Top quark physics in ATLAS

SIL

Overview

- Try to highlight a few (recent) analyses at ATLAS
 - pair production cross section
 - single top production
 - top mass
 - top properties
- top quark analyses entered the era of precision measurements
- challenge theory and provide (ttbar) or have the prospect to provide (single top) useful inputs to theory and MC generators

Top quark physics

• Heaviest particle in SM

- Yukawa coupling close to one, special role in EWSB?
- Short life time of 10⁻²⁵s, decay before hadronisation, spin information not diluted
- LHC is a top factory
 - -6.4M top quark pairs, 3M single tops

Rich phenomenology

- Production (top pair or single)
 - strong production mode, challenge QCD calculation, input to QCD phenomenology
 - weak production mode, EW consistency test
 - anomalous couplings
 - charge asymmetry, colour reconnection
- Top properties
 - mass, **width**, **spin**, charge, mass difference top/anti-top
 - spin correlation, polarisation

- Top decay
 - electroweak decay, EW consistency test
 - W helicity, Wtb coupling, $\mathrm{V}_{\mathrm{tb}},$ anomalous coupling
 - new or rare decays, **BR**
- top as a calibration tool (b-tagging, $\mathbf{E}_{\mathbf{T}}^{\mathbf{Miss}}$)
- Searches with top
- Top quark production is a major background Higgs and searches

*in **bold**: what has not been explicitly measured at ATLAS, yet

Top quark production

• SM top production @LHC

(m_t=173.2GeV) arXiv:1404.7116

- Data collected in ATLAS
 - full 2011 7TeV dataset 4.6fb⁻¹
 - full 2012 8TeV dataset 20.3fb⁻¹

Top quark decay

- **Decay** of top quark
 - Decay mode in SM **BR-100% to Wb**
 - Classify according to W decay modes: all-hadronic (46%), single lepton (43%), dilepton (11%)
- Selection of events
 - Dilepton selection: exactly two isolated OS leptons, in ee,µµ events veto against Z+jet events (invariant mass, E_T^{Miss})
 - Single lepton selection: exactly one isolated lepton, cuts against W+jets and multi-jet production by E_T^{Miss} or M_T(W), often dilepton veto with softer lepton p_T
 - important for selection: b-tagging of jets, typically @70% efficiency

- Typical background for top selection
 - **single lepton:** W+jets, especially in association with heavy flavour, multi jet production
 - dilepton: Z+jets, diboson
 - **single top:** top pair production

Top pair cross section measurements

Ttbar cross section measurements

*new results

• Inclusive measurements in many final states

- Most precise measurements at both CME in the <u>dilepton</u> and single lepton final state (arxiv:1406.5375, ATLAS-CONF-2012-149, Phys.Lett. B711 (2012) 244-263)
- All-hadronic final states and final states with tau leptons (ATLAS-CONF-2012-031, Eur. Phys. J. C, 73 3 (2013) 2328, Phys.Lett. B 717 (2012) 89-108)
- <u>Combination</u> @7TeV and <u>@8TeV</u> with the most precise measurements within ATLAS(*) and with CMS (ATLAS-CONF-2012-134, <u>ATLAS-CONF-2014-054</u>)
- Simultaneous measurement ttbar/Z/WW cross section (*arxiv:1407.0573*)
- Top quark pole mass from theoretical dependence of total cross section
- All measurements within the SM expectation, even challenge theory calculation

Ttbar cross section measurements

<u>Differential</u> measurements

 of top and ttbar kinematics, folded back to parton level and particle level (pseudo top) @7TeV and boosted ttbar production @8TeV, compare MC models/PDF choices, valuable input to theory (arxiv:1407.0891, arxiv:1407.0371, ATLAS-CONF-2014-059, ATLAS-CONF-2014-057)

Associated production

- with additional **jets**, with **heavy-flavour jets**, important for testing MC modelling (arxiv:1407.0891, Eur.Phys.J. C72 (2012) 2043, Phys.Rev. D 89, 072012 (2014))
- evidence for production with additional W/Z @8TeV and near-evidence with additional photons @7TeV, important for EW couplings (ATLAS-CONF-2014-038, ATLAS-CONF-2011-153)

Eur.Phys.J. C72 (2012) 2043 Gap fraction 60 60 ATLAS L dt = 2.05 fb 09 eto region: |y| < 0.8 ACEBMC nominal Data + stat Increased ISB Syst. + stat. 0.75 Decreased ISE Data Data 1 Theory / fraction of events above p_T threshold 0.9 300 100 150 200 250 Q₀ [GeV]

