

A. CERRI

Outline

- Introduction
- Run I Results
 - Production & Decay
 - Spectroscopy
 - Rare Decays
 - CP Violation
- (Some) prospects for Run II

These slide give – for reference - a complete overview: will not discuss everything in detail!

Will not cover (among others):

- The ATLAS detector
- Detector upgrade

Apologies for the neglected areas!

All results available at: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/BPhysPublicResults

Public ATLAS HF Results

3

Short Title	Int L	Journal	Preprint	Plots	Preceding CONF-note
$_{\rm NEW}$ Cross-section measurement of $\psi(2S) \rightarrow J/\psi$ ($\rightarrow \mu^+\mu^-$) $\pi^+\pi^-$ at \sqrt{s} = 7TeV	2.1 fb-1	JHEP 09 (2014) 079	arXiv:1407.5532	Link	ATLAS-CONF-2013-094
$_{\rm NEW} \varphi_s$ and $\Delta\Gamma_s$ from flavour tagged time dependent angular analysis of Bo $_s \to J/\psi$ φ	4.9 fb-1	Phys. Rev. D 90 (2014) 052007	arXiv:1407.1796	Link	ATLAS-CONF-2013-039
$_{\rm NEW}$ Observation of an excited ${\rm B}_{\rm c}$ meson state with the ATLAS detector	(4.9+19.2) fb-1	Accepted by PRL	arXiv:1407.1032	Link	-
NEW Measurement of χ_{c1} and χ_{c2} production at $\sqrt{s} = 7 \text{TeV}$	4.5 fb-1	JHEP 07 (2014) 154	arXiv:1404.7035	Link	ATLAS-CONF-2013-095
$\underline{\text{NEW}} \text{ Measurement of the parity violating asymmetry parameter } \alpha_b \text{ and the helicity amplitudes for the decay } \Lambda_b^{0} \rightarrow J/\psi \Lambda^0$	4.6 fb-1	Phys. Rev. D 89 (2014) 092009	arXiv:1404.1071	Link	ATLAS-CONF-2013-071
NEW Associated production of prompt J/ ψ mesons and W boson in at $\sqrt{s} = 7$ TeV	4.6 fb-1	JHEP 04 (2014) 172	arXiv:1401.2831	Link	ATLAS-CONF-2013-042
Production cross section of B+ at $\sqrt{s} = 7\text{TeV}$	2.4 fb-1	JHEP 10 (2013) 042	arXiv:1307.0126	Link	ATLAS-CONF-2013-008
Inclusive Y(nS) differential cross sections and ratios	1.8 fb-1	Phys. Rev. D 87 (2013) 052004	arXiv:1211.7255	Link	-
φ_s and $\Delta\Gamma_s$ from time dependent angular analysis of Bo $_s \to J/\psi$ φ	4.9 fb-1	JHEP 12 (2012) 072	arXiv:1208.0572	Link	-
Measurement of the Λ_b lifetime and mass	4.9 fb-1	Phys. Rev. D 87 (2013) 032002	arXiv:1207.2284	Link	ATLAS-CONF-2012-055
b-hadron production cross-section from $D^*\mu X$ final states	3.3 pb-1	Nucl. Phys. B864 (2012) 341-381	arXiv:1206.3122	Link	
Search for the decay $B_s^{\circ} \rightarrow \mu\mu$	2.4 fb-1	Phys. Lett. B713 (2012) 180-196	arXiv:1204.0735	Link	ATLAS-CONF-2012-010
Observation of a new χ_{b} state in radiative transitions to Y(1S) and Y(2S)	4.4 fb-1	Phys. Rev. Lett. 108 (2012) 152001	arXiv:1112.5154	Link	
Y(1S) Fiducial Production Cross-Section	1.1 pb-1	Phys. Lett. B703 (2011) 428-446	arXiv:1106.5325	Link	
Differential cross-sections of inclusive, prompt and non-prompt J/ψ production	2.3 pb-1	Nucl. Phys. B 850 (2011) 387-344	arXiv:1104.3038	Link	
Analyses performed within other ATLAS Physics Groups:					
D*+/- production in jets	0.3 pb-1	Phys. Rev. D 85, 052005 (2012)	arXiv:1112.4432	Link	
Inclusive production of electrons and muons (b/c cross section)	35 pb-1	Phys. Lett. B 707 (2012) 438-458	arXiv:1109.0525	Link	
Centrality dependence of J/ψ production in heavy ions collisions	6.7 µb-1	Phys. Lett. B 697 (2011) 294-312	arXiv:1012.5419	Link	

This is an incomplete list: cannot possibly cover all this in detail... sorry!

