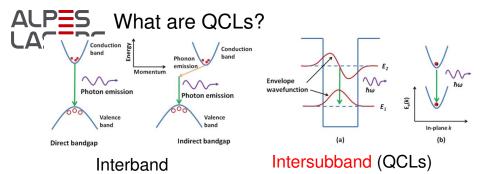
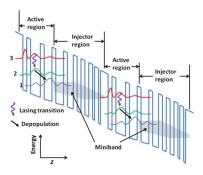
The Alpes Lasers use case ALDIRAC

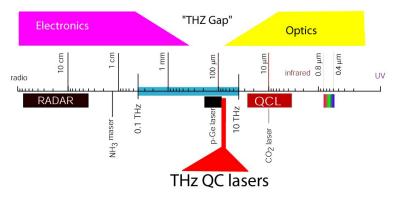
May 25, 2014



- Context
- Use case
- Work model
- Application workflow
- User Interface
- · Dedicated system


ALPES Who is Alpes Lasers?

- Specialized in Quantum Cascade Lasers (QCL) in mid infrared
- In Neuchâtel, Switzerland
- · 20 people
- World leader: many experts of the field work
 here
- Many different types of clients, from Uni to private sector
- · Mostly research and development activities



One electron yields > 1 photon Possible to tune the wavelength, operate at room temperature!

ALPES The optical domains

Obtaining THz emission usually done using FEL

ALPES What for?

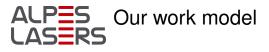
Spectroscopy:

- Trace gas detection
- Remote sensing
- Environmental monitoring
- · Quality analysis

TRACE GAS	ст-1	1 s RMS ppb 76 m path	LoD ppb 100 s
NH ₃	967	0.2	0.06
C ₂ H ₄	960	1	0.5
03	1050	1.5	0.6
CH4	1270	1	0.4
N ₂ O	1270	0.4	0.2
H ₂ O ₂	1267	3	1
SO ₂	1370	1	0.5
NO ₂	1600	0.2	0.1
HONO	1700	0.6	0.3
HNO ₃	1723	0.6	0.3
НСНО	1765	0.3	0.15
HCOOH	1765	0.3	0.15
NO	1900	0.6	0.3
OCS	2071	0.06	0.03
СО	2190	0.4	0.2
N ₂ O	2240	0.2	0.1
13CO2/ 12CO2	2311	0.5 ‰	0.1 ‰

RED: OBSERVED BLACK: ANTICIPATED

Same material system gives access to wide range of wavelengths, small device size compared to traditional devices


ALPES Why DIRAC? (1)

- QCL tech. is recent, only 20 years old
- No widely established tools
- Very hard to build devices, no complete theoretical models to predict a structure's behavior.

ALPES Why DIRAC? (2)

- Some software exist (in-house) to predict some of the devices' behavior, need validation against built structures. Intellectual Property is involved.
- Use of Open Source software dominates
- Do not want to spend time reinventing the wheel and DIRAC seems complete.
- Can have an expert in house (S. Poss)

It's a reasonnable, attractive solution

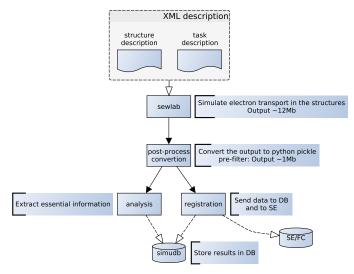
- Do not have a local CE, use Amazon EC2 with VMDIRAC
- No Storage Element, need to be careful with Output Data
- Deal with the Intellectual Property
- Define and implement dedicated system to interact with the in-house database (PSQL): SimuDB

- No contextualization but 2 types of machines pre-installed/configured: Small 1 core machine for test jobs
 - Large Many core machines: Utility to start as many JobAgents as we want
- EC2 provides 32 core machines for \$1.9/hour, could run up to 640 jobs concurrently (20 machines)
- Security group: dedicated ip/ports only

ALPES Available resources in our office

- One central DIRAC server hosted on VM 4 cores, 8GB RAM
- SSHBatchCE configured and used for tests (2 hosts, 4 cores)
- 20Mbps download / 2Mbps upload link

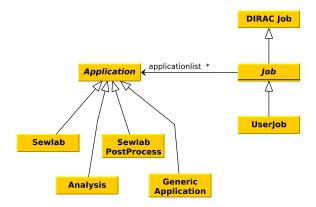
Deal with the existing resources


ALPES Software Management

Account for IP: strict access control

- Software only hosted in our machines
- Packaging done using our tools, based on python packaging tools (i.e. *pip*)
- Use dependency description (à la ILCDIRAC) to resolve all/only soft. bits needed for a job
- Use rsync+ssh to collect only software differences: reduced software transfer footprint

CVMFS could be an alternative, if needed.

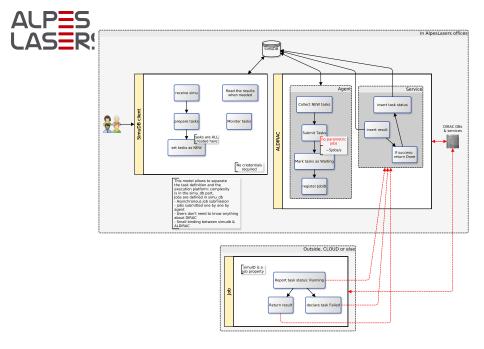

ALPES Application workflow

ALPES User Interface (1)

Based on ILCDIRAC:

- Uses DIRAC's Workflow
- · Decoupling of Applications and Jobs

ALPES User Interface (2)


- Uses Template Method pattern
 - define algorithms in super class, let subclasses overwrite the steps
- Took an afternoon to get the UI working
- · Adding a new application is fast

ALPES Dedicated system: SimuDB

Decouple ALDIRAC from Alpes Lasers' data source (PostgreSQL DB)

- Tasks created in central DB by external client
- Submitted by dedicated agent
- Tasks' statuses reported by jobs through dedicated service
- Results inserted in DB directly by job through service

Advantage: loose coupling, ease of change.

ALPES Conclusions and Prospects

Conclusions:

- Ran successfully few thousand jobs Prospects:
 - · Simulate all existing devices
 - · Compare results with measured values
 - Determine quality of simulation tools
 - Add more tools to ALDIRAC
 - Produce a web front end to our workflows
 to allow clients to interact