ATLAS-CONF-2014-038

*new results

Combination of eµ channel 8TeV

(arxiv:1406.5375, ATLAS-CONF-2014-054)

new result

• Using ATLAS measurement on full 8TeV dataset

- dilepton eµ selection with ≥1 jet, ≥1 b-tagged jets
- **Simultaneous** measurement of σ (ttbar) and (inclusive) efficiency for reconstruction and tagging b-jets by counting 1-tag and 2-tag events
 - Single most precise **cross section** result (4.3%):

 $\sigma_{t\bar{t}} = 242.4 \pm 1.7 \pm 5.5 \pm 7.5 \pm 4.2\,\mathrm{pb}$ (stat/syst/lumi/beam energy)

- Also cross section within fiducial volume defined at particle level, derives top mass and sets limits on SUSY stop mass
- Largest systematics: ttbar modelling and PDF uncertainties
- Combination with CMS using BLUE with 3.5% uncertainty (<theory uncertainty)

 $\sigma_{t\bar{t}} = 241.4 \pm 1.4 \pm 5.7 \pm 6.2 \, \mathrm{pb} \ @m_t = 172.5 \, \mathrm{GeV}$ (stat/syst/lumi)

Differential cross sections 7TeV

(arxiv:1407.0891, arxiv:1407.0371, ATLAS-CONF-2014-059)

- as function of jet multiplicity and jet p_T, p_T(top), p_T(ttbar), m(ttbar), |y(ttbar)|, full dataset 7TeV
 - Sensitive to higher-order pQCD effects, test theoretical calculations and modelling in MC, provide inputs for pQCD calculation at top mass scale
- differential cross section within fiducial volume defined at particle level and unfolded to parton level
 - **Powheg+Pythia** consistent with data, improve by limiting hard radiation
 - HERAPDF fits better to data
- **new approach:** differential cross section within fiducial volume defined at particle level and **unfolded to particle level**
 - avoid large extrapolations and minimise modeldependent corrections
 - need **pseudo-top quark definition** using reconstructed from data/stable particles in MC

Differential cross sections 7TeV

(arxiv:1407.0891, arxiv:1407.0371, ATLAS-CONF-2014-059)

new result

- **from reconstructed objects:** reconstruction of top pairs using kinematic constraints
- from stable particle: $\tau > 0.3 \times 10^{-10}$ s, match reconstructed object within observed kinematic range, kinematic sum of decay products
- E_T^{Miss} , leptons, jets based on exclusive particles: neutrinos from W decay, leptons with nearby photons, anti-kt R=0.4 based on remaining particles
- **event selection:** exactly one lepton, four or more jets, two b-tagged, angular separation of leptons and jets
- Bayesian unfolding of reconstructed pseudo-top distributions to particle level distributions (p_T, y, leptonic, hadronic top, ttbar, m(ttbar)) within fiducial region
 - comparison with different MC generators, PDFs, showering scheme and Alpgen model with different shower parameters
 - Good modelling with Powheg+Pythia
 - Systematically limited by b-tagging, JES and ISR/FSR modelling

Differential cross section boosted top 8TeV

(ATLAS-CONF-2014-057)

new result

- differential cross section as a function of hadronically decaying top pT of top quarks pT>300GeV using full 8TeV dataset
 - extend range of differential measurements to high pT range using boosted topologies: collimated decay products
 - Selection based on single lepton decay mode, target hadronically decaying top quark
- Reconstruction and selection of hadronically decaying top quark
 - Using anti-kt jet with R=1.0, jet mass > 100 GeV, apply jet trimming and jet substructure cuts on kt-splitting scale $\sqrt{d_{12}}$
 - isolated leptons, large ETMiss
 - spatial separation between lepton and large-R jet, but nearby small-R jet identified as b-jet
- + SVD unfolding of reconstructed $\mathbf{p}_{\rm T}$ distribution to particle and parton level and comparison with different generators
 - over-estimation of all MCs at particle and on parton level, especially for high top $\rm p_{T}$
 - better agreement for Powheg+Pythia
 - largest uncertainties from large-R JES

Single top cross section measurements

Single top cross section

single top-quark cross-section σ [pb]

*new results

• Inclusive measurements of all single top channels

- Unlike Tevatron
 - t-channel easy to observe, Wt-channel accessible, s-channel smallest cross section@LHC
 - smaller backgrounds
- **s-channel** limit (@7TeV) at ~5xSM (*ATLAS-CONF-2011-118*)
- Wt-channel evidence (@8TeV), nearobservation at 4.2σ (*ATLAS-CONF-2013-100*)
 - **combination** with CMS (ATLAS-CONF-2014-052)

