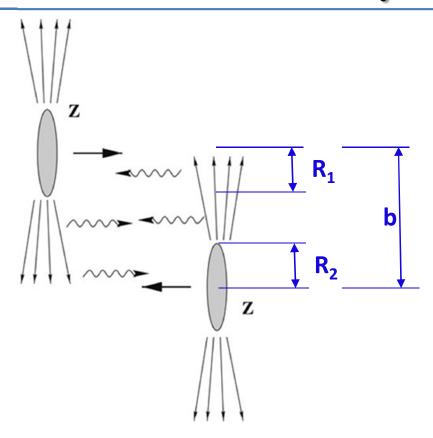
Recent ALICE results on Pb-Pb and p-Pb ultraperipheral collisions

Evgeny Kryshen (CERN) on behalf of the ALICE collaboration

LHC seminar, CERN December 17, 2013


Contents

- Ultra-peripheral physics potential
- Ultra-peripheral Pb-Pb collisions:
 - Results on coherent J/ψ photoproduction at forward and mid-rapidity
 - Constraints on nuclear gluon shadowing from ALICE measurements
 - Results on incoherent J/ψ photoproduction
 - Results on dielectron continuum production
- Preliminary results on J/ ψ photoproduction in ultra-peripheral p-Pb collisions
- Summary and outlook

LHC as a yPb and yp collider

Ultra-peripheral (UPC) collisions: $b > R_1 + R_2$

→ hadronic interactions strongly suppressed

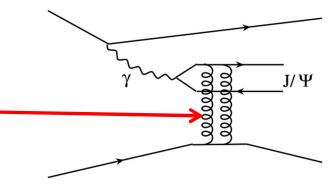
High photon flux

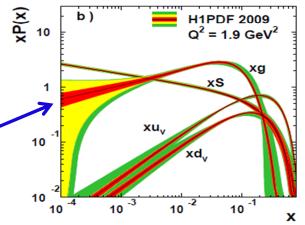
- → well described in Weizsäcker-Williams approximation (quasi-real photons)
- \rightarrow flux proportional to Z^2
- \rightarrow high cross section for γ -induced reactions

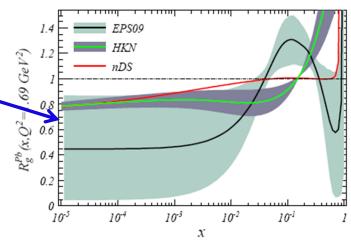
Pb-Pb and p-Pb UPC at LHC can be used to study γ -Pb, γ p and $\gamma\gamma$ interactions at higher center-of-mass energies than ever before

J/ψ photoproduction in UPC

• LO pQCD: coherent J/ ψ photoproduction cross section is proportional to the square of the gluon density in the target:

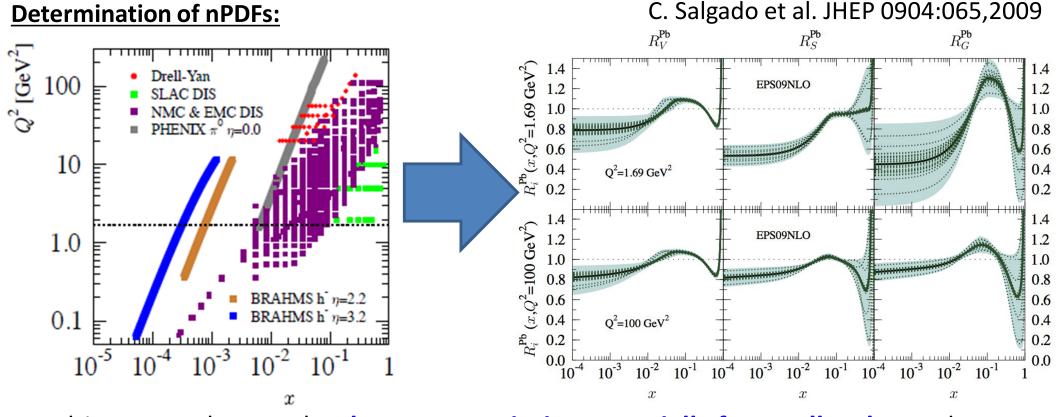

$$\left. \frac{d\sigma_{\gamma A \to J/\psi A}}{dt} \right|_{t=0} = \frac{M_{J/\psi}^3 \Gamma_{ee} \pi^3 \alpha_s^2(Q^2)}{48\alpha_{\rm em} Q^8} \left[x G_A(x, Q^2) \right]^2$$




• Bjorken
$$x \sim 10^{-2} - 10^{-5}$$
 accessible at LHC: $x = \frac{M_{J/\psi}^2}{W_{\gamma p}^2}$

- J/ψ photoproduction in p-Pb UPC (proton target) allows one to probe poorly known gluon distribution in the proton at low x and search for saturation effects
- J/ψ photoproduction in Pb-Pb UPC (lead target) provides information on gluon shadowing in nuclei at low x which is essentially unconstrained by existing data

$$R_g^A(x,Q^2) = \frac{G_A(x,Q^2)}{AG_n(x,Q^2)}$$
 – gluon shadowing factor



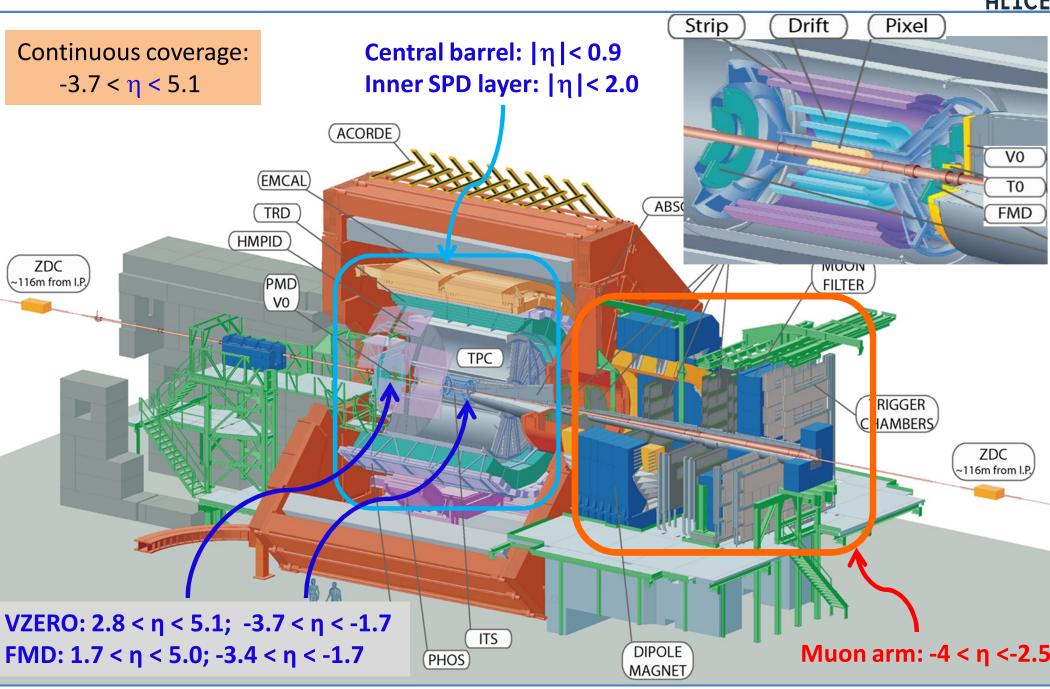
Parton distributions in nuclei (nPDFs)

nPDFs are fundamental QCD quantities for the description of DIS, pA, AA collisions