A. Cerri - University of Sussex

HF Data Collected by ATLAS

- Excellent Run I LHC performance: 26 fb⁻¹!
- Trigger: mainly di-muon
 (4+4) and (4+6) GeV

Several results still based on 2011 data only $\mathscr{L}\simeq4.9 \text{ fb}^{-1} \sqrt{s}=7 \text{ TeV}$

Overview

Three (two?) main areas of investigation:

- HF as probe of QCD processes
- Constraining the HF sector in the SM
- HF in searches for new physics

Closely related: will discuss together!

Production & Decay

HF Production

• Crucial QCD test

- CSM with NLO and NNLO* improvements
- Color Octet Model (NRQCD) with LO and NLO
- Other models: CEM / k_T factorisation

HF/LHC probes novel (high) p_T regime

Polarization

- Discordant theoretical predictions and ambiguous experimental results
- Important source of exp. systematics in several production measurements

LHC: high statistic, broader p_T coverage

qq Production Measurements

Probe:

- high P_T (>40GeV) region
- small spin alignment effects
- feed-down effects
- onia and b-hadron production models

Binned Differential σ Measurements

$$\frac{d^2\sigma(pp\to Q+X)}{dp_Tdy}\cdot Br(Q\to\mu\mu) = \frac{N_{corr}^{Q\to\mu\mu}}{\mathcal{L}\cdot\Delta p_T\cdot\Delta y}$$

Signal yield: unbinned maximum likelihood fits $\Rightarrow \sigma_{stat} \sim \text{few \%}$

 $N_{corr}^{Q \to \mu\mu}$: signal yield corrected for efficiency and acceptance \mathcal{L} : integrated luminosity corresponding to the sample $\Delta p_T(y)$: interval bin of the differential variable

correction weight:
$$w = (\epsilon_{trk} \cdot \epsilon_{\mu} \cdot \epsilon_{trig.} \cdot \mathcal{A})^{-1}$$

 $\epsilon(p_T^{(\mu)}, \eta^{(\mu)})$ efficiencies \rightarrow data driven methods to reduce uncertainties (e.g. tag and probe)

A(p_{T} , y) acceptance corrections [recover full phase space, esp. @ low P_T] \rightarrow simulation

Total systematic uncertainty ~(5-10)%

Binned Differential σ Measurements

$$\frac{d^2\sigma(pp\to Q+X)}{dp_T dy}\cdot Br(Q\to\mu\mu) = \frac{N_{corr}^{Q\to\mu\mu}}{\mathcal{L}\cdot\Delta p_T\cdot\Delta y}$$

Signal yield: unbinned maximum likelihood fits $\Rightarrow \sigma_{stat} \sim \text{few \%}$

 $N_{corr}^{Q \to \mu \mu}$: signal yield corrected for efficiency and acceptance \mathcal{L} : integrated luminosity corresponding to the sample $\Delta p_T(y)$: interval bin of the differential variable

correction weight:
$$w = (\epsilon_{trk} \cdot \epsilon_{\mu} \cdot \epsilon_{trig.} \cdot \mathcal{A})^{-1}$$

Total systematic uncertainty ~(5-10)%

Binned Differential σ Measurements

$$\frac{d^2\sigma(pp\to Q+X)}{dp_Tdy}\cdot Br(Q\to\mu\mu) = \frac{N_{corr}^{Q\to\mu\mu}}{\mathcal{L}\cdot\Delta p_T\cdot\Delta y}$$