Single top cross section

- **t-channel** well established with high purity (arxiv:1406.7844, ATLAS-CONF-2014-007)
 - **Differential** (@7TeV) measurement in p_T (top/anti-top) and y(top/anti-top)
 - split in top and anti-top cross section for ratio measurements
 - **Fiducial** (@8TeV) cross section with extrapolation to different MC
 - combination with CMS (ATLAS-CONF-2013-098)

Top mass

Top mass measurements

*new results

Top mass measurements

- Measurements with template methods or indirect measurements (dilepton) (ATLAS-CONF-2013-046, ATLAS-CONF-2013-077, ATLAS-CONF-2012-082, arxiv:1409.0832)
- Measurements in single top enhanced events (*ATLAS-CONF-2014-055*)

- Combinations within ATLAS and with CMS yield total uncertainties <1 GeV (ATLAS-CONF-2013-102)
- World (LHC + Tevatron) combination with <0.5% uncertainty (*ATLAS-CONF-2014-008*)
- Results at the moment only @7TeV
- <u>top quark pole mass from</u> <u>ttbar+1jet events</u> (<u>ATLAS-CONF-2014-053</u>)
- Mass difference between top and anti-top (*PbysLett B* 728C (2014))

ATLAS-CONF-2014-055

top-quark pole mass using ttbar+1jet 7TeV

(ATLAS-CONF-2014-053)

new result

indirect pole mass measurement from differential ttbar cross section using full 7TeV dataset

- extraction based on sensitivity of gluon radiation on the top quark pole mass
- normalized cross section as a function of inverse of invariant mass of ttbar+1jet system ϱ_s provides calculated in the top pole-mass scheme@NLO+PS

Kinematic reconstruction of single lepton events

- identify leptonically decaying W, mass and kinematic constraints on pairs of jets for hadronically decaying W
- pairing with b-tag to minimise difference between top candidates
- pT>50GeV requirement on the additional jet

Unfold rho_s using SVD to parton level and compare to NLO+PS theory calculation

• χ^2 minimisation fit to determine the best fit top pole mass

$$m_{\rm t}^{\rm pole} = 173.7 \,{}^{+2.3}_{-2.1} \,{\rm GeV}$$

- largest systematic from theory: missing higher orders, PDF and $\boldsymbol{\alpha}_s$
- largest systematic from experiment: JES and ISR/FSR
- in the future analysis will use calculation in \overline{MS} mass scheme

$$\mathcal{R}(m_{\rm t}^{\rm pole},\rho_s)=\frac{1}{\sigma_{t\bar{t}+1-\rm jet}}\frac{d\sigma_{t\bar{t}+1-\rm jet}}{d\rho_s}(m_{\rm t}^{\rm pole},\rho_s)$$

$$\rho_s = \frac{2m_0}{\sqrt{s_{t\bar{t}j}}},$$

Top properties

Top properties

ttbar charge asymmetry 7TeV (7HEP02(2014)107)

- + charge asymmetry A_C using full 7TeV dataset
 - Asymmetry from qqbar, qg production with small excess of centrally produced anti-tops,
 - unlike Tevatron which observed an excess in the forward-backward asymmetry A_{FB}
- Reconstruction of ttbar system with a kinematic fit, Bayesian unfolding of Δ|y| spectrum to parton level
 - single lepton selection with at least four jets and one b-tag
 - **inclusive and differential** A_C in |y(ttbar)| and m(ttbar), also for $\beta_{z,ttbar}$ >0.6 enhancement predicted in certain models

$A_{\rm C}$	Data	Theory
Unfolded	$0.006 {\pm} 0.010$	$0.0123{\pm}0.0005$
Unfolded with $m_{t\bar{t}} > 600 \text{ GeV}$	$0.018 {\pm} 0.022$	$0.0175\substack{+0.0005\\-0.0004}$
Unfolded with $\beta_{z,t\bar{t}} > 0.6$	$0.011 {\pm} 0.018$	$0.020\substack{+0.006\\-0.007}$