- determine initial state in heavy ion collisions (main motivation for p-Pb runs)
- required for quantitative estimates for the onset of saturation

Resulting nPDFs have rather large uncertainties, especially for small-x gluons due to:

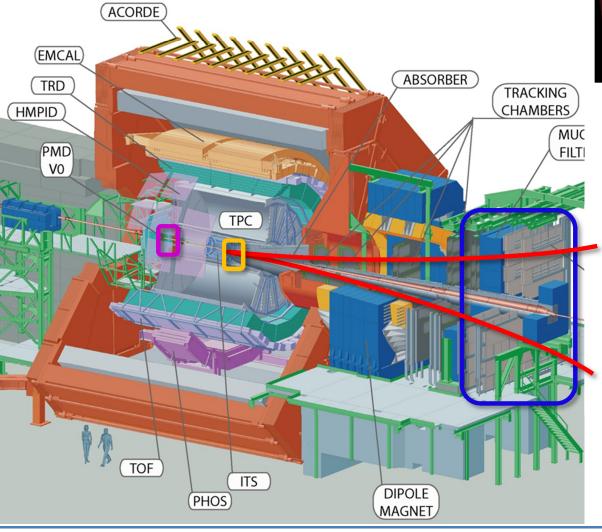
- Limited kinematics
- Indirect extraction of gluons via Q² evolution

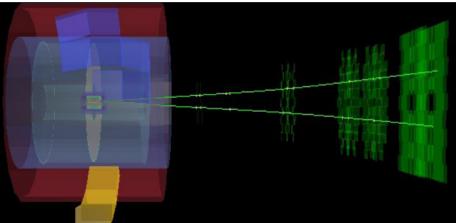

ALICE results on ultraperipheral PbPb collisions from 2011 data

Forward rapidity: Phys. Lett. B718 (2013) 1273

Midrapidity: Eur. Phys. J. C73 (2013) 2617

Looking for two tracks in an otherwise empty detector...




UPC J/ψ at forward rapidity

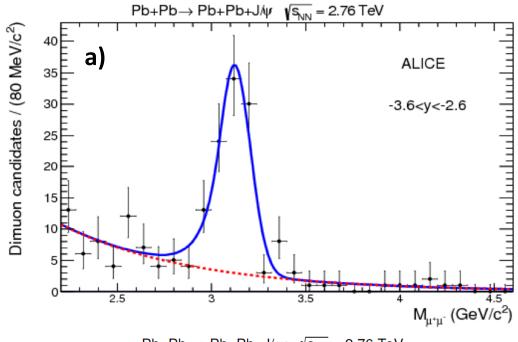
UPC forward trigger:

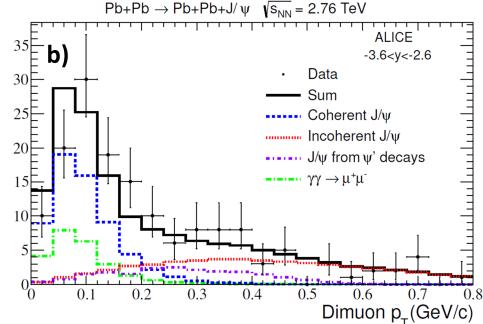
- single **muon trigger** with $p_T > 1$ GeV/c (-4 < η < -2.5)
- hit in **VZERO-C** (-3.7 < η < -1.7)
- no hits in **VZERO-A** (2.8 < η < 5.1)

Integrated luminosity ~ 55 μb⁻¹

Offline event selection:

- Beam gas rejection with VZERO
- Hadronic rejection with ZDC and SPD


Track selection:


- muon tracks: -3.7 < η < -2.5
- matching with the trigger
- radial position for muons at the end of absorber: 17.5 < R_{abs} < 89.5 cm
- p_T dependent DCA cut
- opposite sign dimuon: -3.6 < y < -2.6

Phys. Lett. B718 (2013) 1273

J/ψ at forward rapidity

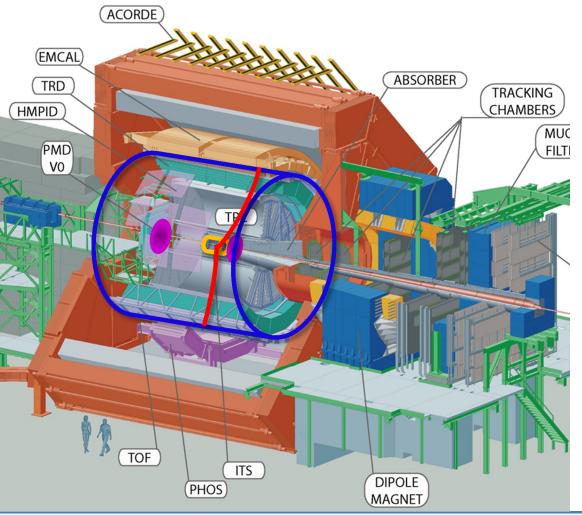
Invariant mass distribution:

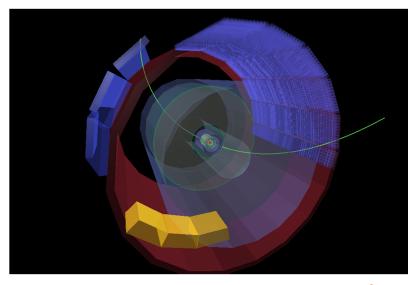
- Dimuon $p_T < 0.3 \text{ GeV/}c$
- Signal fitted to a Crystal Ball shape
- Background well described by exponential shape compatible with expectations from γγ
 →μμ process

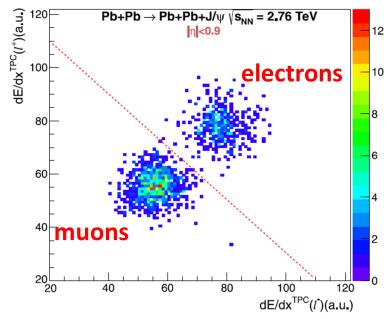
Four contributions in the p_T spectrum:

- Coherent J/ψ:
 - photon couples coherently to all nucleons
 - $\langle p_T \rangle \sim 1/R_{Pb} \sim 60 \text{ MeV/c}$
 - no neutron emission in ~80% of cases
- Incoherent J/ψ:
 - photon couples to a single nucleon
 - $-\langle p_T \rangle \sim 1/R_p \sim 450 \text{ MeV/c}$
 - target nucleus normally breaks up
- J/ψ from ψ' decays
- $\gamma\gamma \rightarrow \mu\mu$

ALICE: Phys. Lett. B718 (2013) 1273


J/ψ candidates / (40 MeV/c)

