DIRAC Resource
Status System (RSS)

EEEEEEEEEEEE

Overview

What's the RSS
And why would you need it
Who use it already

Ontology and architecture
How to use it

>
LUIDIRAC What's the RSS

DIRAC.ResourceStatusSystem

For storing resource status in DIRAC
status information

An advanced monitoring tool
Aggregating dispersed information

An “autonomic computing” tool
The core is a generic policy system

Used for monitoring and management
Auto ban/un-ban, triggering tests, etc..

N
UDIRAC Ontology /1

This RFC defines how the /Resources section of CS should be, and the
resources ontology at the base of RSS
Key concepts:
Community (VO)
Site (access point — locality!)
Domain (WLCG, Gisela, EGI...)
Resource Type (Computing, Storage, Catalog, FileTransfer,
Database, CommunityManagement)

/Resources/Sites/[SiteName]/[ResourceType]/[Name Of Service]/[TypeOfAccessPoint]/[NameOf
AccessPoint]

/Resources/Domains/[Domain Name]

https://github.com/DIRACGrid/DIRAC/wiki/RFC-%235:-Resources-CS-section-structure

ODIRAC

THE INTERWARE

Ontology /2

Y

File
Transfer

Storage
Elements

Domains

Access
Protocols

Catalog

Access
Protocol

File
Catalogs

I—l Domains |
Somarig
Elements
A
[]

T

EEEEEEEEEEE

In the RSS

The CS structure is mapped in a 3 level hierarchy, each entry with a status:

— Sites
N

—

Resource
Nodes

Site

Resource

N
IDIRAC RSS for status information

DB:
ResourceStatusDB: tables for: Status, Log, History
Status: 3 families of identical tables: Site, Resource, Node
Log: mostly for debugging purposes
History: keeps historical changes of status

Service
ResourceStatusHandler (expose ResourceStatusDB)

Client
ResourceStatusClient: for interacting with the ResourceStatusDB
ResourceStatus: object that keeps the connectivity with the DB/Service — refreshing
DictCache of Storage Element status

Web: Status Summary page (all “resources” combined)

N
UDIRAC RSS for advanced monitoring

DB:
ResourceManagementDB
Service
ResourceManagementHandler (mostly exposes the cached monitoring information)
Agents:
CacheFeederAgent: populates a cache of (useful, configurable, VO-specific) monitoring
information

e.g.: downtimes, failure rates, external monitoring results ...
Use “commands”
Commands (implementation of the Command pattern) — not yet clients!
Downtimes, accounting, jobs, transfers, space token occupancy...

Web (cached info are displayed)

N
I DIRAC RsS for autonomic management /1

——
o
-—
——

A policy system runs the policies:
PolicyEnforcement/Decision/Information Points
A policy is an implementation of a logic rule

A policy uses an (aggregated) monitoring
information to assess the status of a resource
(based on the state machine)

Agents
ElementinspectorAgent
TokenAgent

And you need the policies:
Most of them will be VO-dependent
Configurable via CS

DIRAC Policy System

» [PEP | I
— e init >
enforce
—_— T selu
R —
lakeDecisi
4 fi
getin oTereg gConfig.getOptionsDict >
. getPolToEval
(Polt, Poi2) I ‘PolicyCaller I I :Cache/Info.Sources]
invoke(Poll) > Pol1.command.doCommand >
Active
javoke(Poiz) 5, Pol2.command.doCommand >
Banned
policyCombinaltion I Sleacnne I
enforceSlalus)I
Banned
|
lakeActions

notifyCollaboration >

Banned

S e |- Complete ontology

Cache Agents

®©©

Token
Agent

RSS Cache

(-—— - -
Policy -I-
Decision

Point

uoljewJojul Buliojiuow Jo s82Ino0g

{

Policies Commands

O DIRAC Questions/comments

