LHC Days in Split

29 September - 4 October 2014 Diocletian's Palace / Palazzo Milesi/ Split, Croatia

The LHCb Upgrade

3 October 2014

LHCb

Pascal Perret LPC Clermont On behalf LHCb Collaboration

Introduction

LHCb

- A high precision experiment devoted to the search for New Physics (NP) beyond the Standard Model (SM) by
 - Studying CP violation and rare decays in the b and c-quark sectors
 - Searching for deviations from the SM due to virtual contributions of new heavy particles in loop diagrams
 - Being sensitive to new particles above the TeV scale not accessible to direct searches
- A single-arm forward spectrometer
 - Exploiting the huge production of beauty-pairs at small angles
 - σ_{bb} :250 500 µb @ \sqrt{s} =7–14TeV
 - σ_{cc} is 20 times larger!
 - Covers ~4% of the solid angle, but captures ~30% of the heavy quark production cross-section

Motivation for the LHCb Upgrade

- Past and running experiments have shown that:
 - Flavour changing processes are consistent with the CKM mechanism
 - Large sources of flavour symmetry breaking are excluded at the TeV scale
 - The flavour structure of the NP, if it exists, would be very peculiar at the TeV scale (MFV)
- However:
 - Measurable deviations from the standard model are still expected, but should be small
 - Need to go to very high precision measurements to probe the most clean observables
- LHCb upgrade essential to increase statistical precision significantly!

Resinforce LHCb as a general purpose forward detector 03/10/2014 Pascal Perret - LPC Clermont

Expected luminosity evolution

• A fraction of the available luminosity is used

Motivation for the LHCb Upgrade

LHCb statistical sensitivity to flavour observables

• Expected statistical uncertainties on a few selected physics channels before and after the upgrade, compared to theory

	lected	LHCb up to LS2		LHCb upgrade		Theory	
Few	iopics	Run 1	Run 2	Run 3	Run 4	Theory uncertainty	
	Integrated lumi	$3~fb^{-1}$	$8~fb^{-1}$	$23~fb^{-1}$	$46~fb^{-1}$		
	$\frac{Br(B_d \to \mu\mu)}{Br(B_s \to \mu\mu)}$	-	110 %	60%	40%	5%	
	$q_0^2 A_{FB}(B_d \to K^{*0} \mu \mu)$	10%	5%	2.8%	1.9%	7%	
	$\phi_s(B_s \to J/\psi\phi, B_s \to J/\psi\pi\pi)$	0.05	0.025	0.013	0.009	0.003	
	$\phi_s(B_s \to \phi \phi)$	0.18	0.12	0.04	0.026	0.02	
	γ	7°	4°	1.7°	1.1°	negl.	
	$A_{\Gamma}(D^0 \to KK)$	$3.4 \ 10^{-4}$	2.2 10-4	$0.9 \ 10^{-4}$	$0.5 \ 10^{-4}$	-	

From "Heavy Flavour Physics in the HL-LHC era" document prepared for the Aix-les-Bains ECFA Workshop - Oct 2013

LHCb operation

Quite different conditions compared to LHCb design

- 50 ns bunch spacing, 7/8 TeV < 1300 bunches</p>
 - 25 ns bunch spacing, 2808 bunches, 14 TeV
- Pileup up to µ=4 visible interactions /crossing
 - µ=0.7
- L= 4x10³²cm⁻²s⁻¹
 - L= 2x10³²cm⁻²s⁻¹

LHCb trigger ... limitations

03/10/2014

LHC Days in Split

- Hardware Trigger (Level-0):
 - "Moderate" E_T/p_T threshold on e/γ , h or μ
 - Max output rate: 1Mz
- SoftwareTrigger (HLT):
- Storage rate: 2 5 12.5 kHz

LHCb trigger ... limitations

- At present conditions if we increase the luminosity:
 - We must raise E_T/p_T cut to stay within 1 MHz readout limit
 - Final states with muons
 - Linear gain
 - Hadronic final states
 - trigger yield saturates
 - To profit of a luminosity of 10³³cm⁻²s⁻¹, information has to be introduced that is more discriminating than E_T:
 - Impact parameter!

8

Upgrade strategy

Remove the level-0 hardware trigger

- Readout an event every bunch crossing: 40MHz readout rate
- New front-end electronics
 - on-chip zero suppression
- New DAQ system

 Use an efficient fully software trigger accessing complete event information, running at the bunch crossing rate

 Adapt sub-systems to increased occupancies due to higher luminosity and to radiation damage

Keep excellent performance of sub-systems

Trigger and Online upgrade

LHCb Upgrade Trigger Diagram

30 MHz inelastic event rate, event building at full rate

LLT: 15-30 MHz output rate, select high E_T/p_T (h[±]/μ/γ)

a nation that the

Full event reconstruction, inclusive and exclusive kinematic/geometric selections

- Use complete event information, running at the bunch crossing rate
 - Low Level Trigger foreseen in early stage:
 - Partial information from calorimeter and muon detectors
 - LLT output rate increases as trigger farms grows
 - Online detector calibration
 - ~20-100 kHz storage rate

Trigger and Online upgrade

The 40 MHz R/O Architecture

Preparation for trigger upgrade

- Optical links
 - New PC farm at surface (prototype in 2015)
 - 17000x350m fibres from UX to SX

Preparation for trigger upgrade

• Civil engineering has started ...

