

Prospect of BSM/SUSY in CMS

Caroline Collard On behalf of the CMS Collaboration

- Motivations
- Planning for the LHC Upgrade
- How projections are made
- Some results on Supersymmetry and vector like quark searches
- Conclusions

Motivations

- Conclusions from Run1:
 - Discovery of the Higgs Boson
 - No evidence of new physics so far
- There should be something more
 - in order to cancel divergences appearing in the Higgs mass computation
 - also to explain the Dark Matter
- How to find this "something"?
 - increase the energy in the center of mass \rightarrow look for higher mass particles
 - increase the luminosity \rightarrow look for lower cross-section processes

This is precisely what we can get with LHC upgrades!

Planning of the LHC Upgrade

New LHC / HL-LHC Plan

LHC Days in Split 2014

- First studies: extrapolation based on 8 TeV data with a scaling of the ٠ luminosity and the cross-sections
 - no re-optimization, assume no performance degradation
 - 2 different scenarios are considered for the systematics:
 - "A" : Conservative = same uncertainties as now
 - "B" : More optimistic = relative background uncertainty is reduced

- First studies: extrapolation based on 8 TeV data with a scaling of the luminosity and the cross-sections
- Detailed studies: Prospects using the Delphes simulation, up to 3000 fb⁻¹

<PU>~140

Pile-up included in Delphes3

- If $\Delta z(PV V_{PU}) < 0.1$: PU incorporate for the object reco
- Else: charged particle suppression inside tracker,

& FastJet area method for neutral particles or charged outside tracker

The impact of the PU is studied on the discovery potential

- First studies: extrapolation based on 8 TeV data with a scaling of the luminosity and the cross-sections
- Detailed studies: <u>Prospects using the Delphes simulation, up to 3000 fb⁻¹</u>, using 2 configurations for the Phase 2 detector:
 - "Conf3": new tracker with $|\eta| < 2.5$, muon system up to $|\eta| = 2.4$, EM endcap calo à la "shashlik", Had endcap calo with ϕ segmentation x4
 - "Conf4": new tracker with $|\eta| < 4$, muon system up to $|\eta| = 4$, EM endcap calo à la "shashlik", new Had endcap calo

Impact of the $|\eta| < 4$ tracker

- Better background identification (Susy produced centrally, background also populating the forward direction) \rightarrow gain in S/B
- Reconstruction of vertices and charged particle association to forward jets → PU suppression (particularly important for VBF)

- First studies: extrapolation based on 8 TeV data with a scaling of the luminosity and the cross-sections
- Detailed studies: <u>Prospects using the Delphes simulation, up to 3000 fb⁻¹</u>, using 2 configurations for the Phase 2 detector:
 - "Conf3": new tracker with $|\eta| < 2.5$, muon system up to $|\eta| = 2.4$, EM endcap calo à la "shashlik", Had endcap calo with ϕ segmentation x4
 - "Conf4": new tracker with $|\eta| < 4$, muon system up to $|\eta| = 4$, EM endcap calo à la "shashlik", new Had endcap calo

<u>Remark</u>: Full trigger is not available \rightarrow assume triggers similar to 8 TeV data taking: not realistic but as most of the signal regions are in the tails, they should be triggered without problems.

\rightarrow Main topics of this talk

CMS-PAS-FTR-13-014 CMS-PAS-FTR-13-06

• Ongoing studies with latest performance estimates for the Upgrade detector

Search for SUSY with jets & missing hadronic energy CMS-PAS-FTR-13-014

- Based on CMS-PAS-SUS-13-012 @ 8 TeV
- Topology: many jets, no leptons,

Use of $H_{\mathrm{T}} = \sum_{\mathrm{jets}} p_{\mathrm{T}}$ and $mathcal{H}_{\mathrm{T}} = |-\sum_{\mathrm{jets}} \vec{p}_{\mathrm{T}}|$

• Event selection: $0 e/\mu$, ≥ 3 jets, $H_T > 500$ GeV, $H_T > 200$ GeV, $|\Delta \phi(J, \vec{H}_T))|$

- SM backgrounds: Z(vv)+jets, W(lv)+jets, (QCD multijets negligible at high H_T)
- Search regions for 3000 fb⁻¹: tighter cuts than for the 8 TeV analysis

	High M _{gluino}	High M _{LSP}	Medium M _{gluino} & medium M _{LSP}	Low M _{gluino} & low M _{LSP}	Low M _{gluino} & high M _{LSP}
nJets	≥6	≥6	≥6	≥6	≥6
H_{T}	>2500	>1600	>2000	>800	>1100
₩ _T	>1000	>700	>1000	>400	>600

Search for SUSY with jets & missing hadronic energy CMS-PAS-FTR-13-014

• Study of the PU effect on H_T and H_T : no major impact in the search regions

• 30 % uncertainty on the background prediction.

