Overview of ALICE results

André Mischke
Utrecht University
for the ALICE Collaboration

Outline

- Strongly interacting matter in extremes
- ALICE experiment

Massimo Masera

- Recent measurements
 - Global event observables
 - CNM effects (p-Pb results)
 - Jet quenching

Leticia Cunqueiro Mendez

Heavy flavour

Cristina Terrevoli Lizardo Valencia Palomo

Conclusions

Impossible to cover all of this in 20 min

→ Concentrate on selected highlights

Matter in extremes: the QGP

Baryon density

- Study strongly interacting matter under extreme conditions: high temperature and high density
- Lattice QCD predicts a phase transition from hadronic matter to a deconfined state, the Quark-Gluon Plasma
- Experimental access via high energy heavy-ion collisions

Space-time evolution of a heavy-ion collision

A Large Ion Collider Experiment

Performance, see talk by Massimo Masera

Sub-detector systems

ITS, TPC, TOF, HMPID, TRD, FMD, PMD, T0, V0, ZDC, EMCAL, DCAL, PHOS, Muon arm, DAQ, HLT (High Level Trigger)

- PID over a very broad momentum range (> ~100 MeV/c)
- Large acceptance in azimuth
- Mid-rapidity coverage ($|\eta|$ < 0.9) and -4 < η < -2.5 in forward region

Trigger and data samples

- Minimum bias, based on interaction trigger:
 - SPD or V0-A side or V0-C side
 - at least one charged particle in 8 η units
 - 95% efficient on σ_{inel}
- Vertex determination: SPD
- Centrality in Pb-Pb: Glauber fit to VZERO signal amplitude
- Single-muon trigger
 - forward muon in coincidence with MB

System	√s _{NN} (TeV)	Year	Integrated luminosity
Pb-Pb	2.76	2010	10 μb ⁻¹
Pb-Pb	2.76	2011	0.1 nb ⁻¹
p-Pb	5.02	2013	30 nb ⁻¹

In addition (not covered in this talk), pp collisions at \sqrt{s} = 0.9, 2.76, 7 and 8 TeV

Global event observables

Charged particle multiplicity

vs. cms energy

Phys. Rev. Lett. 105, 252301 (2010)

vs. number of participants

- Power law dependence fits well and faster in Pb-Pb ~s^{0.15} than in pp ~s^{0.11}
- Multiplicity ~ 2 x N_{RHIC}
- Energy density \sim 3 x ϵ_{RHIC}

 Very similar centrality dependence at LHC and RHIC

Once corrected for difference in absolute values

Denser and hotter system

System size and lifetime

- From Bose-Einstein Correlations analysis (HBT)
- 2 × freeze-out volume and 1.4 × lifetime compared to RHIC

Fireball has larger volume and longer lifetime

Azimuthal anisotropy

coordinate space: initial anisotropy

momentum space: final anisotropy

- Multiple interactions lead to thermalisation → hydrodynamic behaviour of the system
- Pressure gradient generates collective flow → anisotropy in momentum space
- Fourier decomposition:

$$\frac{\mathrm{d}N}{\mathrm{d}(\varphi - \psi_n)} \propto 1 + 2\sum_{n=1}^{\infty} v_n \cos(n[\varphi - \psi_n])$$

$$v_n = \left\langle \cos(n[\varphi - \psi_n]) \right\rangle$$

v₂ of identified particles in Pb-Pb

Why?

- Constraints on initial conditions, such as particle production mechanisms
- Probes freeze-out conditions of the system
- Checks number of constituents quarks scaling
- Low p_T: mass ordering observed → interplay between radial and elliptic flow
- Qualitative description with hydrodynamical calculations and hadronic cascade model \rightarrow small η/s favoured
- High p_T: particles tend to group into mesons and baryons

v₂ of identified particles: φ mesons

 ϕ (heavy meson) is of particular interest as testing ground for mass ordering and baryon-meson grouping

- v₂ follows baryons for central collisions and shift progressively to mesons for peripheral collisions
- Mass (and not number of constituent quarks) is main driver for v₂ in central Pb-Pb → consistent with hydrodynamic picture
- Scaling with number of quark constituents violated by 20%, in particular in central collisions