- Largest systematic uncertainty: data statistics
- + Compare with model predictions, including $\mathrm{A_{FB}}$
 - Different from A_{FB} (excess) measured at the Tevatron, tensions in specific models between A_C and A_{FB} measurements

ttbar charge asymmetry 7 TeV (CERN-PH-EP-2014-233)

charge asymmetry A_C in dilepton events using full 7TeV dataset

- can determine lepton-based charge asymmetry (higher experimental precision) or asymmetry of top quarks after kinematic reconstruction of events (larger asymmetry)
- Reconstruction of ttbar system with a kinematic fit with neutrino weighting, Bayesian unfolding to parton level of Δ|y| and bin-by-bin correction for Δ|η| spectrum

$$A_{\rm C}^{\ell\ell} = 0.024 \pm 0.015 \text{ (stat.)} \pm 0.009 \text{ (syst.)}$$

 $A_{\rm C}^{t\bar{t}} = 0.021 \pm 0.025 \text{ (stat.)} \pm 0.017 \text{ (syst.)}$

- Largest systematic uncertainty: data statistics
- Compare with SM predictions and with benchmark BSM models that could explain Tevatron A_{FB} for $A_C^{\ \ 11}$ and $A_C^{\ \ ttbar}$

$$A_{\mathrm{C}}^{\ell\ell} = \frac{N(\Delta|\eta| > 0) - N(\Delta|\eta| < 0)}{N(\Delta|\eta| > 0) + N(\Delta|\eta| < 0)}$$

new result

Summary

- Top quark physics at ATLAS covers a large fraction of the rich phenomenology
- **Measurement of top quark properties**
 - Interesting property measurements make mostly use of full 7TeV dataset
 - Top mass precision reached <1% ATLAS alone, <0.5% in combination
 - So far all properties are **compatible with the SM** ٠
- Inclusive top pair cross section measurements have reached theory precision
 - Differential/Fiducial cross sections helped to understand and tune MC modelling, will help theory
 - Single top production will follow the top pair measurements in that respect
 - More results to come with full 8 TeV dataset

*using inclusive LHC ttbar cross section

combination, does not

0.5

0.6

include latest ttbar

cross section

measurements

0.4

0.9

0.8

0.7

 $Q^2 = 100 \text{ GeV}^2$

0.2

01

0.3

х

Summary

24

- Top quark physics at ATLAS covers a large fraction of the rich phenomenology
- Measurement of top quark properties
 - Interesting property measurements make mostly use of full 7TeV dataset
 - Top mass precision reached <1% ATLAS alone, <0.5% in combination
 - So far all properties are **compatible with the SM**
- Inclusive top pair cross section measurements have reached theory precision
 - **Differential/Fiducial cross sections** helped to **understand and tune MC modelling,** will help theory
 - **Single top production** will follow the top pair measurements in that respect
 - More results to come with full 8 TeV dataset

Differential cross section 7TeV (arxiv:1407.0891)

[qd]

- as function of jet multiplicity and jet p_{T.} full 7TeV dataset
 - Sensitive to higher-order perturbative QCD • effects, test different theoretical calculations and modelling in MC
- **differential** cross section within fiducial volume defined at particle level
 - single lepton selection, at least three jets, $pT>_{50}$, 35, 25GeV, at least one • b-tag
- Jet multiplicities with different jet p_T thresholds (25, 40, 60, 80GeV) and jet p_T up to the 5th-leading jet
 - **MC@NLO+Herwig** disfavoured at high jet multiplicities and high jet p_T
 - Powheg+Pythia consistent with data, improve by limiting hard radiation •
 - **Alpgen+Pythia/Herwig** softer parton shower preferred at low jet p_T •

ATLAS

- Data

ALPGEN+PYTHIA

AL PGEN+HERWIG

ALPGEN+PYTHIA (a, Up)

ALPGEN+PYTHIA (α, Down)

L dt = 4.6 fb

≥8

n_{iets}

7

Differential cross section 7TeV (arxiv:1407.0371)

- as a function of p_T(top), p_T(ttbar), m(ttbar), |y(ttbar)|, full dataset 7TeV
 - test different theoretical calculations and modelling in MC
- kinematic reconstruction of full ttbar with kinematic likelihood fit to match object on parton level
 - single lepton selection, at least four jets, at least one b-tag
 - unfolding of data with SVD method
- Compare unfolded distributions with
 - different MC generators, with different PDF sets and different theory calculation (NLO/NLO+NLL)

- Data in pT(top) is softer than MC and NLO/NLO+NLL calculation, m(ttbar) softer in data than NLO/ NLO+NLL calculation, HERAPDF fits better to data
- largest systematics: pT(top), m(ttbar): JES, signal generator choice, b-tagging efficiency; pT(ttbar), y(ttbar): fragmentation, jet energy resolution, only pT(ttbar): ISR/FSR