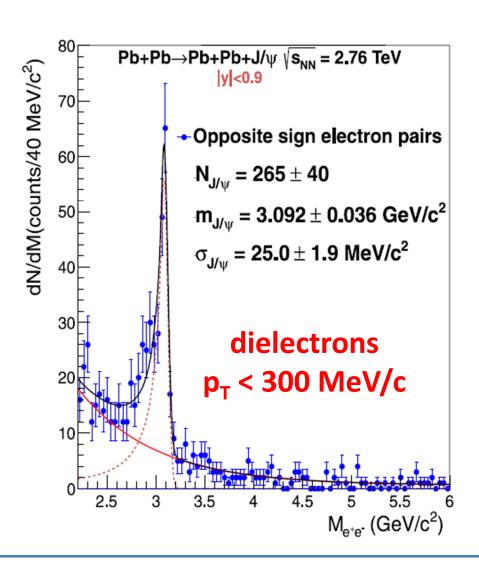

UPC J/ψ at central rapidity

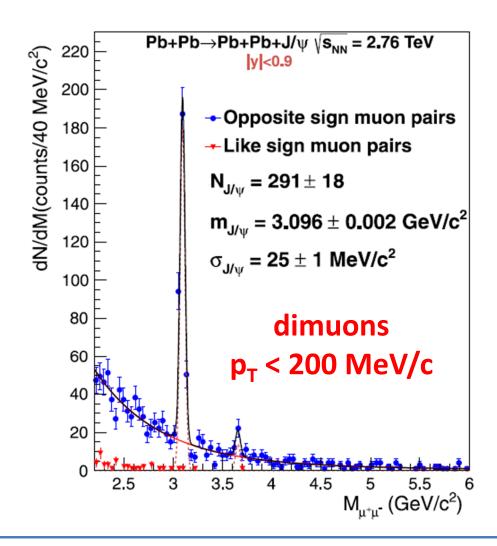

UPC central barrel trigger:

- $2 \le \text{TOF}$ hits ≤ 6 ($|\eta| < 0.9$) + back-to-back topology ($150^{\circ} \le \phi \le 180^{\circ}$)
- ≥ 2 hits in SPD ($|\eta| < 1.5$)
- no hits in **VZERO** (C: -3.7 < η < -1.7, A: 2.8 < η < 5.1)

Integrated luminosity ~ 23 μb⁻¹

Eur. Phys. J. C73 (2013) 2617

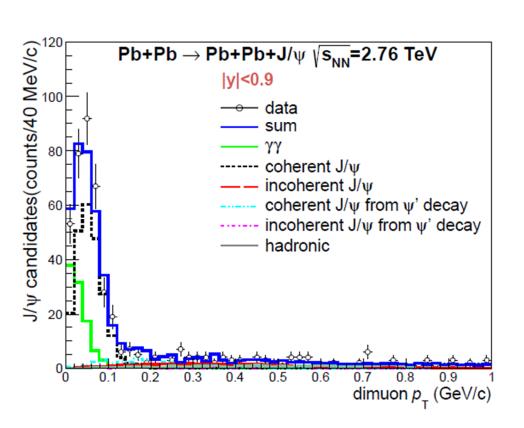

Coherent J/ψ at central rapidity

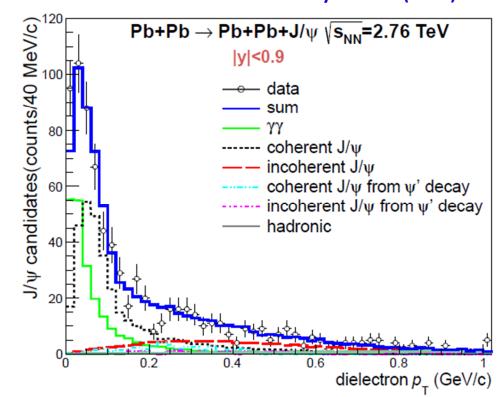


Measured both in dielectron and dimuon channels

Eur. Phys. J. C73 (2013) 2617

Coherent J/ψ enriched with p_T cut





p_T distributions for J/ ψ in central barrel

Eur. Phys. J. C73 (2013) 2617

- Clear coherent peak from J/ ψ and continuum $\gamma\gamma \rightarrow l^+l^-$
- Full spectrum explained by, in addition, incoherent J/ ψ , J/ ψ from ψ' feed down and some hadronic contribution at high p_T

Determination of cross section and systematics

Forward rapidity:

• Cross section determined with respect to $\gamma\gamma \rightarrow \mu\mu$ cross section:

$$\frac{d\sigma_{\rm coh}}{dy} = \frac{1}{BR} \cdot \frac{N_{\rm coh}}{N_{\gamma\gamma}} \cdot \frac{({\rm Acc} \ {\rm x} \ \epsilon)_{\gamma\gamma}}{({\rm Acc} \ {\rm x} \ \epsilon)_{\rm coh}} \frac{\sigma_{\gamma\gamma}}{\Delta y}$$

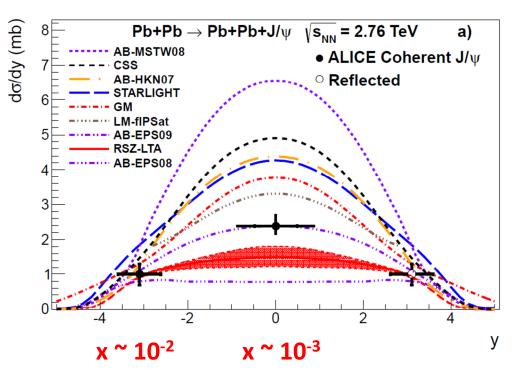
Main source of systematics comes from theoretical uncertainty on $\sigma_{\gamma\gamma}$ and signal extraction

Source	Value
Theoretical uncertainty in $\sigma_{\gamma\gamma}$	20%
Coherent signal extraction	$^{+9}_{-14}\%$
Reconstruction efficiency	6%
RPC trigger efficiency	5%
J/ψ acceptance calculation	3%
two-photon e ⁺ e ⁻ background	2%
Branching ratio	1%
Total	$^{+24}_{-26}\%$
I	

Mid-rapidiy:

Cross section:

$$\frac{\mathrm{d}\sigma_{\mathrm{J/\psi}}^{\mathrm{coh}}}{\mathrm{d}y} = \frac{N_{\mathrm{J/\psi}}^{\mathrm{coh}}}{(\mathrm{Acc}\times\varepsilon)_{\mathrm{J/\psi}}\cdot BR(\mathrm{J/\psi}\to l^+l^-)\cdot\mathscr{L}_{\mathrm{int}}\cdot\Delta y}$$


Main sources of systematics:

- signal extraction
- trigger efficiency

Source	Coherent	Incoherent
Luminosity	+5% -3%	+5% -3%
Trigger dead time	$\pm 2.5\%$	$\pm 2.5\%$
Signal extraction	$^{+7\%}_{-6\%} \left(^{+6\%}_{-5\%}\right)$	$^{+26.5\%}_{-12.5\%} \left(^{+9\%}_{-8\%}\right)$
Trigger efficiency	+3.8% -9.0%	+3.8% -9.0%
$(\mathrm{Acc} \times \varepsilon)$	$\pm 2.5\% (\pm 1\%)$	$\pm 6.5(\pm 3.5)\%$
$\gamma\gamma \rightarrow e^+e^-$ background	$^{+4\%}_{-0\%}$	+4% -0%
e/μ separation	$\pm 2\%$	$\pm 2\%$
Branching ratio	$\pm 1\%$	$\pm 1\%$
Neutron number cut	$^{+2.5\%}_{-0\%}$	-
Hadronic J/ ψ	-	$^{+0\%}_{-5\%} \left(^{+0\%}_{-3\%}\right)$
Total	$^{+14.0\%}_{-9.6\%}$ $^{(+13.4\%)}_{-8.8\%}$	$+29.4\%$ $\begin{pmatrix} +14.5\% \\ -16.6\% \end{pmatrix}$