Di-hadron correlations in p-Pb

Double ridge structure described
by both colour glass
condensate (initial
state effect) and
hydrodynamics
(final state effect)
Phys. Lett. B 719, 29 (2013)

Unexpected
underlying azimuthal
anisotropy in highmultiplicity events:
two long-range
structures
(double ridge)

Di-hadron correlations in p-Pb (cont'd)

h - π ,K,p correlations

Heavy-flavour decay e[±] - h correlations

- v₂ obtained from two-particles correlations
 - Mass ordering at low p_T
 - Crossing at p_T ~ 2 GeV/c
- Qualitatively similar to Pb-Pb and consistent with hydro calculations

Double ridge structure also observed in the correlation of heavy-flavour decay electrons and hadrons

→ Suggests that the mechanism generating the double ridge is also at work for heavy flavours

Jet quenching

Andre Mischke (Utrecht)

Probing hot QCD matter with hard probes

Quantify medium effects with nuclear modification factor

$$R_{AA}(p_T) = \frac{\text{Yield}_{AA}(p_T)}{\langle N_{bin} \rangle_{AA} \text{Yield}_{pp}(p_T)}$$

if $R_{AA} = 1 \rightarrow$ no nuclear effects if $R_{AA} \ne 1 \rightarrow$ (hot or cold) medium effects

- "Simplest way" to establish the properties of a system
 - calibrated probe
 - calibrated interaction
 - suppression pattern tells about density profile
- Heavy-ion collision
 - hard processes serve as calibrated probe (pQCD)
 - traverse through the medium and interact strongly
 - suppression pattern provides density measurement
 - <u>General picture</u>: parton energy loss through medium-induced gluon radiation and collisions with medium constituents

High-p_⊤ particle production

$p-Pb (p_T > 2 GeV/c)$

- Binary scaling $(R_{pPb} \sim 1)$
- Absence of nuclear modification
- Initial state effects small

Pb-Pb - suppression

- Increases with centrality
- Not initial state
- Final state effect; due to hot and dense QCD matter

Andre Mischke (Utrecht)

High-p_T particle production (cont'd)

 $Z^0 \rightarrow \mu^+\mu^-$ W $\rightarrow \mu\nu$ using single muon recoil against missing p_T

Z, W and γ production in Pb-Pb consistent with N_{coll} scaling (R_{AA} \approx 1) \rightarrow not sensitive to the medium

No modifications observed for charged jets up to 100 GeV/c

Jets in Pb-Pb

See talk by Leticia Cunqueiro Mendez

Expectation:

Jet fragmentation is modified by the medium

- suppression of jet yield
- broadening of jet shape
- di-jet imbalance

Findings:

- Strong suppression of jet yields in most central Pb-Pb collisions
- → Moderate increase of R_{AA} with increasing p_T
- Dependence on centrality class
- → Jet energy is moved from high to low p_T and from small to large angles (with respect to the jet axis)

Heavy flavour

Andre Mischke (Utrecht) 20

Hierarchy of parton energy loss

(1) Radiative parton energy loss is colour charge dependent (Casimir coupling factor C_R)

R. Baier et al., Nucl. Phys. B483, 291 (1997) ("BDMPS")

$$\langle \Delta E_{medium} \rangle \propto \alpha_S C_R \hat{q} L^2$$

(2) Dead-cone effect: gluon radiation suppressed at small angles ($\theta < m_O/E_O$)

Y. Dokshitzer, D. Kharzeev, PLB 519, 199 (2001), hep-ph/0106202

$$\Delta E_{\rm g} > \Delta E_{\rm u,d,s} > \Delta E_{\rm c} > \Delta E_{\rm b}$$

$$R_{AA}(\pi) < R_{AA}(D) < R_{AA}(B)$$

Prompt D meson R_{AA} in Pb-Pb

- First $D_s^+(c\bar{s})$ measurement in heavy ion collisions
- Expectation: enhancement of strange D meson yield at intermediate p_{T} , if charm hadronizes via recombination in the medium
- Strong suppression (factor 4-5) above 5 GeV/c in most central Pb-Pb, compared to binary scaling from pp

See talk by Cristina Terrevoli

D mesons: initial state effects

arXiv:1405.3452

- Important baseline measurement of **cold nuclear matter effects** (e.g., Cronin effect, nuclear shadowing, gluon saturation)
- ullet D meson R_{pA} shows consistency with unity and predictions from shadowing and CGC model predictions
- High-p_T suppression of particle yield in Pb-Pb is a final state effect