03/10/2014

Pascal Perret - LPC Clermont

VELO upgrade

Challenges:

- Withstand increased radiation
 - Highly non-uniform radiation of up to 8.10¹⁵ n_{eq}/cm² for 50 fb⁻¹
- Handle high data volume (up to 20Gbit/s!)
- Keep (improve) current performance
 - Lower materiel budget
 - Enlarge acceptance
- Technical choices:
 - 55x55 μm² Si pixel sensors (41x10⁶)-
 - 26 stations
 - Micro channel CO₂ cooling
 - 40 MHz VELOPIX
 - Evolution of TIMEPIX 3, Medipix, 8xfaster
 - 130 nm technology to sustain ~400 MRad in 10 years

Si cooling substrate ~400 µm

03/10/2014

Pascal Perret - LPC Clermont

LHCD

VELO upgrade

Technical choices:

~1m

- Replace RF-foil between detector and beam vacuum
 - Reduce thickness from 300 $\mu m \rightarrow$ ~150 μm
- Move closer to the beam
 - Reduce inner aperture from 5.5 mm \rightarrow 3.5 mm (first measurement 8.13mm \rightarrow 5.1 mm)

45 deg. rotated new VELO option under discussionUHC Days in Split03/10/201403/10/2014Pascal Perret - LPC Clermont

VELO upgrade performances

- Expected performances at ~2x10³³cm⁻²s⁻¹ are superior in essential every aspect with respect to the current VELO operating at high luminosity
 - Better impact parameter resolution due to reduced material budget
 - Reduced ghost rate due to pixels
 - Improved efficiency over full range in p_T , ϕ , η

note: full GEANT Monte Carlo with standard LHCb simulation framework

Pascal Perret - LPC Clermont

Tracker upgrade

Challenges:

- Cope with increased particle density
 - Especially in downstream stations
- Improve speed of track reconstruction
 - Crucial for trigger performance
- Improve forward acceptance in upstream station
 - Approach closer to beam pipe
- Technical choices:
 - Keep current setup with 1+3 stations
 - Upstream: silicon strip detector with finer readout granularity
 - Downstream: scintillating fibres

Upstream Tracker (UT)

- 4 detection planes, stereo
- Silicon strip detector
 - 250 µm thickness
- Segmentation and technology depends on expected dose and occupancy region
 - Three readout strip geometries
 - 49 (C,D) / 98 (B,A) mm long strips

UT Stave

• 95 (B,C,D) / 190 (A) µm pitch

40 MHz R/O via SALT ASIC

SciFi Tracker

SiPM readout A single technology Scintillating fibres read out with SiPMs 2 x ~ 2.5 m 3 stations of X-U-V-X (±5° stereo angle) fibre ends planes: 12 layers mirrored 2.5 m long, Ø=250 µm fibres Excellent x-position resolution (50-75 μm) SiPM readout Fast pattern recognition for HLT 40 MHz R/O via PACIFIC ASIC SiPM & R/O outside acceptance Challenges: mean positio amplitude Radiation environment Ionization damage to fibres: tested ok Neutron damage to SiPM: operate at -40°C

- Large size high precision
 - O(10'000 km) of fibres
 - O(500'000) R/O channels

03/10/2014

Pascal Perret - LPC Clermont

Upgraded Tracker performances

Performance of the forward pattern recognition algorithm

- Improved tracking efficiency with Fiber Tracker
- Improved background rejection with Upstream Tracker

Particule IDentification upgrade

- 3 systems:
 - RICHs
 - Calorimeters
 - Muon
- Challenges:
 - High occupancy and radiation rate
 - Keep excellent present performances!
- Technical choices:
 - Keep as much as possible current detectors
 - New electronics: R/O @40MHz

RICH upgrade

New 40 MHz readout:

- HPD photon detectors with embedded 1 MHz front-end readout electronics replaced by commercial Multi-Anode PMTs (64 ch.)
- 40 MHz R/O via CLARO ASIC

RICH1 re-optimization

- Remove aerogel
- Improve optics to spread out Cherenkov rings on the focal plane

Upgraded RICH1 Focal Plane Quartz window Spherical Mirror Flat Mirror **Optimise gas** P2 enclosure without modifying B-shield P3 P1 RICH1 focal length is increased to LHC Days in Spli reduce occupancy 03/10/2014

Hybrid Photon Detector

mont

with embedded 1 MHz R/O chip

RICH upgrade performance

Expected Performances at ~2x10³³cm⁻²s⁻¹ close to current one

Expected K/π performance

IS THE DESIGNATION

Calorimeter upgrade

- PS and SPD will be removed
 - No more L0 calorimeter trigger
- ECAL expected to be fine up to 20fb⁻¹
 - Inner ECAL cells could be replaced at LS3
- HCAL OK up to 50 fb⁻¹
- Lowered PMT gains to guarantee extended operation at high luminosity
- New front-end electronics (5 times more gain)
 - 40 MHz R/O via ICECAL
- Impact of pile-up on the energy / position measurement:
- Change the reconstruction and define smaller
 Current Clusters New Clusters Studied

