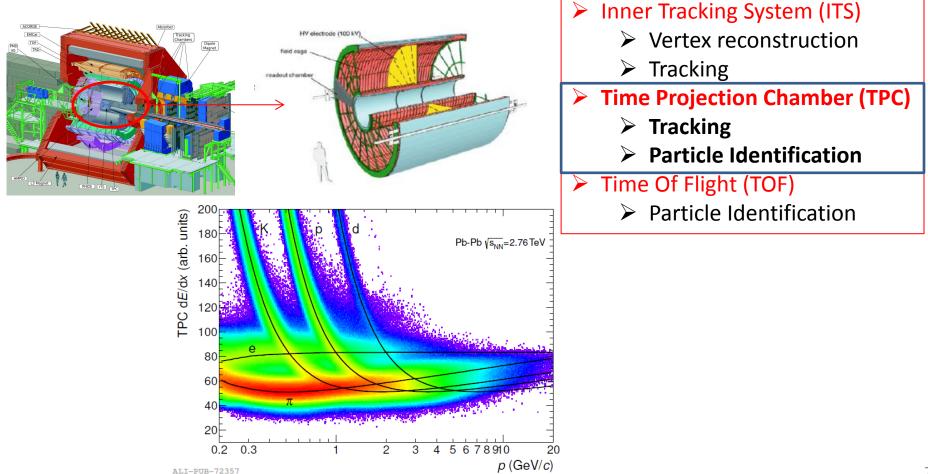
tracking and vertexing precision crucial for heavy-flavour analysis

- Excellent track and vertex reconstruction capabilities in a high multiplicity environment in a wide transverse momentum range
- ✤ Particle Identification in wide p_T range (ALICE COII. CERN-PH-EP-2014-031)

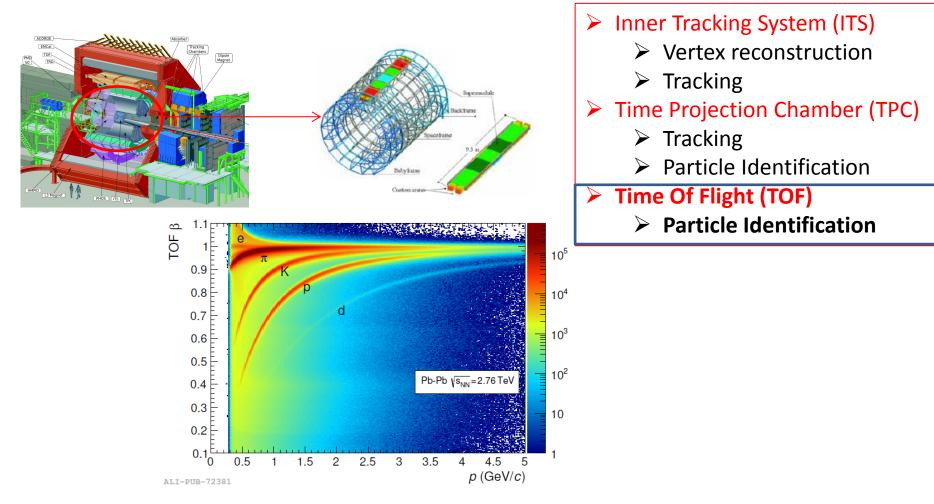


Inner Tracking System (ITS)

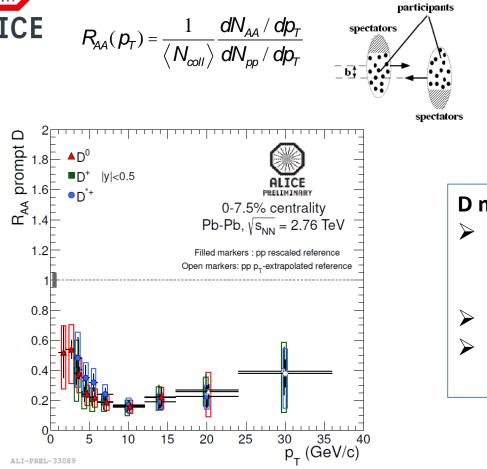
- Vertex reconstruction
- > Tracking
- Time Projection Chamber (TPC)
 - Tracking
 - Particle Identification
- Time Of Flight (TOF)
 - Particle Identification