Dilepton channel 7TeV and 8TeV (arxiv:1406.5375)

- Using full 7TeV (4.6fb⁻¹) and full 8TeV (20.3fb⁻¹) dataset •
 - dilepton eµ selection with ≥1 jet, ≥1 b-tagged jets
- **Simultaneous** measurement of σ (ttbar) and (inclusive) efficiency for reconstruction and tagging b-jets by counting 1tag and 2-tag events
 - **Cross section** result, **ratio** $\sigma(8 \text{TeV})/\sigma(7 \text{TeV})$ (stat/syst/lumi/beam ٠ energy):

 $\sigma_{t\bar{t}} = 182.9 \pm 3.1 \pm 4.2 \pm 3.6 \pm 3.3 \,\mathrm{pb} \,(\sqrt{s} = 7 \,\mathrm{TeV})$ $\sigma_{t\bar{t}} = 242.4 \pm 1.7 \pm 5.5 \pm 7.5 \pm 4.2 \,\mathrm{pb} \,(\sqrt{s} = 8 \,\mathrm{TeV})$ $R_{t\bar{t}} = 1.326 \pm 0.024 \pm 0.015 \pm 0.049 \pm 0.001$

- Largest systematics: ttbar modelling and PDF uncertainties •
- **Fiducial cross section** with different lepton p_T and η cuts reduce • PDF systematics, background modelling becomes important
- Pole mass from cross section using experimental and ٠ theoretical dependence

$$m_t^{\rm pole} = 172.9^{+2.5}_{-2.6}~{\rm GeV}$$

Simultaneous cross section ttbar/Z/WW (arxiv:1407.0573)

1600

1400

1200

1000

1500

- Simultaneous cross section • measurement full dataset @7TeV in -N_{jets} parameter space ET
 - broader test of SM, take correlation of **PDFs** to each process into account
- binned maximum likelihood fit to • templates, fiducial volume defined at particle level
 - dilepton eu selection with no jets or at least one jet •
 - Inclusive cross sections comparable with dedicated measurements: •
 - $\sigma(t\bar{t}) = 181.2 \pm 2.8^{+9.7}_{-9.5} \pm 3.3 \pm 3.3 \,\mathrm{pb}$ $\sigma(W^+W^-) = 53.3 \pm 2.7^{+7.3}_{-8.0} \pm 1.0 \pm 0.5\,\mathrm{pb}$ $\sigma(Z/\gamma^* \to \tau\tau) = 1174 \pm 24^{+72}_{-87} \pm 21 \pm 9\,\mathrm{pb}$ (stat/syst/lumi/beam energy)
- Comparison of cross sections with theory calculations@NLO/NNLO ٠ using different PDFs
 - NLO significantly underestimates data, while comparison with NNLO calculations are more compatible with data •
 - Largest systematics: mostly MC modelling and electron efficiencies •

Associated V and ttbar production (ATLAS-CONF-2014-038)

Associated V-production

- probe top quark coupling to gauge bosons
- cut and count analysis
 - same sign dimuon (SR2µSS) with 2 b-tagged jets
 - trilepton, 31Z (one pair OS, invariant mass near Z, SRZbnjm) • and 3lZveto (other, not all same sign, SRWL3)
- Multivariate analysis with NN
 - two **OS dilepton** channel, within Z mass window or outside •
- Simultaneous fit to each channel/NN output distributions
 - largest systematics: data statistics, then detector systematics (ttW) or background (ttZ)

Observed σ

4.9

3.1

3.2

σ/	σ_{SM}	(tłW)
----	----------------------	-------

Expected σ

4.9

2.4

3.8

	Summary of combined simultaneous fit results			Process	Signal Strength
Process	Measured cross-sections	Observed σ	Expected σ	tīV	0.89 ^{+0.23} _{-0.22}
tīZ	150^{+58}_{-54} (total) = 150^{+55}_{-50} (stat.) ± 21(syst.) fb	3.1	3.7	tīW	$1.25_{-0.48}^{+0.57}$
tīW	300^{+140}_{-110} (total) = 300^{+120}_{-100} (stat.) ⁺⁷⁰ ₋₄₀ (syst.) fb	3.1	2.3	tīZ	$0.73^{+0.29}_{-0.26}$

t-channel cross section (arxiv:1406.7844)