R_{AA} of D and B mesons

- Comparison of prompt
 D mesons (ALICE) with J/ψ
 from beauty decays (CMS)
- D and B meson
 <p_T> ~10 GeV/c
- First indication for the mass dependence of the parton energy loss:

$$R_{AA}^D < R_{AA}^B$$

• Consistent with the expectation $\Delta E_c > \Delta E_b$

Azimuthal anisotropy of D mesons

Phys. Rev. Lett. 111, 102301 (2013)

- Due to the large mass, long thermalisation process is expected for heavy quarks → less influenced by collective expansion
- Indication (3-5σ confidence level) for non-zero charm elliptic flow in the p_T range 2-6 GeV/c
- → Significant interaction of charm quarks with the medium

Heavy flavour decay muons and electrons

- Strong suppression of high-p_T muon yield from heavy flavour decays
- No significant dependence on p_T in $4 < p_T < 10$ GeV/c
- Similar to single electron and D meson R_{AA} at central rapidity
- $R_{AA}^{\text{single e}} > R_{AA}^{\text{D}}$ at $p_T > 8$ GeV/c due to beauty contribution

Relative beauty contribution to single electron yield from electron-hadron azimuthal correlations

1405.4144, PLB in press

Single electron R_{AA} and v₂ at mid-rapidity

• Strong suppression of single electron yield up to 18 GeV/c

Energy loss models need to simultaneously describe v_2 and $R_{\Delta\Delta}$; \rightarrow more difficult with more precision and more observables, such as azimuthal angular correlations

Quarkonia production in hot QCD matter

- Colour screening length λ_D in the deconfined medium decreases with temperature
- Quarkonia "melt" when their binding distance becomes bigger than screening length → yields suppressed (one of the first QGP signatures)

 T. Matsui and H. Satz, Phys. Lett. B 178 (1986) 416
- Screening at different temperature for different states (binding energy) → sequential suppression of the quarkonium states → QCD thermometer S. Digal, P. Petreczky and H. Satz, Phys. Rev. D 64 (2001) 0940150

• Enhancement via (re-)generation of quarkonium states due to large heavy quark multiplicity

A. Andronic, P. Braun-Munzinger, K. Redlich and J. Stachel, Phys. Lett. B 571(2003) 36

Energy Density

J/ψ production in Pb-Pb

Phys. Lett. B 734, 314 (2014)

- Clear J/ ψ suppression with almost no centrality dependence above N_{part}~100.
- Less suppression at mid-rapidity wrt. forward rapidity for central events
- Data show weaker centrality dependence and smaller suppression for central events compared to RHIC results

J/ψ melting vs. regeneration

- Enhanced production at low p_T
- Comparison with transport model calculations: sizeable QGP regeneration component needed

Liu, Qiu, Xu and Zhuang, PLB 678 (2009) 72 Zhao and Rapp, NPA 859 (2011) 114 Andronic et al., arXiv:1210.7724

J/ψ forward vs. backward rapidity

- Small CNM effects at high p_T (> 4-6 GeV/c)
 → evidence of hot matter effects in Pb-Pb
- At low p_T: similar (or lower) suppression in Pb-Pb relative to shadowing expectation

Not shown: Stronger suppression of $\psi(2S)$ in p-Pb relative to J/ψ

- → Not described by initial state CNM effect and coherent energy loss
- → Final state effects?

See talk by Lizardo Valencia Palomo

Conclusions

- LHC ideal for studying the properties of hot dense QCD matter
 - $\epsilon_{\text{initial}}\!\!\gg\!\epsilon_{\text{critical}},$ large volume, long lifetime, high production rates for rare probes
- Many results from Pb-Pb data from Run-1
 - High degree of collectivity → perfect liquid
 - Parton-medium interaction → parton energy loss mechanisms
- p-Pb collisions
 - More than control measurements; mechanisms at work not fully understood
- Precision measurements needed to gain more insights into energy loss mechanisms and further constraint model calculations
- Many more exciting results ahead of us
 - LHC Run-2 (5.1 TeV, 2015-2017)
 - After detector upgrades (2018/19)