- Excellent track and vertex reconstruction capabilities in a high multiplicity environment in a wide transverse momentum range
- ✤ Particle Identification in wide p_T range (ALICE COII. CERN-PH-EP-2014-031)

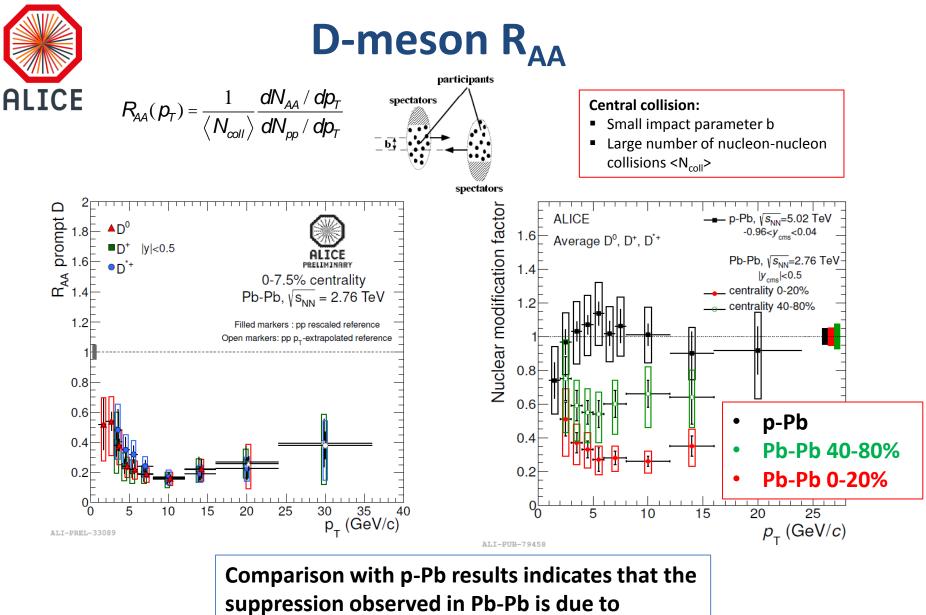


- Excellent track and vertex reconstruction capabilities in a high multiplicity environment in a wide transverse momentum range
- ✤ Particle Identification in wide p_T range (ALICE COII. CERN-PH-EP-2014-031)


- Excellent track and vertex reconstruction capabilities in a high multiplicity environment in a wide transverse momentum range
- ✤ Particle Identification in wide p_T range (ALICE COII. CERN-PH-EP-2014-031)

7

D-meson R_{AA}



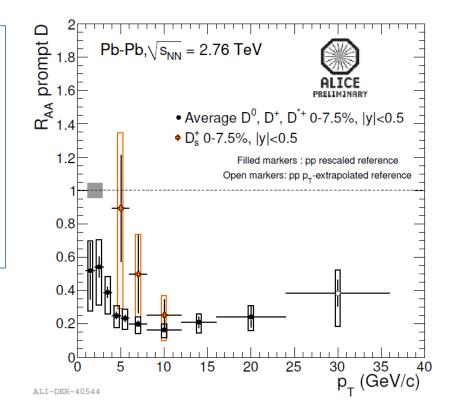
Central collision:

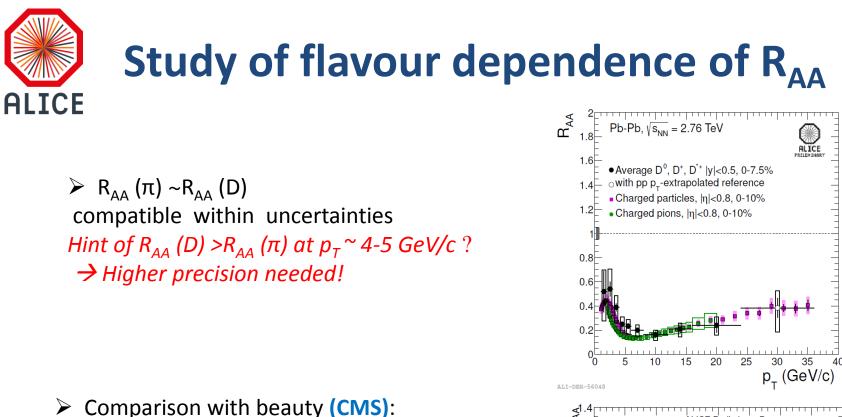
- Small impact parameter b
- Large number of nucleon-nucleon collisions <N_{coll}>

