

Boosted Boson Tagging The ATLAS perspective

Benjamin Nachman^a and Samuel Meehan^b

^aSLAC National Accelerator Laboratory, ^bUniversity of Chicago

March 25, 2014

Topics

The purpose of this session is to have a lively discussion! We have prepared these slides to help guide the conversation, but by no means are we bound to this outline.

- Jet inputs
 - → Topological Clusters
- Jet reconstruction and grooming
 - $\rightarrow R = 0.4$ anti- k_t is the standard. Many variants with anti- k_t and C/A
- Correcting jets calibration and PU removal
 - \rightarrow Areas Subtraction; Jet Vertex Fraction/Tagger
- Calorimeter-based tagging
 - $\rightarrow\,$ The standard in ATLAS; *n*-subjetiness, splitting scales, etc.
- Track-based substructure
 - $\rightarrow\,$ Ghost-match tracks to jets. Some unique to tracking, e.g. jet charge.
- Systematic Uncertainties
 - $\rightarrow~{\rm Calo/track}$ double ratio as the standard.

Jet Inputs: Topological clusters

-SLAC

- Topoclsuters \sim follow shower development
- Building: 3D Nearest neighbor algorithm.
 - Seed with cells with $E > 4\sigma_{\text{noise}}$
 - Expand with cells with $E > 2\sigma_{noise}$
 - Finish with cells with $E > 0\sigma_{noise}$
- Splitting (right)
 - High multiplicity \rightarrow large cells
 - Split into clusters around local maxima

 σ is the sum of electronic and pileup noise, which is adjusted with $\mu.$

2010: $\sigma(\mu=0)$ 2011: $\sigma(\mu=8)$ 2012: $\sigma(\mu=30)$

Jet reconstruction and grooming

ATLAS Standards for large-R jets:

- R = 1.0 anti- k_t trimmed ($R_{sub} = 0.3, f_{cut} = 5\%$)
- $R = 1.2 \text{ C/A BDRS} (\mu_{12} < 2/3, \sqrt{y_f} > 0.3)$

si ac

areas-correction is the standard Also documented for other R

Correcting jets - calibration and PU removal

- values: ATLAS-CONF-2013-083
- For substructure variables: ATLAS-CONF-2013-085

For the nominal R = 0.4 jets,

Standard in ATLAS for large R jets is to apply no further corrections beyond grooming.

• When $\langle \mu \rangle$ is not too large, this does well to remove pileup dependance (Public Plots)

Correcting jets - calibration and PU removal II

 In fact, for Run I pileup conditions, it does not matter all that much which pileup mitigation technique is used ATL-PHYS-PUB-2014-001.

Calorimeter-based tagging

- Chose seven variables to pair with jet algorithms
 - τ_{21} , $\sqrt{d_{12}}$, μ_{12} , $\sqrt{y_{12}}$, ν_{QJets} , width, Planar Flow
- Optimal defined as maximal BG rejection at 50% Sig. eff.
- Two methods to optimize pairing of groomer+tagger
 - $\textbf{0} \ \mathsf{Fix} \ \mathsf{tagger} \to \mathsf{scan} \ \mathsf{jet} \ \mathsf{algorithms} \ \mathsf{for} \ \mathsf{optimal} \ \mathsf{performance} \\$
 - **2** Fix jet algorithm \rightarrow scan taggers for optimal performance

Calorimeter-based taggers

- Learn from looking at performance by considering tagger only and groomer+tagger mix
- Conclusion for method 1
 - We can say what a bad tagger is
 - It is difficult to say that any one groomer+tagger is truly optimal

Calorimeter-based taggers II

- Learn from looking at performance by considering tagger only and groomer+tagger mix
- Conclusion for method 2
 - We can say what a bad tagger is
 - It is difficult to say that any one groomer+tagger is truly optimal

Calorimeter-based taggers III

- Can further optimization be gained by leveraging correlations?
- Initial answer no correlations between signal and background are not drastically different
 - NOTE : More investigation required

slac

Track-based substructure

Jets are build from the calorimeter and jets are ghost associated.

Systematic Uncertainties

The standard prescription in ATLAS is to compute the double ratio between track jets/MC track jets and calo jets/MC calo jets (r is the calo/track ratio).

Calibrations exist in bins of m/p_T for anti- k_T 1.0 and C/A R = 1.2.

slac

Boosted Boson Tagging

BACKUP

Jet Mass

Entries 10⁸ Normalised Entries Entries 0,00 ATLAS Simulation Preliminary 200 < p_That < 350 GeV (× 10" ATLAS Simulation Preliminary 200 < p_Truth < 350 GeV (× 10⁴ ATLAS Simulation Preliminary $200 < p_T^{Tuth} < 350 \text{ GeV} (\times 10^4)$ C/A into with $B_m 1.2$ $\rightarrow W_1^{ots}$ - W jets - W jets anti-k, jets with R=1.0 C/A jets with R=1.2 C/A jets with R=1.2 - OCD iets - OCD iets - OCD iets BDRS BDRS-A Trimmed 350 < p_ruth < 500 GeV (× 10²) Normalised E Normalised E 10⁴ 350 < p_^{Truth} < 500 GeV (× 10 Normalised E 350 < p_^{Truth} < 500 GeV (× 10² In^{Truth}| < 1.2 η^{Truth}| < 1.2 In^{Truth} | < 1.2 Wiets - Wints - Wiets - QCD iets - QCD iets - QCD iets 500 < p_T^{Truth} < 1000 GeV W jets QCD jets 500 < p_T^{truth} < 1000 GeV W jets OCD jets 500 < p_T^{Tuth} < 1000 GeV W jets QCD jets 10 10 10 10 10 10 10 10 10 10-4 103 10-4 10 20 10 20 40 60 80 100 120 140 160 180 200 40 60 80 100 120 140 160 180 200 õ 20 40 60 80 100 120 140 160 180 200 Jet Mass [GeV] Jet Mass [GeV] Jet Mass [GeV] Entries 10⁸ Normalised Entries ATLAS Simulation Preliminary 200 < p_Tsub < 350 GeV (× 104 ATLAS Simulation Preliminary 200 < p_T but < 350 GeV (× 104 - Wiets - Wiets C/A jets with R=0.8 C/A jets with R=0.8 - OCD iets - OCD jets - pruned C/A - pruned 350 < p_^{Truth} < 500 GeV (× 10² Normalised E 350 < p_^{Tuth} < 500 GeV (× 10² (ut) < 1.2 $|n^{Truth}| < 1.2$ - Wiets - Wiets - OCD jets - QCD iets 500 < p^{Tuth} < 1000 GeV 500 < p_T^{Tuth} < 1000 GeV W jets QCD jets - W jets 10 10 10 10 10 10 10 10 10 10 60 80 100 120 140 160 180 200 80 100 120 140 160 180 200 20 40 20 40 60 Jet Mass [GeV] Jet Mass [GeV]

-SLAC

B. Nachman (SLAC)

Jet Mass Ratio

Optimal

March 25, 2014 4 / 10

Trimmed

BDRS

Fix Variable, Find Optimal Algorithm

B. Nachman (SLAC)

Boosted Boson Tagging

March 25, 2014 7 / 10

Fix Algorithm, Find Optimal Variable

B. Nachman (SLAC)

Boosted Boson Tagging

Data/MC

SLAC

Trimmed

-SLAC

BDRS