Coherent J/ψ: comparison to models

- STARLIGHT: Klein, Nystrand, PRC60 (1999) 014903

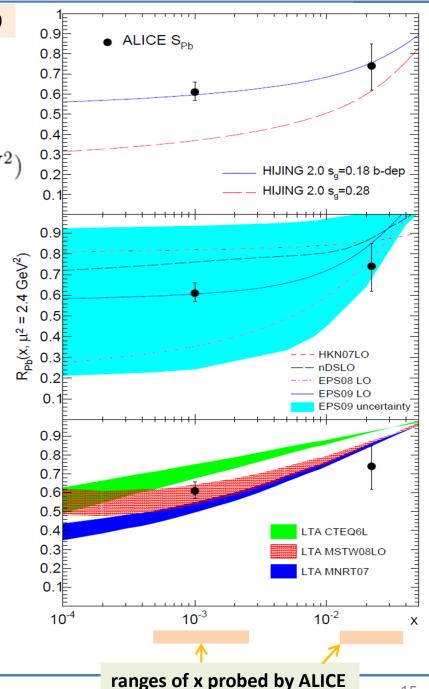
 VDM + Glauber approach where J/ψ+p cross section is obtained from a parameterization of HERA data
- GM: Gonçalves, Machado, PRC84 (2011) 011902 color dipole model, dipole nucleon cross section taken from the IIM saturation model
- AB: Adeluyi and Bertulani, PRC85 (2012) 044904
 LO pQCD calculations: AB-MSTW08 assumes no nuclear effects for the gluon distribution, other AB models incorporate gluon shadowing effects according to the EPS08, EPS09 or HKN07 parameterizations
- CSS: Cisek, Szczurek, Schäfer, PRC86 (2012) 014905 Glauber approach accounting ccg intermediate states
- RSZ: Rebyakova, Strikman, Zhalov, PLB 710 (2012) 252
 LO pQCD calculations with nuclear gluon shadowing computed in the leading twist approximation
- Lappi, Mäntysaari, PRC87 (2013) 032201: color dipole model + saturation

- Good agreement with models which include nuclear gluon shadowing.
- Best agreement with EPS09 shadowing (shadowing factor \sim 0.6 at x \sim 10⁻³, Q² = 2.4 GeV²)

Phys. Lett. B718 (2013) 1273 Eur. Phys. J. C73 (2013) 2617

Nuclear gluon shadowing from ALICE data

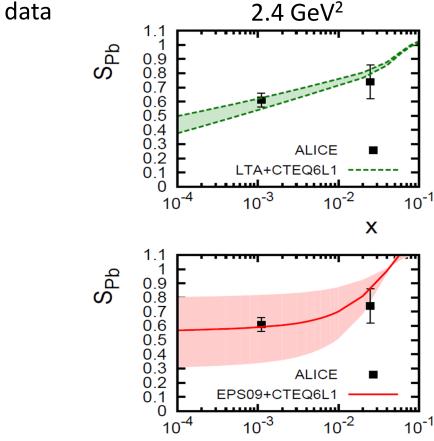
V. Guzei, E. Kryshen, M. Strikman, M. Zhalov. Phys. Lett. B726 (2013) 290

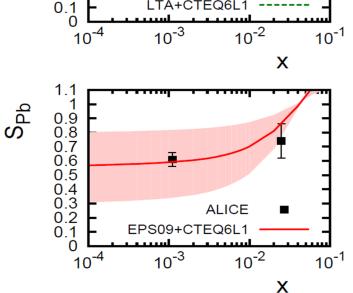

Nuclear suppression factor in J/ψ photoproduction:

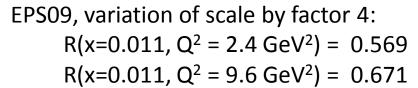
ALICE data corrected for photon flux

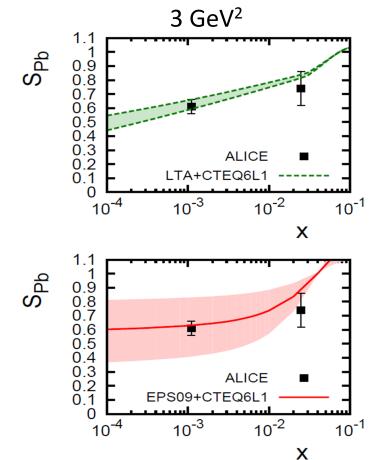
$$S(W_{\gamma p}) \equiv \left[\frac{\sigma_{\gamma \, \text{Pb} \to J/\psi \, \text{Pb}}^{\text{exp}}(W_{\gamma p})}{\sigma_{\gamma \, \text{Pb} \to J/\psi \, \text{Pb}}^{\text{IA}}(W_{\gamma p})}\right]^{1/2} \Longrightarrow R(x, \mu^2 = 2.4 \text{ GeV}^2)$$

Impulse Approximation: J/ψ photoproduction cross section from HERA corrected for the integral over squared Pb form-factor

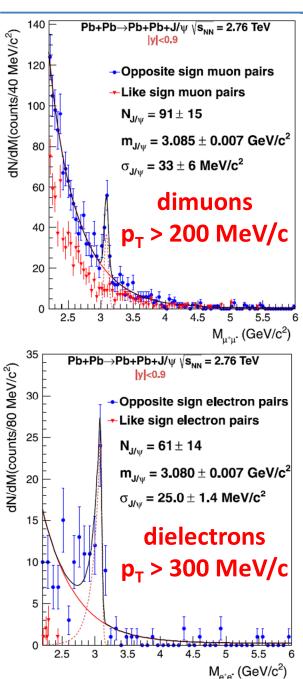

- Hijing: scale-independent gluon shadowing, characterized by parameter s_q
- Shadowing parametrizations (EPS,nDS,HKN07) use DIS and Drell-Yan data + π^0 data from RHIC (EPS) gluon shadowing essentially unconstrained at low x
- Leading twist approximation: propagation of color dipoles in nuclei via intermediate diffractive states (Gribov-Glauber shadowing theory). Incorporates diffractive parton distributions in proton (from HERA)

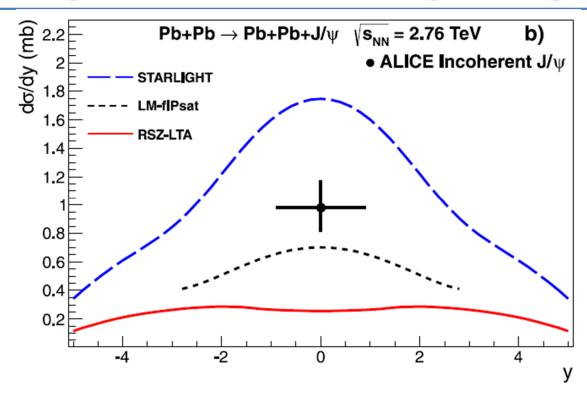



Scale dependence



- Studied in detail in Guzey, Zhalov: JHEP 1310 (2013) 207.
- Scale of 3 GeV² found to be most appropriate for the description of J/ψ photoproduction





Future measurements of heavier vector mesons (ψ' , Υ) will further elucidate the importance of the scale

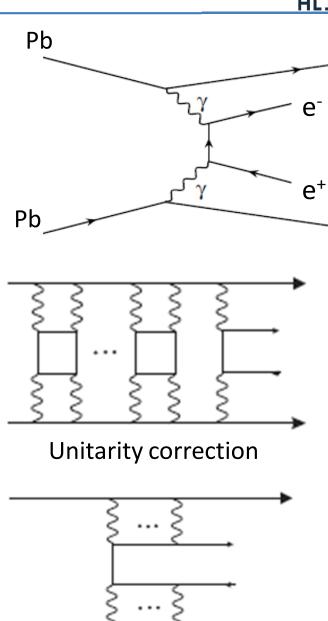
Incoherent J/ψ at central rapidity

- Almost one order of magnitude difference in the predicted cross sections
- ALICE sets strong constraints