Signal yield: unbinned maximum likelihood fits $\Rightarrow \sigma_{stat} \sim \text{few \%}$

 $N_{corr}^{Q \to \mu \mu}$: signal yield corrected for efficiency and acceptance \mathcal{L} : integrated luminosity corresponding to the sample $\Delta p_T(y)$: interval bin of the differential variable

correction weight:
$$w = (\epsilon_{trk} \cdot \epsilon_{\mu} \cdot \epsilon_{trig.} \cdot \mathcal{A})^{-}$$

Total systematic uncertainty ~(5-10)%

Acceptance ⇔ spin alignment isotropic case + envelope due to different polarization states

Acceptance variations may reach \sim (10-30)%

A. Cerri - University of Sussex

13

Prompt production:

- Good agreement with CMS and LHCb
- Sensitivity to the new high p_T territory

JHEP 09 (2014) 079

Prompt production:

- Good agreement with CMS and LHCb
- Sensitivity to the new high p_T territory
 - Good agreement with NRQCD LO and NLO @ low/medium p_T
 - Higher p_T: visible deviations

CSM & $k_{\rm T}$ models may need higher order contributions

15

Non Prompt production:

- Good agreement with CMS and LHCb
- Sensitivity to the new high p_T territory

16

JHEP 09 (2014) 079

Non Prompt production:

- Good agreement with CMS and LHCb
- Sensitivity to the new high p_T territory
 - Good agreement with predictions
 @ ~all p_T

$\Psi(2s)$ Production: non-prompt/inclusive

- Better control of systematic uncertainties
- Extended |y| range
- Qualitative agreement with CMS
- Important input to onia production models

2014/10/03

A. Cerri - University of Sussex

JHEP 04 (2014) 172

10⁻'-2

-1

0

3.2

 $\mu^+\mu^-$ Invariant Mass [GeV]

3

3.4

5

6

3

 J/ψ Pseudo-proper Time [ps]

4

2

2.6

2.8

Events / 0.04 GeV

JHEP 04 (2014) 172

$W+J/\psi$ Production

Test ccbar production modelsProbe for Higgs/BSM physics

single
$$\mu$$
 trigger : $p_T^{thr} \ge 18 \ GeV$
$$\frac{1}{\sigma^{(W)}} \frac{d^2 \sigma^{(W+J/\Psi)}}{dp_T dy} \cdot Br(J/\Psi \to \mu\mu) \cdot Br(W \to \mu\nu_\mu)$$

Double Parton Scattering (DPS) contribution

$$d\sigma^{DPS}(W + J/\psi) = d\sigma_W \cdot \underbrace{\frac{d\sigma_{J/\psi}}{\sigma_{eff}}}_{P_{J/\psi|W}}$$

$$(\sigma_{J/\Psi}(ATLAS : J/\Psi \ prompt))$$

$$\sigma_{eff} = (ATLAS : W + 2j)$$

$$\sigma_W \text{ (this analysis)}$$

 $\Rightarrow N_{DPS} = 10.8 \pm 4.2 \ (\sim 35\%)$

23

More problematic (at all p_T) for current k_T / CSM predictions

More problematic (at all p_T) for current k_T / CSM predictions Non-prompt production in agreement (limited p_T /statistics)

More problematic (at all p_T) for current k_T / CSM predictions Non-prompt production in agreement (limited p_T /statistics) **Production is mostly prompt (contrary to J/\psi and \psi(2s))**

Similar conclusions on CSM predictions

Y(ns) Production

28

• Separation of Y(1s, 2s,3s) in mass

A. Cerri - University of Sussex

Y(ns) Production

29

- Separation of Y(1s, 2s,3s) in mass
- Cross sections:
 - Absolute Y(1s)
 - Relative Y(2s)/Y(1s) and Y(3s)/Y(1s)

Y(ns) Production

- Separation of Y(1s, 2s,3s) in mass
- Cross sections:
 - Absolute Y(1s)
 - Relative Y(2s)/Y(1s) and Y(3s)/Y(1s)
- Disagreement with theory (NNLO CSM & CEM) at high p_T (where spin-alignment and feed-down effects are less important)

