

Beyond-Standard-Model Higgs searches with the ATLAS detector

Xiaohu SUN on behalf of the ATLAS Collaboration

Institute of High Energy Physics, CAS

29 Sept 2014

After SM Higgs boson discovery

- The Higgs boson was discovered in summer 2012 and current measurements of its properties are compatible with the SM predictions
- To answer the questions not solved by the SM, one can indirectly look for new physics or can directly go beyond the SM, where additional Higgs bosons may exist:

dedicated BSM signal searches

scan for a heavier SM-like Higgs boson

charged Higgs searches

BSM searches: 2HDM framework

Predicted Higgs bosons:

• *h, H* : *CP*-even neutral

• A: CP-odd neutral

• *H*[±] : Charged

Parameters:

• m(h), m(H), m(A), $m(H^{\pm})$: masses

• α : mixing angle of h and H

tanβ: ratio of vev's

	Type I	Type II	Type III	Type IV
$-\xi_{h}^{V}$	sin(eta-lpha)	sin(eta-lpha)	sin(eta-lpha)	$\sin(eta-lpha)$
ξ_{h}^u	$rac{\cos lpha}{\sin eta}$	$rac{\coslpha}{\sineta}$	$rac{\coslpha}{\sineta}$	$rac{\coslpha}{\sineta}$
ξh ξh ξh	$rac{\cos lpha}{\sin eta}$	$-\frac{\sin \alpha}{\cos \beta}$	$rac{\coslpha}{\sineta}$	$-\frac{\sin \alpha}{\cos \beta}$
ξ_{h}^{I}	$\frac{\cos \alpha}{\sin \beta}$	$-\frac{\sin \alpha}{\cos \beta}$	$-\frac{\sin \alpha}{\cos \beta}$	$\frac{\cos \alpha}{\cos \beta}$
$-\xi_{H}^{V}$	$\cos(\beta - \alpha)$	$\cos(\beta - \alpha)$	$\cos(\beta - \alpha)$	$\cos(\beta - \alpha)$
ξ ^V ξ ^u ξ ^u	$rac{\sinlpha}{\sineta}$	$rac{\sinlpha}{eta}$	$rac{\sinlpha}{eta}$	$rac{\sinlpha}{eta}$
$\xi^d_{\sf H}$	$rac{\sin lpha}{lpha}$	$\frac{\cos \alpha}{\cos \beta}$	$rac{\sinlpha}{eta}$	$\frac{\cos \alpha}{\cos \beta}$
ξ_{H}^I	$rac{\sin lpha}{lpha}$	$\frac{\cos \alpha}{\cos \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\sin \alpha}{\cos \beta}$
	$\cot eta$	$\cot eta$	$\cot eta$	$\cot \beta$
ξα ξα ξα ξΑ	$-\coteta$	$tan\beta$	$-\coteta$	$tan\ \beta$
$-\xi_{f A}'$	$-\coteta$	taneta	taneta	$-\cot eta$

Indirect searches

- SM Higgs couplings constrain BSM
- SH Higgs invisible decays

Constraints from SM

ATLAS-CONF-2014-010

exclusions in plane of m(A) vs $tan\beta$ in a simplified MSSM model (no new decay mode other than SM's)

exclusions in plane of type II 2HDMs

SM Higgs invisible decays

Phys. Rev. Lett. 112, 201802 (2014)

- Look for: invisible decays of a SM Higgs produced in association of a Z boson
- Signature: m(II) close to Z boson, no jets, II-system balances $missing E_T$
- Strategy: fit on *missing* E_T template

10

set limits on inv. decay BR and on Higgs portal to Dark Matter

≥ 10⁻² □ 10⁻⁴⁹

10⁻⁵⁰

DM Mass [GeV]

BSM signal searches

- MSSM h/H/A → ττ : 90 1000 GeV
- 2HDM H → WW → μυ eυ : 135 300 GeV
- Resonance $X \rightarrow hh \rightarrow b\overline{b}\gamma\gamma$: **220 500** GeV
- Resonance $X \rightarrow hh \rightarrow b\overline{b}b\overline{b}$: **500 1500** GeV

MSSM $h/H/A \rightarrow \tau \tau$

arXiv:1409.6064 [hep-ex]

لاووو⁹ Latest h/H/Ah/H/A

- Look for: a neutral Higgs with narrow width
- Signature: two τ in three final states, lephad, hadhad, leplep
- Strategy: 90 200 GeV, leplep (fit on MMC), lephad (fit on MMC), 200 -**1000** GeV, lephad (fit on *MMC*), hadhad (fit on M_{τ})

Set limits on $tan\beta$ as a function of m(A)

MSSM *h/H/A* → $\tau\tau$

- Look for: a neutral heavy Higgs with narrow width
- Signature: two high p_T leptons with different flavors, large missing E_T , two channels (0 jet for ggF, 2 jets for VBF)
- Strategy: fit on ANN NeuroBayes®

