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Overview

What's the RSS
And why would you need it
Who use it already

Ontology and architecture
How to use it
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LUIDIRAC What's the RSS

DIRAC.ResourceStatusSystem

For storing resource status in DIRAC
status information

An advanced monitoring tool
Aggregating dispersed information

An “autonomic computing” tool
The core is a generic policy system

Used for monitoring and management
Auto ban/un-ban, triggering tests, etc..
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UDIRAC Ontology /1

This RFC defines how the /Resources section of CS should be, and the
resources ontology at the base of RSS
Key concepts:
Community (VO)
Site (access point — locality!)
Domain (WLCG, Gisela, EGI...)
Resource  Type (Computing, Storage, Catalog, FileTransfer,
Database, CommunityManagement)

/Resources/Sites/[SiteName]/[ResourceType]/[Name Of Service]/[TypeOfAccessPoint]/[NameOf
AccessPoint]

/Resources/Domains/[Domain Name]


https://github.com/DIRACGrid/DIRAC/wiki/RFC-%235:-Resources-CS-section-structure
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Ontology /2
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In the RSS

The CS structure is mapped in a 3 level hierarchy, each entry with a status:

— Sites
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Resource
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IDIRAC RSS for status information

DB:
ResourceStatusDB: tables for: Status, Log, History
Status: 3 families of identical tables: Site, Resource, Node
Log: mostly for debugging purposes
History: keeps historical changes of status

Service
ResourceStatusHandler (expose ResourceStatusDB)

Client
ResourceStatusClient: for interacting with the ResourceStatusDB
ResourceStatus: object that keeps the connectivity with the DB/Service — refreshing
DictCache of Storage Element status

Web: Status Summary page (all “resources” combined)
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UDIRAC RSS for advanced monitoring

DB:
ResourceManagementDB
Service
ResourceManagementHandler (mostly exposes the cached monitoring information)
Agents:
CacheFeederAgent: populates a cache of (useful, configurable, VO-specific) monitoring
information

e.g.: downtimes, failure rates, external monitoring results ...
Use “commands”
Commands (implementation of the Command pattern) — not yet clients!
Downtimes, accounting, jobs, transfers, space token occupancy...

Web (cached info are displayed)
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A policy system runs the policies:
PolicyEnforcement/Decision/Information Points
A policy is an implementation of a logic rule

A policy uses an (aggregated) monitoring
information to assess the status of a resource
(based on the state machine)



Agents
ElementinspectorAgent
TokenAgent

And you need the policies:
Most of them will be VO-dependent
Configurable via CS



DIRAC Policy System
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O DIRAC Questions/comments