LO+ p_T /angular ordered model inconsistent, esp. at low z

A. Cerri - University of Sussex

Open Charm

ATLAS-PHYS-PUB-2011-12 PRD 85 (2012) 052005

ATLAS

10

p₋ > 25 GeV

30

∆m [MeV]

40

z > 0.3

20

> ● ₩1500

Entries/ 2005 Entries/

0.5

• In Jets

 $LO + p_T/angular$ ordered model inconsistent, esp. at low z

• Inclusive: $D^0 \to K^-\pi^+, D^+ \to K^-\pi^+\pi^+, D^{*+} \to D^0\pi^+$

All consistent with models based on perturbative QCD with large theory uncertainties

A. Cerri - University of Sussex

NPB 864 (2012) 341

A. Cerri - University of Sussex

$Br(B^+ \rightarrow \chi_{c1}K^+)$

• Sub-set of non-prompt χ_{c1} candidates

- J/ψK⁺ used as control/ reference
- BR(B⁺ $\rightarrow \chi_{c1}K^{+})=$
 - $4.9 \pm 0.9_{\text{stat}} \pm 0.6_{\text{sys}} \times 10^{-4}$
- Good agreement and big improvement wrt previous hadron collider measurements
- Uncertainties statistical
 → expect improvements!

Spectroscopy

Bottomonium: $\chi_b(3P)$

- First particle discovered at the LHC!
- ATLAS discovery (end 2011)
- Confirmed (with lower significance) by:
 - LHCb: CONF-2012-020 / PRD 86 (202) 031103(R)

• Do

Observed bottomonium radiative decays in ATLAS, $L = 4.4 \text{ fb}^1$

arXiv:1407.1032, Accepted by PRL

Candidates / 17 MeV

Flavour Observables and Searches For New Physics

PRD 89 (2014) 092009

Parity Violation in $\Lambda_b \rightarrow J/\psi \Lambda^o$

- consistent with $\alpha_{LHCB} = 0.05 \pm 0.17 \pm 0.07$
- α_{HQET} =0.78 and α_{pQCD} =-(0.14÷0.17)
- •Ongoing analyis of 2012 data

A. Cerri - University of Sussex

 $|a_{+}|^{2} + |a_{-}|^{2} + |b_{+}|^{2} + |b_{-}|^{2} = 1.$

 b_{+}

b

-1/2

1/2

ATLAS-CONF-2013-038

NP in $B_d \rightarrow K^{*o}(K^{\pm}\pi^{\mp})\mu^{+}\mu^{-}$

0.9 0.8

0.7E

0.6E

0.5E

0.4

0.3

0.2

0

b→sll transition

- SM: loop-mediated \Rightarrow BR \approx 1.1 \times 10⁻⁶
- Sensitive to BSM contributions
 - **A**_{FB}: Lepton forward/backward asym.
 - **F**_L: K^{*}^o longitudinal polariz.
- ML Fit to angular distribution \Rightarrow
 - (A_{FB}, F_L) in q²-intervals
- q²<2 GeV² statistically limited
- Removed $\psi(ns) \rightarrow \mu \mu(\gamma)$
- $N_{sig} = 466 \pm 34 N_{bck} = 1132 \pm 43$

ATLAS-CONF-2013-076

NP in $B_{d/s} \rightarrow \mu^+ \mu^-$

 $\times BR(B_d$.

× 0.5

- Highly suppressed in SM
 - SM BR($B_s \rightarrow \mu\mu$) $\approx (3.27 \pm 0.27) \times 10^{-9}$ [Buras et al., EPJC72(2012) 2172]
 - CMS+LHCb measure BR($B_{s} \rightarrow \mu\mu$)~(2.9±0.7)×10⁻⁹[arXiv 1307.5024, arXiv 1307.5025]
- Sensitive to BSM contributions
 - BR
 - $\mathbf{R} = BR(B_d \rightarrow \mu\mu) / BR(B_s \rightarrow \mu\mu)$
- ATLAS, 5 fb⁻¹:
 - Fully blind analysis
 - $B^+ \rightarrow J/\psi K^+$ as reference mode
 - Data-driven BDT training: distinguish S/B_{nonresonant}
 - Single Event Sensitivity: (2.07±0.26_{STAT})×10⁻⁹
 - Main systematics: BR(B+), f_u/f_s and ϵA ratio