- Inclusive cross section, cross section ratio top/anti-top, differential cross section using full 7TeV dataset
 - single lepton selection with two or three central and **forward** jets and one b-tag
- Using **neural network to separate signal**, binned likelihood fit to extract cross sections
 - Separate neural networks for events with positively or negatively charged lepton and for each jet multiplicity
 - Cross section ratio has sensitivity to different PDFs
- Enhance signal by cut on NN for **differential cross section** in pT(top/anti-top), y(top/anti-top) using Bayesian unfolding to parton level
- Largest systematics: σ (t-channel): JES and b-tagging efficiencies; ratio: MC stat, PDF; differential: data stat., signal and bkg modelling

$$\sigma(tq) = 46 \pm 1 \text{ (stat.)} \pm 6 \text{ (syst.)} \text{ pb}$$

$$\sigma(\bar{t}q) = 23 \pm 1 \text{ (stat.)} \pm 3 \text{ (syst.)} \text{ pb}$$

$$R_t = 2.04 \pm 0.13 \text{ (stat.)} \pm 0.12 \text{ (syst.)}$$

$$|V_{tb}| = 1.02 \pm 0.01 (\text{stat.}) \pm 0.06 (\text{syst.}) \pm 0.02 (\text{theo.})^{+0.01}_{-0.00} (m_t)$$

= 1.02 ± 0.07.

t-channel cross section (ATLAS-CONF-2014-007)

Fiducial cross section using full 8TeV dataset

- single lepton selection with two central and forward jets and one b-tag
- Using **neural network** to separate signal, binned likelihood fit to extract fiducial cross sections
 - **Fiducial cross** section less dependent on theory extrapolation uncertainties, separate theoretical and experimental uncertainties
 - Fiducial volume defined on **particle level:**

$$\tau_{\rm fid} = 3.37 \pm 0.05 \,(\text{stat.}) \pm 0.47 \,(\text{syst.}) \pm 0.09 \,(\text{lumi.}) \,\text{pb}$$

- 400^{×10³} Events / 0.05 **ATLAS** Preliminary $\int L dt = 20.3 \text{ fb}^{-1}$ \s=8 Te\ SR data 300 t-channel tt.Wt.s-channel W+iets 200 Z+jets, diboson Multije -ch.aen⊕n-inte 100 <u>Data-Pred.</u> Pred. 0.2 -0.2 0.2 0.4 0.6 0.8 NN output
- Inclusive cross section obtained using a **particular choice** of generator: $\sigma_t = 82.6 \pm 1.2 \text{ (stat.)} \pm 11.4 \text{ (syst.)} \pm 3.1 \text{ (PDF)} \pm 2.3 \text{ (lumi.) pb} \text{ (aMC@NLO)}$ $|V_{tb}| = 0.97 \pm 0.01 \text{ (stat.)}_{-0.07}^{+0.06} \text{ (syst.)} \pm 0.06 \text{ (gen.} + \text{PDF)}_{-0.01}^{+0.02} \text{ (theor.)} \pm 0.01 \text{ (lumi.)}$ $|V_{tb}| > 0.78 \text{ at } 95\% \text{ CL}$

Wt cross section (ATLAS-CONF-2013-100)

- Cross section measurement using 8TeV full dataset
 - Dilepton eµ selection, one or two central jets, at least one b-tag
- Signal separation **against top pairs** using **BDT**, cross section determined with binned likelihood fit

 $\sigma(pp \rightarrow Wt + X) = 27.2 \pm 2.8 \text{ (stat)} \pm 5.4 \text{ (syst) pb}$

• Significance 4.2 σ

 $|V_{tb} \cdot f| = 1.10 \pm 0.12 \text{ (exp)} \pm 0.03 \text{ (theory)}$ $|V_{tb}| > 0.72 \text{ at } 95\% \text{ CL}$

• Largest systematics: JES and b-tagging

ttbar charge asymmetry (JHEP02(2014)107)

- + charge asymmetry A_C using full 7TeV dataset
 - Asymmetry from qqbar, qg production with small excess of centrally produced anti-tops
- Reconstruction of ttbar system with a **kinematic fit**, **Bayesian unfolding** of $\Delta |y|$ spectrum to parton level
 - single lepton selection with at least four jets and one b-tag
 - **inclusive and differential** A_C in |y(ttbar)| and m(ttbar), also for $\beta_{z,ttbar}$ >0.6 enhancement predicted in certain models

	$A_{ m C}$	Data	Theory
ſ	Unfolded	$0.006 {\pm} 0.010$	$0.0123{\pm}0.0005$
	Unfolded with $m_{t\bar{t}} > 600~{\rm GeV}$	$0.018{\pm}0.022$	$0.0175\substack{+0.0005\\-0.0004}$
	Unfolded with $\beta_{z,t\bar{t}} > 0.6$	$0.011 {\pm} 0.018$	$0.020\substack{+0.006\\-0.007}$

