Higgs Production and Decay at CMS Channel Specific

Francesco Pandolfi
ETH Zürich

on behalf of the CMS collaboration

LHC Days in Split 29.09.2014

H → Photons

CMS HIG-13-001

Updated: July 2014

Analysis Overview

- Benchmark physics challenge for CMS electromagnetic calorimetry
- Search for a narrow resonance over large background
- Main analysis strategy directives:
 - Optimal mass resolution to narrow peak
 - Powerful photon ID to limit 'fake photon' backgrounds
 - Categorization to favour high signal/background events

Achieving Ultimate Diphoton Mass Resolution

$$M^2 = 2E_1E_2 \cdot (1 - \cos \Delta\theta)$$

- Energy resolution term
 - Single-photon resolution ~1% for central photons
 - MC smeared to describe data

19.7 fb⁻¹ (8 TeV) 19.7 fb⁻¹ (8 TeV) Events / 0.5 GeV Events / 0.5 GeV **CMS CMS** Not Barrel-Barrel Barrel-Barrel Data Data $Z \rightarrow e^+e^-$ (MC) $Z \rightarrow e^+e^-$ (MC) 10 20 Data/MC Data/MC 100 m_{ee} (GeV) m_{ee} (GeV)

Angular term (vertexing)

- Negligible if vertex | z_{reco} z_{true} | < 10mm
- 3-variable BDT using tracks and $p_T(\gamma\gamma)$: correct vertex chosen in >80% events

Higgs Production and Decay at CMS, 29.09.14

Limiting the Impact of Photons from Jets

- ❖ ~30% of BG from **jet fragments** (π^0 → $\gamma\gamma$)
- BDT to identify **prompt** γ's based on:
 - Lateral shower shapes
 - Isolation variables
 - Energy median density per area (ρ)
 - Candidate E and η
- Preselection: BDT > -0.2
 - ϵ (signal) > 99%, ϵ (BG) ~ 75%

Tagging Exclusive Signatures

Events tested against exclusive channel signatures, in fixed order

'Untagged' Events

- 'Diphoton BDT' to classify events
 - Mass independent training
 - 5 exclusive categories

- BDT gives high score to events with
 - good diphoton mass resolution
 - high s/b probability

Observation of a Narrow Resonance

- Narrow resonance found in diphoton spectrum
 - Compatible with a Higgs boson of about 125 GeV
- Local significance: 5.7σ (5.2σ expected) for diphoton channel only

Higgs Production and Decay at CMS, 29.09.14

- Higgs mass extracted from likelihood fit
 - μ_{ggH,ttH} and μ_{VBF,VH} independent nuisance parameters
 - Measure $m_H = 124.70 \pm 0.34 \text{ GeV}$

- Signal strength compatible with SM
 - Combined: $\mu = 1.14^{+0.25}_{-0.23}$
 - Four production modes compatible with μ = 1

 $H \rightarrow \tau \tau$

CMS HIG-13-004

Updated: June 2014

Covering All Signatures

All H→ττ decay modes

$$\tau_h = \tau \rightarrow hadrons$$

- Categories to catch all production modes
 - Binning in jet multiplicity
 - VBF tag: dijets with large rapidity gap
 - VH tag: extra lepton (WH) or dilepton (ZH)

Total of 46 (38) categories for 8 (7) TeV

- Reconstructed ττ mass: used to extract signal
 - Main (irreducible) background: Z→ττ
 - Neutrinos limit power of visible mass (m_{vis})
- Maximum likelihood fit to estimate true m_{ττ}
 - Inputs: 4-vectors of visible decay, ME_T
 - Matrix elements for τ decays
- Better Z discrimination: +40% exp. significance

Expected
$$m_{\tau\tau}$$
 resolution:
$$\frac{\tau}{10\%} \frac{\ell}{15\%} \frac{\ell\ell}{20\%}$$

0.02

50

100

m,, [GeV]

Background Estimation

- Main background: Z→ττ
 - From data Z→μμ events: remove muons, embed MC reco τ decays
 - Negligible JES, ME_T and lumi uncertainties
- * EWK and tt: taken from simulation
 - Normalized in data control regions
- QCD multijet from control regions:
 - ℓ[±]τ_h[±] same-sign
 - τ_hτ_h: inverted isolation

An Evidence is Found

- Excess observed around 120 GeV
 - Corresponds to a 3- σ significance \rightarrow evidence

Best fit to all channels:
$$\mu(m_{H=125}) = 0.78 \pm 0.27$$

tt + H

CMS HIG-13-029

Updated: August 2014

A Combination of Many Channels

H → hadrons

- Lepton + jets
- Dilepton
- Hadronic τ

H → leptons

- Same-sign dilepton
- Trilepton
- Tetralepton

$$H \rightarrow WW$$
 $H \rightarrow \tau\tau$
 $H \rightarrow ZZ$

ttH, H→Hadrons: Analysis Strategy

- Large backgrounds: all channels require ≥1 lepton from tt
- Three main channels, split in multiple jet/b-tag categories

Channel	Jet / b-tag Categories	
Single lepton: tt→bℓvbqq, H→bb	7	
Double lepton : tt→bℓvbℓv, H→bb	3	
Hadronic τ	6	

- BDTs trained to maximize BG discrimination
 - From which signal is extracted

ttH, H→Leptons: Analysis Strategy

- Main backgrounds: non-prompt leptons (from b-jets)
 - MVA trained to separate prompt/non-prompt leptons
 - Fake-rate method to estimate non-prompt BG from data

Signal extracted from:

e[±] BDT*

Trilepton BDT*

Tetralepton N(jets)

* BDT trained on event kinematics to separate signal and BG

ttH Combination Sees Excess

- Excess observed in combination
 - Driven by dilepton (µ±µ±) channel
- Combination **best fit** $\mu = 2.8^{+1.0}_{-0.9}$
 - Local significance = 3.4σ from BG

- About 2σ away from SM Higgs
 - More compatible with BG+Higgs wrt BG
- Result stable for masses close to 125 GeV

A Novel Approach to Hadronic ttH

- HIG-14-010
- Matrix Element Method: events assigned s/b probability
 - Numerical integration on final state particle phase space
 - All possible parton-jet assignments
- Signal extracted in four categories

			Expected 95% UL	
	Best Fit µ	Observed 95% UL	Median	Median Signal Injected
BDT Analysis	0.7	4.1	3.5	5.0
MEM Analysis	0.67	3.3	2.9	3.9

❖ 20-30% improvement over BDT analysis

The Grand Combination

CMS promp trends

HIG-14-009

Combining H→γγ and H→ZZ:

$$m_H = 125.03^{+0.26}_{-0.27}$$
 (stat) $^{+0.13}_{-0.15}$ (syst) **GeV**

 Across all channels, no significant deviation from Standard Model

Conclusions

- Lots of (new) results on Higgs from CMS!
- ♦ H→γγ: discovery
 - 124.7 Higgs boson found with 5.7σ significance
- ♦ H→ττ: evidence
 - 3.2σ-significant excess, compatible with 125 GeV Higgs
- * ttH combination: excess
 - Overall excess, driven by leptonic channels
- ❖ CMS discovered a Higgs boson with m_H = 125.03 +0.29 -0.31 GeV