Eur. Phys. J. C73 (2013) 2617

γγ→e+e- in central barrel

Huge cross section: O(100) kb


Standard QED:

Born cross sections obtained by Landau & Lifshitz in 1934

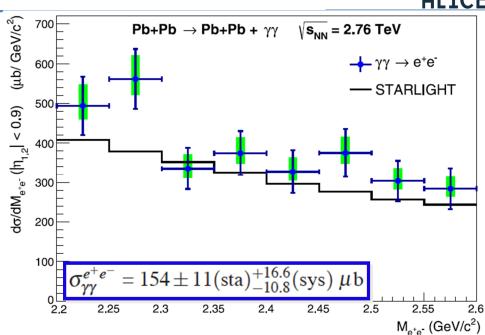
But caveats due to

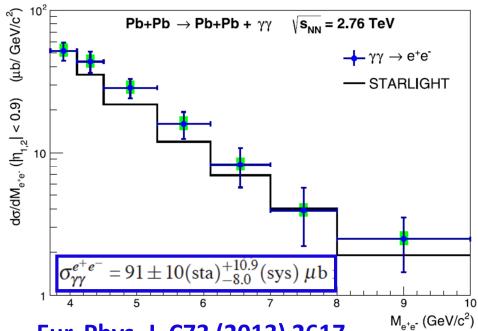
- Uncertainty in higher order terms due to coupling $Z\sqrt{\alpha}$
- Uncertainty on minimum momentum transfer and nuclear form factor

Different models predict a reduction of the LO cross section up to 30% (see e.g. Phys. Rev. C80 (2009)034901; Phys. Rev. Lett. 100 (2008) 062302)

Coulomb correction

γγ→e⁺e⁻ in central barrel


STARLIGHT, PRC60 (1999) 014903:

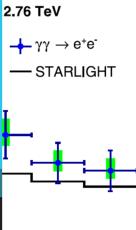

(LO prediction, $|\eta|$ <0.9):

- 2.2 GeV/ c^2 < M_{inv} < 2.6 GeV/ c^2 : σ_{yy} =128 µb
- 3.7 GeV/c² < M_{inv} < 10 GeV/c² : $\sigma_{\gamma\gamma}$ =77 μb

ALICE:

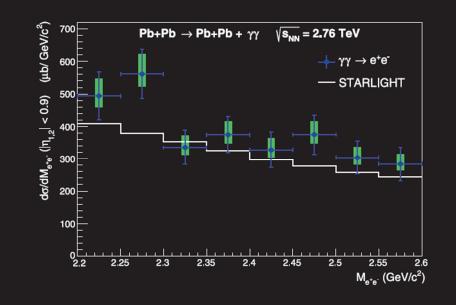
- Data slightly above LO prediction
- 12% and 16% precision in two mass ranges
- ALICE data sets stringent limits on the contribution from high order terms

Eur. Phys. J. C73 (2013) 2617

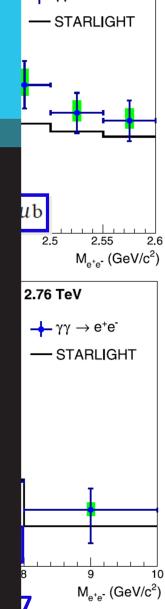


(LO prediction, $|\eta|$ <0.9):

- $2.2 \text{ GeV/c}^2 < M_{inv} < 2.6 \text{ }$
- $3.7 \text{ GeV/c}^2 < M_{inv} < 10 \text{ G}$

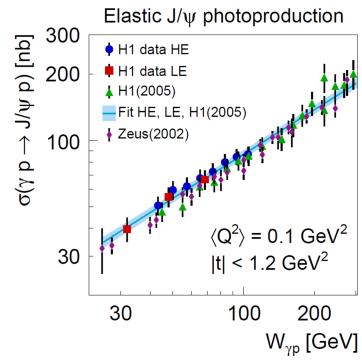


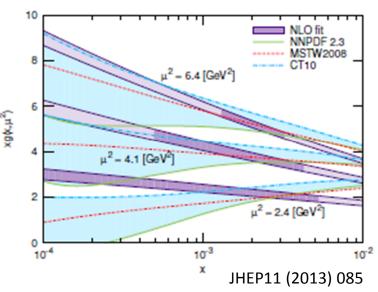
Particles and Fields


ALICE:

- Data slightly above LO p
- 12% and 16% precision
- ALICE data sets stringen contribution from high

🖆 Springer


J/ψ in ultraperipheral p-Pb collisions


J/ψ photoproduction on proton

HERA:

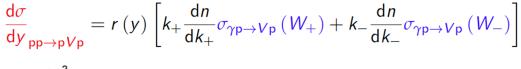
- ightharpoonup J/ ψ photoproduction in ep (x up to 10⁻⁴)
- Latest: H1, Eur. Phys. J. C73 (2013) 2466
- Results well described with the power law (no hint for saturation)
- Data was used to extract gluon PDFs: MNRT (Martin et al), Phys. Lett. B 662 (2008) 252 JMRT(Jones et al), JHEP11 (2013) 085
- CDF: exclusive J/ ψ in $p\bar{p}$ @ 2 TeV at midrapidity (x~10⁻³), PRL 102, 242001 (2009)
 - compatible with HERA (W~100 GeV)
 - Set upper limit for odderon-pomeron contribution

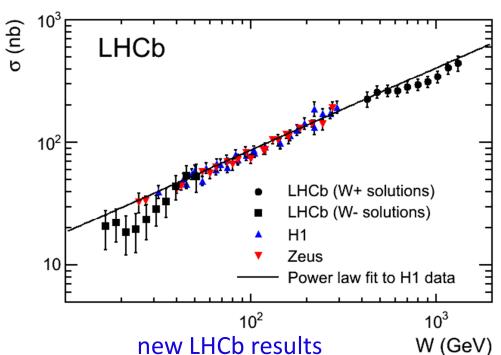
J/ψ photoproduction at LHC

LHCb: exclusive J/ ψ in pp @ 7 TeV at forward rapidity ($x^{10^{-2}} + x^{10^{-5}}$):

2010 data: 36 pb⁻¹

LHCb, J. Phys. G40 (2013) 045001


2011 data: 930 pb⁻¹


First shown at SaporeGravis Workshop (Nantes)

two weeks ago. To be published soon (LHCb-

PAPER-2013-059)

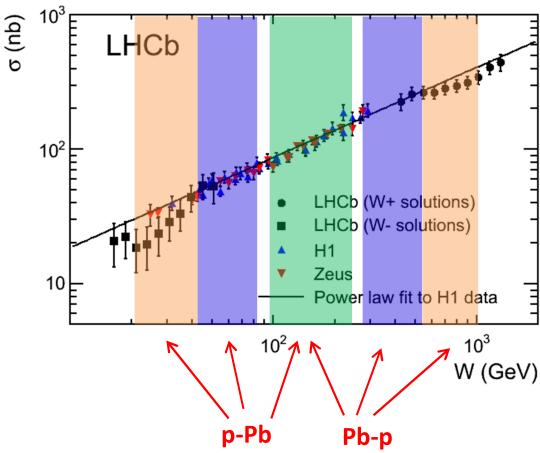
- \triangleright Large fraction of J/ψ from χ_c decays
- photon emitter is unknown
- assume power law to separate low and highenergy contributions

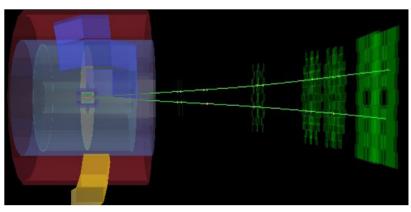
Advantage of p-Pb collisions wrt pp:

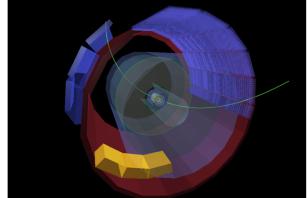
- Large photon flux from Pb
- The photon source is known
 - → no assumption required to separate low and high energy contributions
- Hadronic contribution can be strongly suppressed by ensuring Pb nuclei are intact (no signal in ZDC)
- Contamination from central exclusive χ_c production negligible

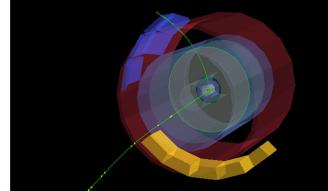
Three UPC trigger options in ALICE

Data collected in 2013:


p-Pb: p towards muon spectrometer

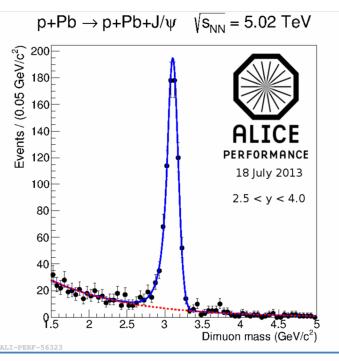

Pb-p: Pb towards muon spectrometer

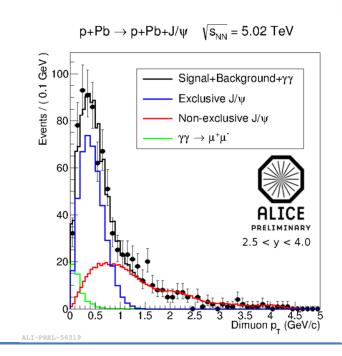

Three UPC trigger options in ALICE:

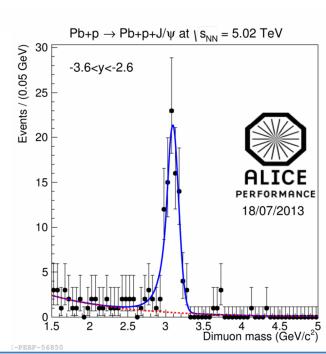

Forward: both muons in the muon arm

- Central: both leptons in the barrel
- Semi-forward: one muon in the muon arm, second in the barrel
- → wide gamma-proton CM energy coverage up to W ~ 1 TeV!
- \rightarrow wide x coverage: 10^{-2} - 10^{-5}

Preliminary results in forward pA

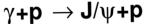


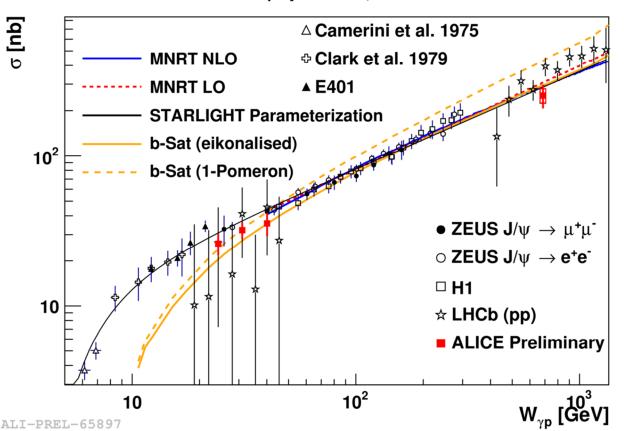

p-Pp (low gamma-proton energy):


- Exclusive J/ ψ production measured in 3 rapidity bins (2.5 < y < 4)
- Background (mainly proton dissociative J/ ψ production) estimated with p_T templates
- Same method applied to obtain the $\sigma(\gamma\gamma\to\mu\mu)$ in 1.5< M_{inv} <2.5 GeV/c². Results compatible with QED predictions from STARLIGHT.

Pb-p (high gamma-proton energy):

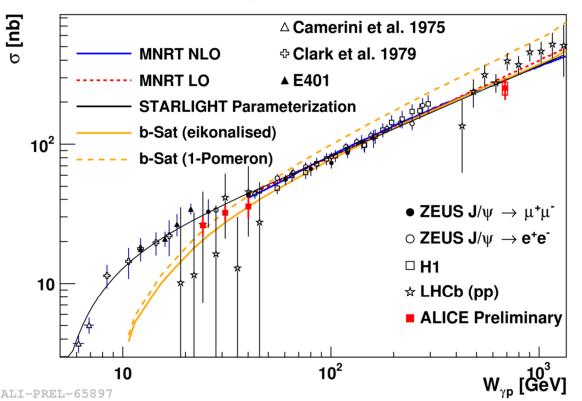
- Reduced rapidity range (-3.6 < y < -2.6) due to requirement of VZERO-C in the trigger
- Less statistics. Exclusive J/ ψ production measured in one rapidity bin





Tests of power law dependence

- Photoproduction cross section $\sigma(W_{\gamma p})$ obtained from ALICE d σ /dy divided by photon flux from STARLIGHT.
- 12% flux uncertainty at high energy
- Power law fits (not shown): $\sigma \sim (W_{yp}/90 \text{ GeV})^{\delta}$


- ALICE data alone compatible with a power law with δ =0.67 ± 0.06
- Exponent compatible with H1 (δ =0.67 ± 0.03) and ZEUS (δ =0.69 ± 0.02 ± 0.03)
- Exponent from LHCb: δ =0.92 ± 0.15 (J. Phys. G40 (2013) 045001, waiting for update)

• Relative normalization of ~1 σ between different HERA sets. ALICE normalization is also ~1 σ away wrt HERA

Comparison with models

$$\gamma$$
+p \rightarrow J/ ψ +p

JMRT (arXiv1307.7099):

LO (gluon distributions follow power law)
NLO (includes expected main NLO
contributions)

- fits to HERA photoproduction data set
 + refit of LHCb data
- give very similar predictions in the considered energy and Q² range
- 1 sigma above ALICE measurement

b-sat model (hep-ph/0606272, acc-ph/1206.2913):

- includes b-dependent saturation effects based on a CGC inspired model
- parameters determined by fitting HERA data on the proton structure function F₂ for x<0.01

1 sigma above ALICE high energy point

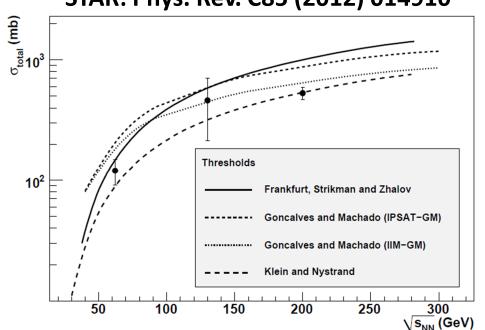
Summary and outlook

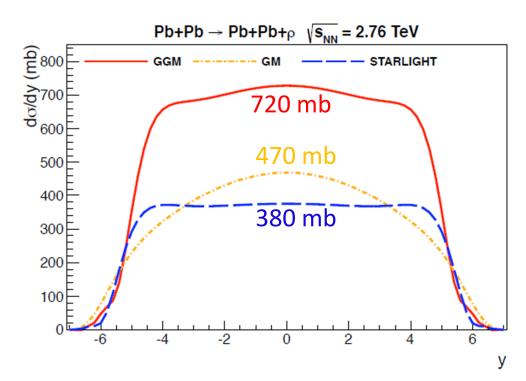
Summary:

- J/ ψ and dielectron continuum photoproduction measured in UPC Pb-Pb
- ALICE data consistent with gluon shadowing from EPS09 central set
- First results on forward J/ ψ photoproduction in p-Pb available

Prospects:

- Finish analysis on J/ ψ in p-Pb including central-barrel and semiforward UPC
- Study the production of other vector mesons (ρ, ψ') in existing Pb-Pb data
- Collect new data at higher beam energy (x2) and increased luminosity (Pb-Pb goal: $^{\sim}$ 1 nb⁻¹ in 2015-2017 and $^{\sim}$ 10 nb⁻¹ until mid 2020's)
- Take advantage of new forward ADA and ADC detectors to improve the exclusivity condition and the trigger purity
- Explore new vector mesons (Υ) and perform multi-differential studies (e.g. explore neutron emission pattern)



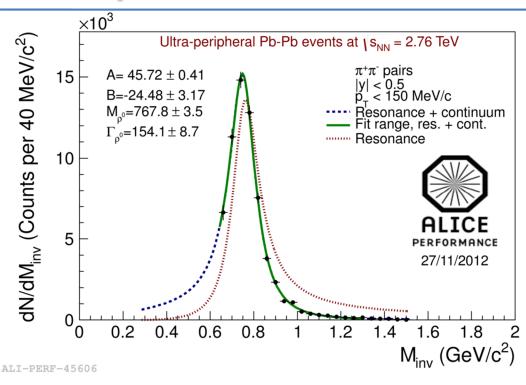

Backup

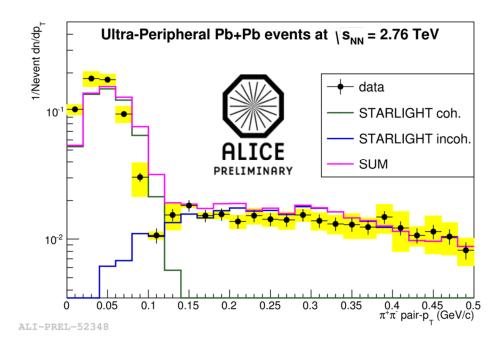
ρ⁰ photoproduction in PbPb

GGM: Frankfurt, Strikman, Zhalov, Phys. Lett. B 537 (2002) 51; Phys. Rev. C 67(2003) 034901

- Generalized Vector Meson Dominance Model in the Gribov-Glauber approach.
- Includes nondiagonal transitions $\gamma \rightarrow \rho' \rightarrow \rho$
- $\sigma_{\rho N}$ from Donnachie-Landshoff model, in agreement with HERA and lower energy data.

GM: Gonçalves, Machado, Phys. Rev. C 84 (2011) 011902

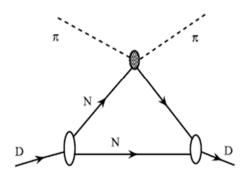

• Based on the color dipole model in combination with saturation from a CGC-IIM model.

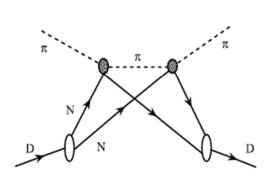

STARLIGHT: Klein, Nystrand, Phys. Rev. C 60 (1999) 014903, http://starlight.hepforge.org/

- Uses experimental data on σ_{oN} cross section.
- Glauber model neglecting the elastic part of total cross section.

ρ^0 invariant mass and p_T spectra

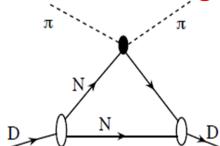
- $\frac{\mathrm{d}\sigma}{\mathrm{d}m_{\pi\pi}} = \left| A \frac{\sqrt{m_{\pi\pi} M_{\rho^0} \Gamma(m_{\pi\pi})}}{m_{\pi\pi}^2 M_{\rho^0}^2 + i M_{\rho^0} \Gamma(m_{\pi\pi})} + B \right|^2$
- A amplitude of the Breit-Wigner function
- B amplitude of the non-resonant $\pi\pi$ production

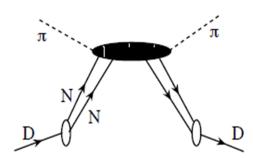

$$\Gamma(m_{\pi\pi}) = \Gamma_{
ho^0} rac{M_{
ho^0}}{m_{\pi\pi}} \left(rac{m_{\pi\pi}^2 - 4m_{\pi}^2}{M_{
ho^0}^2 - 4m_{\pi}^2}
ight)^{3/2}$$


- coherent/incoherent template-pair-p_T distributions from STARLIGHT
- 7 % contribution from incoherent events with pair-p_T < 150 MeV/c
- p_T distribution in Starlight broader than in data (similar trend in STAR)

On nuclear shadowing

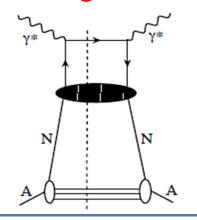
Glauber shadowing (modeling of several consequent interactions):

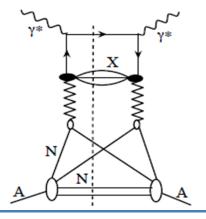




$$\sigma_{\text{tot}}^{\pi D} = 2 \,\sigma_{\text{tot}}^{\pi N} - \frac{(\sigma_{\text{tot}}^{\pi N})^2}{4\pi} \left\langle \frac{1}{r^2} \right\rangle_D$$

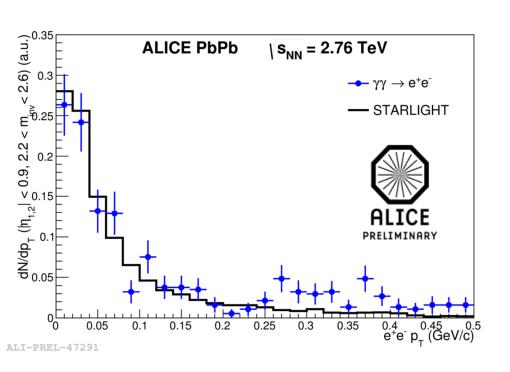
shadowing = destructive interference between single and multiple interactions

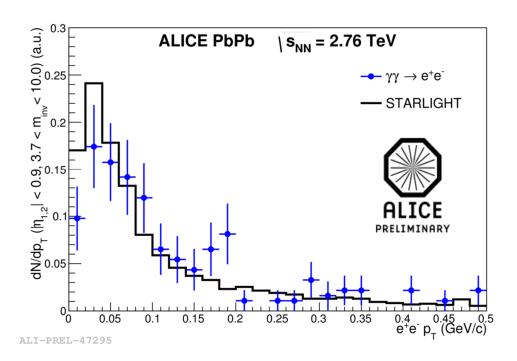

Gribov shadowing (coherent interaction via intermediate diffractive states):



$$\sigma_{\text{tot}}^{\pi D} = 2\sigma_{\text{tot}}^{\pi N} - 2\int d\vec{k}^2 \rho \left(4\vec{k}^2\right) \frac{d\sigma_{\text{diff}}^{\pi N}(\vec{k})}{d\vec{k}^2}$$

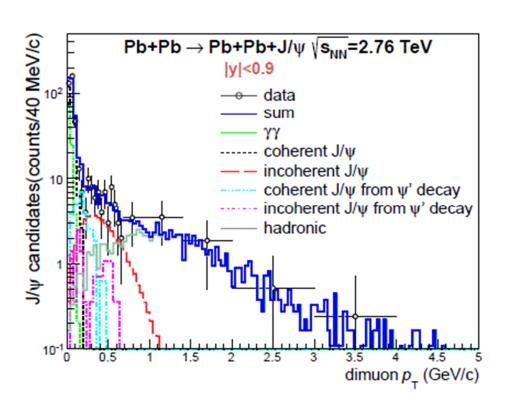
Leading twist shadowing (generalization of Gribov shadowing to the parton level):