- Largest systematic uncertainty: data statistics
- Compare with model predictions, including A_{FB}
 - Different from A_{FB} (excess) measured at the Tevatron, tensions in specific models between A_C and A_{FB} measurements

$$A_{
m C} = rac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) + N(\Delta|y| < 0)}$$

Top spin correlation (arxiv:1407.4314)

• Spin correlation A full 7TeV dataset

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos(\theta_+) \ d\cos(\theta_-)} = \frac{1}{4} \left(1 + A \alpha_+ \alpha_- \cos(\theta_+) \cos(\theta_-) \right) \qquad A = \frac{N_{\rm like} - N_{\rm unlike}}{N_{\rm like} + N_{\rm unlike}}$$

- New physics can alter the spin correlation
- **Kinematic reconstruction** with neutrino weighting (dilepton), **kinematic likelihood fitter** (single lepton)
 - single lepton with at least four jets and dilepton selection with at least two jets
 - down-type quark identified by b-tag weight and jet pT
 - Variables **dilepton**: Δφ(leptons), S-ratio and angular correlations (=direct determination of A), **single lepton**: Δφ(lepton, b quark or d quark from W)
- Binnend likelihood fit to fraction f of templates with and without spin correlation
 ATLAS
 ti spin correlation measurements
 - 50 observation of spin correlation
 - Largest systematic uncertainties: mostly data statistics and signal modelling

ATLAS		tt spin correlation measurements			
$\int Ldt = 4.6 \text{ fb}^{-1}, 13$	s = 7 TeV		f _{sm}	± (stat)	± (syst)
Δφ (dilepton)			• 1.1	9 ± 0.09	± 0.18
Δφ (I+jets)			 1.1:	2 ± 0.11	± 0.22
S-ratio	•		0.8	7 ± 0.11	± 0.14
$cos(\theta_{+}) cos(\theta_{-})$ helicity basis		• • •	0.7	5 ± 0.19	± 0.23
cos(θ₊) cos(θ₋) maximal basis			0.8	3 ± 0.14	± 0.18
0	0.5	1	1.5 Star	idard mod	2 el fraction

Top polarisation (Phys. Rev. Lett 111, 232002 (2013))

- Polarisation $\alpha_1 P$ using full 7 TeV dataset
 - **neglibigle polarisation in SM** from EW interaction (spin correlation C set to SM value)

 $\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta_1 d\cos\theta_2} = \frac{1}{4} \left(1 + \alpha_1 P_1 \,\cos\theta_1 + \alpha_2 P_2 \,\cos\theta_2 \,- C\cos\theta_1\cos\theta_2 \right)$

- **Kinematic reconstruction** with neutrino weighting (dilepton), **kinematic likelihood fitter** (single lepton)
 - single lepton with at least four jets and dilepton selection with at least two jets
- **template fit** to reweighed $\cos\theta$ distribution(s) using SM
 - CP **conserving** $(\alpha_1 P_1 = \alpha_2 P_2)$ and CP **violating** $(\alpha_1 P_1 = -\alpha_2 P_2)$ scenarios

$lpha_\ell P_{ m CPC}$	$lpha_\ell P_{ m CPV}$
$-0.035 \pm 0.014^{+0.037}_{-0.037}$	$0.020 \pm 0.016 ^{+0.013}_{-0.017}$

• Largest systematics: jet reconstruction, ttbar and bkg modelling

Top mass difference (*PhysLett B* 728C (2014))

- Top/Anti-top mass difference using full 7TeV dataset
 - Testing **CTP** invariance
- **Kinematic fit** to ttbar events with $\Delta m_{fit}(top)$ as free parameter
 - single lepton selection with four or more jets, kinematic cuts against multi-jet background
 - **unbinned likelihood fit to templates** of $\Delta m_{fit}(top)$ from samples with different $\Delta m(top)$

 $\Delta m \equiv m_t - m_{ar{t}} = 0.67 \pm 0.61 ({
m stat}) \pm 0.41 ({
m syst}) \, {
m GeV}_{\pm}$

• result limited by statistics, largest systematics from fragmentation and B hadrons decay

World top mass combination (ATLAS-CONF-2014-008)

• Top mass combination using results from ATLAS, CDF, CMS and DO

ATLAS + CDF + CMS + D0 Preliminary

- Uncertainty from LHC < 1GeV (only with 7TeV data)
- Uncertainty on the combined top mass <0.5%