LPC Clermont

26

Muon system upgrade

Main changes:

- M1 will be removed
 - No more L0 muon trigger
 - Very high occupancies
- Occupancy issues:
 - Additional shielding behind HCAL
 - To reduce the rate in the inner region of M2
 - Possible replacement of M2/M3 inner region detectors under study
- Keep on-detector electronics (CARIOCA)
 - Already at 40 MHz readout !
- New off-detector board for efficient readout via PCIe40 common R/O boards

Pascal Perret - LPC Clermont

Summary & Conclusion

- The LHCb upgrade is mandatory to reach experimental precision of the order of theoretical uncertainties
 - Levelled luminosity of 2.10³³ cm⁻²s⁻¹ at 25 ns bunch spacing
 - The Upgraded LHCb trigger-less scheme with event processing at 40 MHz, will allow to collect 5 fb⁻¹ per year
 - The upgrade will be performed during LS2 (2018-19)
 - New Si pixel VELO, UT, SciFi detectors
 - Data taking will start in 2020

The LHCb upgrade is fully approved

Addendum to MoU for Common Projects submitted for signature to Funding Agencies, next one (detector) now submitted to RRB

LHC Days in Split

29 September - 4 October 2014 Diocletian's Palace / Palazzo Milesi/ Split, Croatia

THANK YOU!

03/10/2014

Pascal Perret - LPC Clermont

Physics reach after the upgrade

Туре	Observable	Current precision	LHCb 2018	Upgrade (50 fb ⁻¹)	Theory uncertainty
B_s^0 mixing	$2\beta_s(B_s^0 \to J/\psi\phi)$ $2\beta_s(B_s^0 \to J/\psi f_0(980))$ $a_{\rm sl}^s$	0.10 [139] 0.17 [219] 6.4 × 10 ⁻³ [44]	0.025 0.045 0.6×10^{-3}	0.008 0.014 0.2×10^{-3}	~ 0.003 ~ 0.01 0.03×10^{-3}
Gluonic penguins	$2\beta_{s}^{\text{eff}}(B_{s}^{0} \to \phi\phi)$ $2\beta_{s}^{\text{eff}}(B_{s}^{0} \to K^{*0}\overline{K}^{*0})$ $2\beta^{\text{eff}}(B^{0} \to \phi K_{s}^{0})$	– – 0.17 [44]	0.17 0.13 0.30	0.03 0.02 0.05	0.02 < 0.02 0.02
Right-handed currents	$2\beta_s^{\text{eff}}(B_s^0 \to \phi \gamma) \tau^{\text{eff}}(B_s^0 \to \phi \gamma) / \tau_{B_s^0}$	-	0.09 5 %	0.02 1 %	<0.01 0.2 %
Electroweak penguins	$S_{3}(B^{0} \to K^{*0}\mu^{+}\mu^{-}; 1 < q^{2} < 6 \text{ GeV}^{2}/c^{4})$ $s_{0}A_{\text{FB}}(B^{0} \to K^{*0}\mu^{+}\mu^{-})$ $A_{\text{I}}(K\mu^{+}\mu^{-}; 1 < q^{2} < 6 \text{ GeV}^{2}/c^{4})$ $\mathcal{B}(B^{+} \to \pi^{+}\mu^{+}\mu^{-})/\mathcal{B}(B^{+} \to K^{+}\mu^{+}\mu^{-})$	0.08 [68] 25 % [68] 0.25 [77] 25 % [86]	0.025 6 % 0.08 8 %	0.008 2 % 0.025 2.5 %	0.02 7 % ~0.02 ~10 %
Higgs penguins	$ \mathcal{B}(B_s^0 \to \mu^+ \mu^-) \\ \mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B_s^0 \to \mu^+ \mu^-) $	1.5 × 10 ⁻⁹ [13] -	0.5×10^{-9} ~100 %	0.15 × 10 ⁻⁹ ~35 %	0.3×10^{-9} ~5 %
Unitarity triangle angles	$\gamma(B \rightarrow D^{(*)}K^{(*)})$ $\gamma(B_s^0 \rightarrow D_s K)$ $\beta(B^0 \rightarrow J/\psi K_S^0)$	~10–12° [252, 266] – 0.8° [44]	4° 11° 0.6°	0.9° 2.0° 0.2°	negligible negligible negligible
Charm <i>CP</i> violation	A_{Γ} $\Delta \mathcal{A}_{CP}$	2.3×10^{-3} [44] 2.1×10^{-3} [18]	0.40×10^{-3} 0.65×10^{-3}	0.07×10^{-3} 0.12×10^{-3}	-

LHC Days in Split 29 September: 4 October 2014 Diordenan SPlace, Fature Miles Split (rooma million e Miles)

03/10/2014

8 fb⁻¹ up to 2018 Pascal Perret - LPC Clermont

Eur. Phys. J. C (2013) 73:2373

Motivation for the LHCb Upgrade