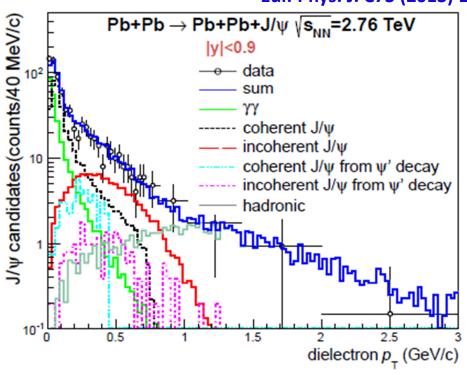



$$\begin{split} xf_{j/A}^{(b)}(x,Q^2) &= -8\pi A(A-1)\Re e^{\frac{(1-i\eta)^2}{1+\eta^2}} \int_x^{0.1} dx_{\mathbb{P}} \beta f_j^{D(4)}(\beta,Q^2,x_{\mathbb{P}},t_{\min}) \\ &\times \int d^2\vec{b} \int_{-\infty}^{\infty} dz_1 \int_{z_1}^{\infty} dz_2 \, \rho_A(\vec{b},z_1) \rho_A(\vec{b},z_2) e^{i(z_1-z_2)x_{\mathbb{P}}m_N}. \end{split}$$

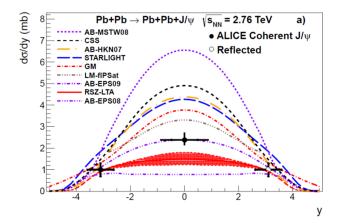
shadowing is expressed via diffractive PDFs

$\gamma\gamma \rightarrow e^+e^-$: p_T distributions





p_T distributions for J/ψ in central barrel: log scale

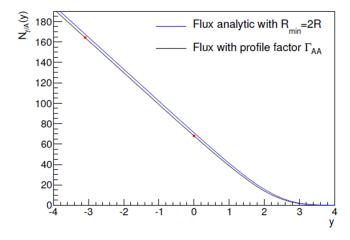

Photoproduction cross-section from ALICE data

V. Guzei, E. Kryshen, M. Strikman, M. Zhalov. Phys. Lett. B726 (2013) 290

ALICE measurement:

$$\frac{\sigma_{AA \rightarrow AAJ/\psi}(|y| < 0.9)}{\Delta y} = 2.33 \pm 0.13 (\text{stat}) \pm 0.23 (\text{syst}) \text{ mb}$$

$$\frac{\sigma_{AA \to AAJ/\psi}(-3.6 < y < -2.6)}{\Delta y} = 1.00 \pm 0.18(\text{stat})^{+0.23}_{-0.26}(\text{syst}) \text{ mb}$$



Photon flux:

$$N_{\gamma/Pb}(y = -3.1) = 163.9 \pm 8.2$$

 $N_{\gamma/Pb}(y = 0) = 67.7 \pm 3.4$

J/ψ photoproduction cross section from ALICE data:

$$\sigma_{\gamma Pb \to PbJ/\psi}(W_{\gamma p} = 19.6 \,\text{GeV}) = 6.1^{+1.8}_{-2.0} \,\mu\text{b}$$

 $\sigma'_{\gamma Pb \to PbJ/\psi}(W_{\gamma p} = 92.4 \,\text{GeV}) = 17.2 \pm 2.1 \,\mu\text{b}$

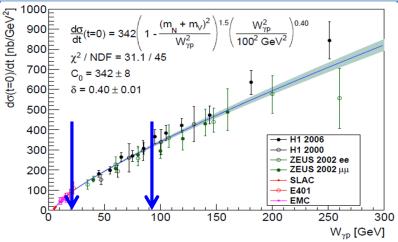
Photoproduction cross-section in the Impulse Approximation

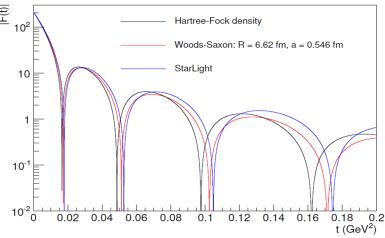
V. Guzei, E. Kryshen, M. Strikman, M. Zhalov. Phys. Lett. B726 (2013) 290

Forward J/psi photoproduction cross section:

$$\frac{d\sigma_{\gamma p \to J/\psi p}(19.6 \text{ GeV}, t = 0)}{dt} = 86.9 \pm 1.8 \text{ nb/GeV}^2$$

$$\frac{d\sigma_{\gamma p \to J/\psi p}(92.4 \text{ GeV}, t = 0)}{dt} = 319.8 \pm 7.1 \text{ nb/GeV}^2$$




Integral over squared form factor:

$$\Phi_{WS}(W_{\gamma p} = 19.6 \text{ GeV}) = 127.2 \text{ GeV}^2$$

$$\Phi_{WS}(W_{\gamma p} = 92.4 \text{ GeV}) = 149.2 \text{ GeV}^2$$

J/psi photoproduction on nucleus in Impulse Approximation:

$$\sigma_{\gamma Pb \to PbJ/\psi}^{IA}(W_{\gamma p} = 19.6 \,\text{GeV}) = 11.1 \pm 0.6 \,\mu\text{b}$$

$$\sigma_{\gamma Pb \to PbJ/\psi}^{IA}(W_{\gamma p} = 92.4 \,\text{GeV}) = 47.7 \pm 2.6 \,\mu\text{b}$$

$$\Phi(t_{min}) = \int_{t_{min}}^{\infty} dt |F_A(t)|^2$$

Estimation of the nuclear suppression factor

V. Guzei, E. Kryshen, M. Strikman, M. Zhalov. Phys. Lett. B726 (2013) 290

J/psi photoproduction cross section measured by ALICE:

$$\sigma_{\gamma Pb \to PbJ/\psi}(W_{\gamma p} = 19.6 \,\text{GeV}) = 6.1^{+1.8}_{-2.0} \,\mu\text{b}$$

$$\sigma_{\gamma Pb \to PbJ/\psi}(W_{\gamma p} = 92.4 \,\text{GeV}) = 17.2 \pm 2.1 \,\mu\text{b}$$

J/psi photoproduction cross section in the Impulse Approximation:

$$\sigma_{\gamma Pb \to PbJ/\psi}^{IA}(W_{\gamma p} = 19.6 \,\text{GeV}) = 11.1 \pm 0.6 \,\mu\text{b}$$
 $\sigma_{\gamma Pb \to PbJ/\psi}^{IA}(W_{\gamma p} = 92.4 \,\text{GeV}) = 47.7 \pm 2.6 \,\mu\text{b}$

Nuclear suppression factor:

$$S(W_{\gamma p}) \equiv \left[\frac{\sigma_{\gamma Pb \to J/\psi Pb}(W_{\gamma p})}{\sigma_{\gamma Pb \to J/\psi Pb}^{IA}(W_{\gamma p})} \right]^{1/2}$$

$$S(W_{\gamma p} = 19.6 \text{ GeV}) = 0.74^{+0.11}_{-0.12}$$

 $S(W_{\gamma p} = 92.4 \text{ GeV}) = 0.61^{+0.05}_{-0.04}$