Pseudo-top differential cross section 7TeV (ATLAS-CONF-2014-059)

differential cross section measurement using • top-quark-proxy observables with full 7TeV dataset

- Bayesian unfolding of reconstructed pseudo-top distributions to particle level distributions within fiducial region
 - comparison with different MC generators (NLO and multi-leg), PDFs, showering scheme and Alpgen model with different shower parameters
 - Alpgen generally predict excesses of events in the fiducial region, higher α variations disfavoured
 - good modelling with Powheg+Pythia except for • m(ttbar)
 - Systematically limited by b-tagging, JES and ISR/FSR • modelling

Differential cross section boosted top 8TeV (ATLAS-CONF-2014-057)

differential cross section as a function of hadronically decaying top pT of top quarks pT>300GeV using full 8TeV dataset

- extend range of differential measurements to high pT range
- identify high pT tops with collimated decay products using algorithm for such boosted objects that appear as a single jet with large radius R
- Selection based on single lepton decay mode, target hadronically decaying top quark

• Reconstruction and selection of hadronically decaying top quark

- Using anti-kt jet with R=1.0, jet mass > 100 GeV, apply jet trimming and jet substructure cuts on kt-splitting scale √d₁₂
- isolated leptons, large ETMiss
- spatial separation between lepton and large-R jet, but nearby small-R jet identified as b-jet
- SVD unfolding of reconstructed p_T distribution to particle and parton level
 - Measurement in fiducial region defined on particle level

Comparison with different generators, also Powheg+Pythia w/ w/o EW corrections

- over-estimation of all MCs at particle and on parton level, especially for high top $\boldsymbol{p}_{\mathrm{T}}$
- better agreement for particle level, slightly better agreement for Powheg+Pythia with EW corrections
- largest uncertainties from large-R JES

top mass all-hadronic channel 7TeV (arxiv:1409.0832)

- mass measurement using full 7TeV dataset for the final state with the largest BR
 - event selection requiring at least 6 central jets p_T> 30GeV after selection of events using jet based triggers, reject leptonic events
 - harder p_T >55GeV cut on 5 jets, pair-wise large distance ΔR >0.6
 - 2 b-tagged jets among the four leading jets
 - Small missing transverse momentum significance, larger centrality C>0.6
- Reconstruction of the event using a kinematic fit, only require equality of top and anti-top mass
 - select events with good fit (LL>-45)
- Mass determination by binned maximum likelihood fit to templates of ratio between measured W and measure top mass $R_{_{3/2}}$

 $m_t = 175.1 \pm 1.4 \text{ (stat.)} \pm 1.2 \text{ (syst.) GeV}$

• largest systematics residual uncertainties from JES, especially for b-quark jets, hadronisation modelling

Combination of Wt cross section 8TeV (ATLAS-CONF-2014-052)

- Using ATLAS measurement on full 8 TeV dataset
 - Dilepton eµ selection, one or two central jets, at least one btag
- Signal separation **against top pairs** using **BDT**, cross section determined with binned likelihood fit

 $\sigma_{Wt} = 27.2 \pm 2.8 \,(\text{stat}) \pm 5.4 \,(\text{syst}) \,\text{pb} = 27.2 \pm 5.8 \,\text{pb}$

- Significance 4.2 σ
- Largest systematics: JES and b-tagging
- Using CMS measurement on 12.2fb⁻¹8TeV dataset
 - all dilepton channels using events with 1-jet and one b-tag, 2jet and on b-tag and 2-jet and two b-tags
- Combination using iterative BLUE method with 19% uncertainty

 $\sigma_{tW} = 25.0 \pm 1.4 \text{ (stat.)} \pm 4.4 \text{ (syst.)} \pm 0.7 \text{ (lumi.)} \text{ pb} = 25.0 \pm 4.7 \text{ pb}$

top mass in single top enhanced events 8TeV (ATLAS-CONF-2014-055)

- measurement in events complementary to ttbar events using full 8 TeV dataset
 - event selection requiring one lepton, 2 jets, including forward jets for t-channel selection, exactly 1-btag
 - Using event kinematics as input to NN for signal purification, select events with NN>0.75
- Binned maximum likelihood fit to m(lb) templates
 - overall normalisation, background fraction and top mass as parameters
 - mass templates from ttbar and single top MCs at different masses

 $m_{\rm top} = 172.2 \pm 0.7 \,({\rm stat.}) \pm 1.9 \,({\rm syst.}) \,{\rm GeV}$

• largest uncertainty: JES and modelling of t-channel process