Search for SUSY with jets & missing hadronic energy CMS-PAS-FTR-13-014

Search for gluinos into tops & LSP

CMS-PAS-FTR-13-014

- Based on CMS-PAS-SUS-13-007 @ 8 TeV
- Topology: 1 lepton, MET, jets (some being b-tagged)
- Event selection: $1 e/\mu$, ≥ 6 jets (≥ 1 b-tagged), $H_T > 500 \text{ GeV}$, $S_T^{\text{lep}} > 250 \text{ GeV}$, $\Delta \phi(W,I) > 1$ with $S_T^{\text{lep}} = \text{scalar } \Sigma \text{ of } [\text{MET} + \text{pT}(I)]$

- SM backgrounds: ttbar+jets, V+jets, ttbar +V, single top.
- "Data-driven" background estimate with $N_{SM}^{pred}(\Delta \phi(W, \ell) > 1) = R_{CS} \cdot N_{data}(\Delta \phi(W, \ell) < 1)$

$$R_{\rm CS} = \frac{N_{\rm signal}}{N_{\rm control}} = \frac{\text{Number of events with } \Delta \phi(W, \ell) > 1}{\text{Number of events with } \Delta \phi(W, \ell) < 1}$$

• Search regions:

$S_{\mathrm{T}}^{\mathrm{lep}}$	[450,550],	[550,650],	[650,750],	≥750
N _b	=3,	≥4		

Search for gluinos into tops & LSP

EWKino search with 3 leptons and MET

- Based on CMS-PAS-SUS-13-006 @ 8 TeV
- Topology: 3 leptons, MET, low hadronic activity
- Event selection: 3 e/µ (with 1 OSSF pair \rightarrow Z) , no b-tagged jet
- SM backgrounds: WZ, ttbar, rare, single V

- Search regions: 15 SR with asymmetric binning in M_T and MET
- Remark at large PU: worse MET resolution, higher fake rate \rightarrow need optimization!

EWKino search with 3 leptons and MET

Dark matter in VBF

- χ_1^{\pm} and LSP: nearly mass-degenerate \rightarrow both invisible
- Topology: 2 forward jets (large M_{ii}, opposite hemi), MET
- Event selection: 2 jets (η_1 - η_2 >4.2, $\eta_1^*\eta_2$ <0, M_{jj} >1500 GeV) no 3rd jet in between, 0 b-tagged jets, 0 lepton, \mathcal{H}_T >200 GeV
- SM backgrounds: V+jets, QCD, VBF production of V, ttbar

Dark matter in VBF

- Impact of the tracker η extension:
 - Improve PU mitigation in forward region → improve the VBF tagging and MET resolution

Heavy vector-like charge 2/3 quarks

CMS-PAS-FTR-13-026

- Based on CMS-PAS-B2G-12-015 @ 8 TeV
- Vector-like quarks are non-SM 4th generation quarks, with only vector-coupling to W → mass term without the need of a Yukawa coupling to H. They can cancel divergences due to top loops in H mass.
- Explore tH, tZ, bW decay modes (in limit of large mass: BR= 25/25/50%)

→ topology: 2 to 4 V and \ge 2 b-quarks.

- Event selection:
 - Single-lepton+jets: 1 e/µ, ≥ 3 jets (leading b pT>150 GeV), MET>20 GeV
 - Multi-leptons: ≥ 2 leptons
 - + Reconstruction of boosted hadronic W/t
- SM backgrounds: ttbar, V+jets, single top, DY, WW, WWW, ttbar+V
- Search regions: # & flavour of leptons, nJets, if boosted hadronic W/top

Heavy vector-like charge 2/3 quarks

• Systematics: 20 % uncertainty on the background prediction, 5% for the signal selection efficiencies.

Conclusions

- CMS investigates the projection at Vs = 14 TeV with up to 3000 fb⁻¹ (HL-LHC) for several SUSY searches, interpreted within simplified models, and one benchmark of BSM scenario (VLQ).
- A huge improvement in term of sensitivity is expected, especially for low cross-section processes. A significant part of the interesting range of phase space will be accessible with HL-LHC. When searching for heavy particles, it becomes very interesting to use boosted reconstruction techniques.
- The big difficulty will come from a huge pile-up rate (~140 in average). But the extension of the tracker up to $|\eta|=4$ will help a lot to cope with that. This extension is also important for the SM background reduction (reduce W $\rightarrow \mu v$ by a factor 3).

Backup Slides

Expected increase of the different signals