D meson R_{AA} vs p_T 0-7.5% centrality class

- Strong suppression observed w.r.t the binary scaled pp reference in the p_T range 2-24 GeV/c
- Factor 3-5 for $p_T > 5$ GeV/c
- Same suppression for different non-strange D-meson species

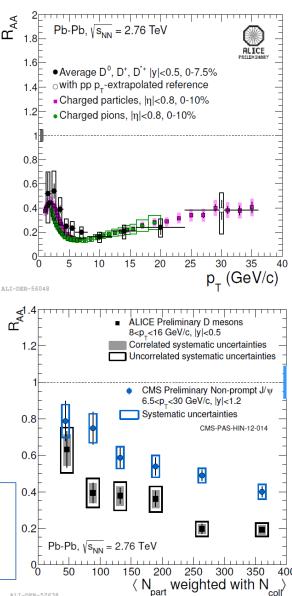
final state effects induced by partonic medium


ALICE Coll. CERN-PH-EP-2014-90 arXiv: 1405.3452



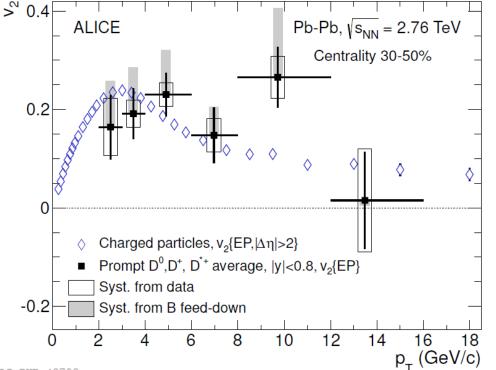
D_s-meson **R**_{AA}

$D_s R_{AA}$ in Pb-Pb


- Similar suppression as for non-strange
 D mesons in 8-12 GeV/c
- Low-p_T measurements have large uncertainty and are not conclusive with respect to possible enhancement of D_s/D → Higher precision needed!

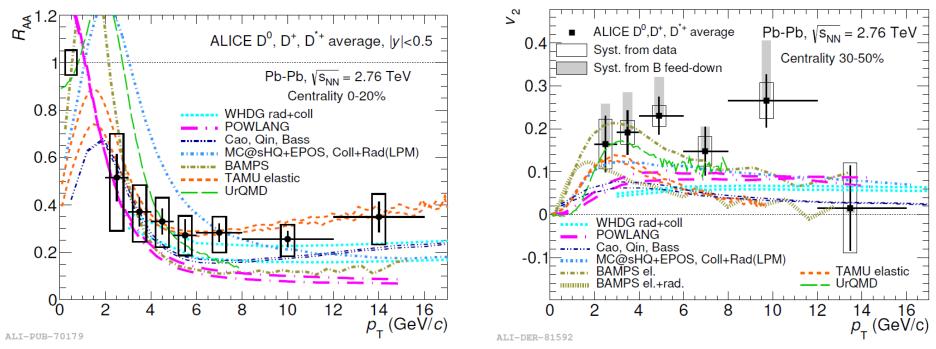
- p_{T} interval for D mesons chosen in order to have similar kinematics w.r.t. B mesons decaying in J/ψ
 - \rightarrow <p_T> of about 10 -11 GeV/c for both D and B mesons

Smaller R_{AA} for charm than beauty hadrons in central Pb-Pb collisions, described by models including the mass dependence of in-medium parton energy loss



Elliptic flow: v₂

The anisotropy is quantified via a Fourier expansion in azimuthal angle (ψ) w.r.t. the reaction plane (Ψ_{RP})


$$\frac{dN}{d\varphi} = \frac{N_0}{2\pi} (1 + 2v_1 \cos(\varphi - \Psi_{RP}) + 2v_2 \cos[2(\varphi - \Psi_{RP})] + ...)$$

Do heavy quarks take part in the collective expansion of the medium? D-meson $v_2 >0$ in 2-6 GeV/c and comparable with charged-particle v_2

- Information on the initial azimuthal anisotropy of the medium transferred to charm quarks
- Consistent with strong coupling of c quarks with the medium (ALICE Collaboration, Phys. Rev. Lett. 111, 102301 (2013)

R_{AA} and v₂ compared with models

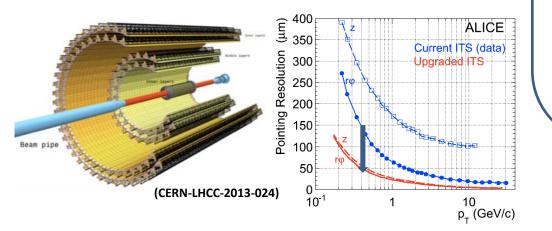
(ALICE Collaboration, Phys. Rev. C 90 034904 (2014))

Challenging for models to describe simultaneously $R_{AA}\,and\,v_2$

- large suppression of D mesons in central collisions
- azimuthal anisotropy in non-central collisions.