Signal hypothesis includes both *h* and *H* leading to a simultaneous fit of the light and heavy Higgs

11

- Look for: a heavy neutral resonance with narrow width
- Signature: two isolated high p_{τ} photons, two b-jets
- Strategy: cut based, event count

Set upper limits on $gg \rightarrow X \rightarrow hh$ production

A 95% C.L. upper limit on the x-section of **non-resonant** Higgs pair production is set at 2.2 pb

$X \rightarrow hh \rightarrow b\overline{b}b\overline{b}$

- Look for: a heavy neutral resonance
- Signature: four b-jets from two boosted dijets
- Strategy: cut based, fit on $m(b\overline{b}b\overline{b})$

Set limit on $gg \rightarrow X \rightarrow hh \rightarrow b\overline{b}b\overline{b}$

SM-like signal searches

- $H \to \gamma \gamma$: **65 600** GeV
- *H* → *WW* → μυ eυ : **260 1000** GeV
- H → ZZ → 4I : 200 900 GeV

- Look for: a resonance with narrow width
- Signature: two isolated photon \S with high p_{τ} , three categories \S in low mass (65 110 GeV), $E_{\tau}(\gamma)/m(\gamma\gamma)$ cut in high mass (110 600 GeV)
- Strategy: cut based, fit on $m(\gamma\gamma)$

No significant evidence observed for an additional signal

$H \rightarrow WW \rightarrow \mu \nu e \nu$

- Look for: a heavy Higgs boson with SM width or narrow width
- Signature: two opposite-sign high- p_T leptons with different flavors, large missing E_T , high m(II), b-jet veto
- Strategy: cut based, fit on $M_{\tau}(W)$

A heavy Higgs with SM width is excluded from 260 to 642 GeV

ATLAS-CONF-2013-013

- Look for: a heavy Higgs boson with SM width
- Signature: two oppositesign same-flavor lepton pairs with high p_T lepton, three categories (VBF/VH/ggF-like)
- Strategy: cut based, fit on m(IIII)
- A heavy Higgs with SM width is excluded up to 650 GeV

Charged Higgs searches

- $H^{\pm} \rightarrow c\bar{s}$ in $t\bar{t}$ production : **90 150** GeV
- $H^{\pm} \rightarrow \tau \nu$ in $t\bar{t}$ or t-associated production: **80 1000** GeV
- 2HDM cascade : 225 925 GeV

- Look for: a charged Higgs that decays 100% into cs
- Signature: one high p_{τ} lepton, large missing E_{τ} , at least four jets at least two b-jets, two light jets with m(jj) close to $m(H^{\pm})$, kinematic fitter for $t\bar{t}$ system
- Strategy: cut based, fit on m(jj)

set limits on $BR(t \rightarrow bH^{\pm})$

Latest Look for: a charged Higgs that decays 100% into au au

- Signature: a hadronically decayed τ , no electron, no muon, large missing E_{τ} , at least four (three) jets for mass 80-160 GeV (180-1000 GeV), at least one b-jet
- Strategy: cut based, fit on m_{τ}

set limits on $BR(t \rightarrow bH^{\pm})$ for low mass and on $\sigma \times BR(H^{\pm} \rightarrow \tau \nu)$ for high mass

- Look for: a charged Higgs involved in a cascade of a W-boson pair and a $b\overline{b}$ -pair
- Signature: one high p_T lepton, large missing E_T , at least four jets, at least two b-jets
- Strategy: fit on the boosteddecision-tree distribution

Summary

- A large variaty of searches on BSM Higgs bosons (or heavy resonances) were performed with the ATLAS detector
 - Indirect searching using SM Higgs couplings
 - SM Higgs invisible decays
 - MSSM h/H/A → ττ : 90 1000 GeV
 - 2HDM H → WW → μυ eυ : 135 300 GeV
 - Resonance $X \rightarrow hh \rightarrow b\overline{b}\gamma\gamma$: **220 500** GeV
 - Resonance $X \rightarrow hh \rightarrow b\overline{b}b\overline{b}$: **500 1500** GeV
 - Heavy H → γγ : 65 600 GeV
 - Heavy H → WW → μυ eυ : 260 1000 GeV
 - Heavy H → ZZ → 4I : 200 900 GeV
 - Charged $H^{\pm} \rightarrow c\overline{s}$ in $t\overline{t}$ production : **90 150** GeV
 - Charged $H^{\pm} \rightarrow \tau \nu$ in $t\bar{t}$ or t-associated production: 80 1000 GeV
 - 2HDM H[±] cascade : 225 925 GeV
 - More are coming VERY SOON!

Hvala!

$H^{\pm} \rightarrow \tau \nu$ (previously)

Searched with 7TeV data