 $BR(B_s \rightarrow \mu\mu) < 1.6 \times 10^{-8} @ 95\% CL$

Ongoing analysis of 2012 data:

- 20 fb⁻¹ of data, similar acceptances and ε as 2011
- Improved fake μ rejection
- Mass-dependent S and B models in BDT bins

PRD 90 (2014) 052007

NP in $B_s \rightarrow J/\psi \phi$

- Sensitive to $\Delta f=2 (\phi_s, \Delta \Gamma_s)$
- arXiv 1407.1796, PRD: 2nd version of 2011 analysis, including flavour tagging
 - Fit: mass+lifetime+angular variables +initial B_s flavour

Tagger	Tagging Power [%]
Combined μ	0.86 ± 0.04
Segment Tagged μ	0.15 ± 0.02
Jet charge	0.45 ± 0.03
Total	1.45±0.05

PRD 90 (2014) 052007

- Sensitive to $\Delta f=2 (\phi_s, \Delta \Gamma_s)$
- arXiv 1407.1796, PRD: 2nd version of 2011 analysis, including flavour tagging
 - Fit: mass+lifetime+angular variables

Tagger	Tagging Power [%]
Combined μ	0.86 ± 0.04
Segment Tagged μ	0.15 ± 0.02
Jet charge	0.45 ± 0.03
Total	1.45±0.05

- CMS result overlaid "by hand" (sorry!)
- Not the final word from ATLAS: 2012+2011 result coming soon!

Run II Prospects

- B physics program will continue in Run II
 - Increased statistics
 - Improved detector performance (e.g. cτ resolution)
 - Improved trigger strategies
 - No degradation of performance expected with increased ${\mathscr L}$
- Example $\rightarrow \phi_s$

	2011	2012	2015-17		2019-21	2023-30+
Detector	current	current	IBL		IBL	ITK
Average interactions per BX $<\!\mu>$	6-12	21	60		60	200
Luminosity, fb^{-1}	4.9	20	100		250	3 000
Di- μ trigger $p_{\rm T}$ thresholds, GeV	4 - 4(6)	4 - 6	6 - 6	11 - 11	11 - 11	11 - 11
Signal events per fb^{-1}	4 400	4 320	3 280	460	460	330
Signal events	22 000	86 400	327 900	45 500	114 000	810 000
Total events in analysis	130 000	550 000	1 874 000	284 000	758 000	6 461 000
MC $\sigma(\phi_s)$ (stat.), rad	0.25	0.12	0.054	0.10	0.064	0.022

Conclusions

48

Rich and varied HF physics program

- QCD
- Flavour
- New Physics
- Few highlights:
 - Discovery of $\chi_b(3P)$
 - Heavy b-states: B_c , Λ_b
 - Observation of $B_c(2S)$
 - Best (at time of publication) measurement of Λ_b lifetime
 - J/ ψ , χ_c , Y, B, D... cross sections **up to** $p_T \sim 70$ GeV
 - "Semi-rare" B→K*µµ
 - Rare decay $B_s \rightarrow \mu\mu$
 - CP violation in $B_s \rightarrow J/\psi \phi$

2012+2011 combined results coming!

More to come from Run I data, and new exciting results ahead in Run II

Back-up Material

.49 '

A. Cerri - University of Sussex

Key Performance Aspects

- Tracking efficiency: ε_{trk} =99%
- Mass Reconstruction
 - $(\mu^+\mu^-) \Rightarrow J/\psi, Y$
 - $(J/\psi + trks) \Rightarrow \Psi$, exclusive B
 - $\Delta m = m(\mu^+\mu^-\gamma) m(\mu^+\mu^-)$ "resolution"

2014/10/03

A. Cerri - University of Sussex