ALICE

→ R_{AA} and v₂ measurements together start to provide constraints for the inmedium energy loss models

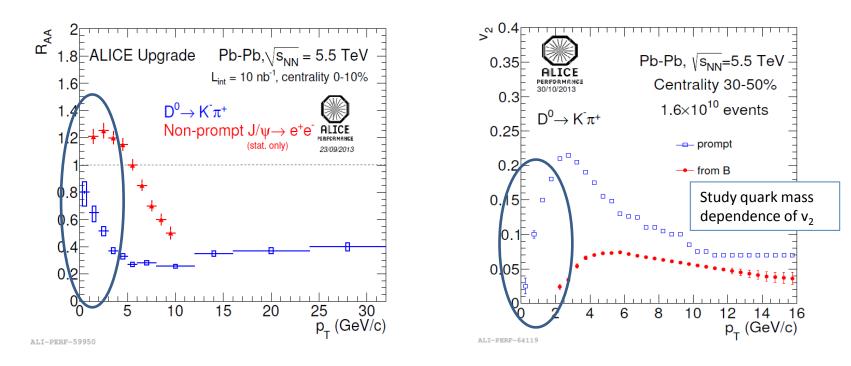

ALICE Upgrade: Why and How?

Improve precision of heavy-flavour measurements to get further insight in the properties of the QGP

- Higher integrated luminosities
- Improved resolution of the primary and decay vertex

→higher statistical precision to put more stringent constraints to models

 \rightarrow possibility of measuring rare probes (Λ_c, Λ_b ...) which are not accessible with current setup


ALICE Upgrade:

Full ALICE Upgrade strategy: M. Masera's talk (Tuesday, 9:00)

- Faster readout of ALICE sub-detectors in minimum-bias mode
- New Inner Tracking System with improved tracking precision and efficiency
- Allow for the measurement of D mesons with higher precision and extend to low p_T region
- Open the way to the measurement of B-meson R_{AA}, Λ_c and Λ_b

Upgrade: D-meson R_{AA} and v₂

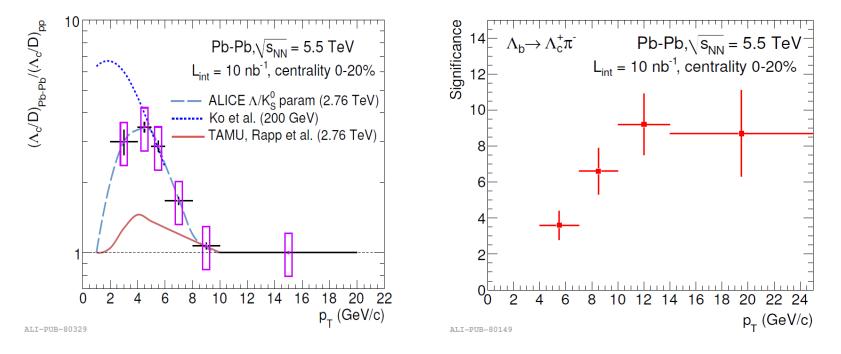
D-meson reconstruction with the upgraded ALICE detector:

- $D^0 R_{AA}$: down to $p_T = 0$ and higher precision
- ✤ D⁰ from B meson :

B-meson measurement via displaced D^0 and J/ψ

- D-meson v_2 :
 - precise measurement of prompt D and D from B meson
 - down to $p_T = 0$

$\underbrace{ \text{Upgrade: heavy-flavour hadronization?} }_{\text{ALICE}} Upgrade: heavy-flavour hadronization? } \\ \Lambda_{c} \text{ and } \Lambda_{b}$

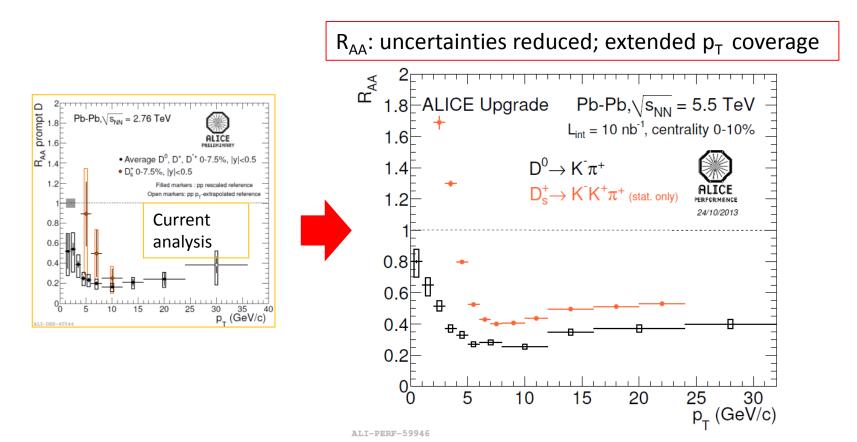

Baryon/meson enhancement: measured in ALICE in p/ π and Λ/K Extend measurement to HF sector? Λ_c/D , Λ_b/B

 Λ_c (cτ = 60 µm) not accessible with the current ITS in Pb-Pb collisions **Output Upgrade:**

Improvement in resolution allows for cleaner vertex separation

 $\rightarrow \Lambda_c$ production measurable down to 2 GeV/c with good precision

 $\rightarrow \Lambda_{b} \rightarrow \Lambda_{c} \pi$ accessible for the first time in ALICE (CERN-LHCC-2013-024)



Coalescence mechanism and strangeness enhancement: D_s vs D

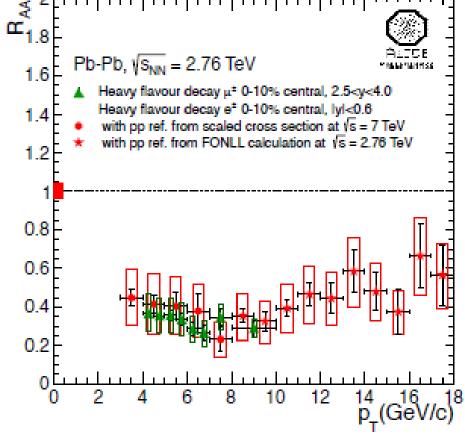
Upgrade:

- * Reduce strongly the uncertainties and extend the measurement in the low p_T region
- Possibility to measure v₂ of D_s

Conclusions

HF results in Pb-Pb collisions:

- Strong suppression for p_T>5 GeV/c in central Pb-Pb collisions w.r.t. the binary scaled pp reference in the same range
 - due to the charm quark energy loss in the QGP, confirmed by R_{pPb}~1
- R_{AA} (D) < R_{AA} (B) larger suppression for charm than beauty
 - described by models with mass-dependent energy loss
- \succ Comparison between R_{AA} (π) and R_{AA} (D) not conclusive with current statistics
- D-meson v₂ >0 in 2<p_T<6 GeV/c</p>
 - compatible with light-hadron v₂
 - ightarrow charm quarks participate in the collective expansion of the medium
- ALICE has a strong upgrade programme for precision QGP studies through HF measurements
 - better tracking precision
 - enhanced readout capabilities
- → R_{AA} and v_2 measurement possible down to zero p_T , higher precision, open the possibility to study other interesting channels


The ALICE upgrade will mark the transition from the exploratory phase to the era of precision measurements with heavy quarks

Semi Leptonic decays: R_{AA}

R_{AA}: electrons and muons from charm and beauty hadron decays Clear suppression in 3<pt<18 GeV/c for electrons and in 4<pT<10 GeV/c for muons in the 10% most central Pb-Pb collisions

Different rapidity range: μ : 2.5 < y < 4 e : |y|<0.6

ALI-DER-36791

Heavy-flavour decay muon R_{AA} at forward rapidity compatible with that of heavy-flavour decay electrons at mid-rapidity

Study of flavour dependence of R_{AA}

- pQCD model including mass-dependent radiative and collisional energy loss predicts a difference between the D-meson and nonprompt J/ψ similar to that observed.
- Similar pattern from other calculations (e.g. BAMPS, WHDG, Vitev et al.).