
1

Secure Coding Practices
(and Other Good Things)

The 4th DIRAC User Workshop
CERN

May 28, 2014

James A. Kupsch

Barton P. Miller
Computer Sciences Department

University of Wisconsin

kupsch@cs.wisc.edu
bart@cs.wisc.edu

Elisa Heymann

Computer Architecture and
Operating Systems Department

Universitat Autònoma de Barcelona

elisa@cs.wisc.edu

2

Who we are

Elisa Heymann
Eduardo Cesar
Manuel Brugnoli
Max Frydman

Bart Miller
Jim Kupsch
Vamshi Basupalli
Josef Burger

http://www.cs.wisc.edu/mist/

3

What do we do

• Assess Middleware: Make cloud/grid

software more secure

• Train: We teach tutorials for users,

developers, sys admins, and managers

• Research: Make in-depth assessments

more automated and improve quality of

automated code analysis

http://www.cs.wisc.edu/mist/papers/VAshort.pdf

4

Our experience

 Condor, University of Wisconsin
 Batch queuing workload management system
 15 vulnerabilities 600 KLOC of C and C++

 SRB, SDSC
 Storage Resource Broker - data grid
 5 vulnerabilities 280 KLOC of C

 MyProxy, NCSA
 Credential Management System
 5 vulnerabilities 25 KLOC of C

 glExec, Nikhef
 Identity mapping service
 5 vulnerabilities 48 KLOC of C

 Gratia Condor Probe, FNAL and Open Science Grid
 Feeds Condor Usage into Gratia Accounting System
 3 vulnerabilities 1.7 KLOC of Perl and Bash

 Condor Quill, University of Wisconsin
 DBMS Storage of Condor Operational and Historical Data
 6 vulnerabilities 7.9 KLOC of C and C++

5

 Wireshark, wireshark.org
 Network Protocol Analyzer

 2 vulnerabilities 2400 KLOC of C

 Condor Privilege Separation, Univ. of Wisconsin
 Restricted Identity Switching Module

 2 vulnerabilities 21 KLOC of C and C++

 VOMS Admin, INFN
 Web management interface to VOMS data

 4 vulnerabilities 35 KLOC of Java and PHP

 CrossBroker, Universitat Autònoma de Barcelona
 Resource Mgr for Parallel & Interactive Applications

 4 vulnerabilities 97 KLOC of C++

 ARGUS 1.2, HIP, INFN, NIKHEF, SWITCH
 gLite Authorization Service

 0 vulnerabilities 42 KLOC of Java and C

Our experience

6

Our experience

 VOMS Core INFN
 Virtual Organization Management System

 1 vulnerability 161 KLOC of Bourne Shell, C++ and C

 iRODS, DICE
 Data-management System

 9 vulnerabilities 285 KLOC of C and C++

 Google Chrome, Google
 Web browser

 1 vulnerability 2396 KLOC of C and C++

 WMS, INFN
 Workload Management System
 in progress 728 KLOC of Bourne Shell, C++,
 C, Python, Java, and Perl

 CREAM, INFN
 Computing Resource Execution And Management

 5 vulnerabilities 216 KLOC of Bourne Shell, Java, and C++

7

Overview

• Some basics and terminology

• Thinking like an attacker

– “Owning the bits”

• Thinking like an analyst

– A brief overview of in-depth vulnerability

assessment

• Thinking like a programmer/designer

– Secure programming techniques

What is Software Security?

• Software security means protecting

software against malicious attacks and

other risks.

• Security is necessary to provide

availability, confidentiality, and integrity.

8

9

What is a Vulnerability?

“A vulnerability is a defect or weakness in
system security procedures, design,
implementation, or internal controls that can
be exercised and result in a security breach
or violation of security policy.”

 - Gary McGraw, Software Security

10

What is a Vulnerability?

A weakness allowing a principal (e.g. a user) to

gain access to or influence a system beyond the

intended rights.

– Unauthorized user can gain access.

– Authorized user can:

• gain unintended privileges – e.g. root or admin.

• damage a system.

• gain unintended access to data or information.

• delete or change another user’s data.

• impersonate another user.

What is a Weakness
(or Defect or Bug)?

Software bugs are errors, mistakes, or
oversights in programs that result in
unexpected and typically undesirable
behavior.

The Art of Software Security Assessment

• Vulnerabilities are a subset of weaknesses.

• Almost all software analysis tools find

weaknesses not vulnerabilities.

11

What is an Exploit?

The process of attacking a vulnerability
in a program is called exploiting.

The Art of Software Security Assessment

 The attack can come from a

– program or script

– human with interactive access

12

Cost of Insufficient Security

• Attacks are expensive and affect assets:

– Management.

– Organization.

– Process.

– Information and data.

– Software and applications.

– Infrastructure.

13

Cost of Insufficient Security

• Attacks are expensive and affect assets:

– Financial capital.

– Reputation.

– Intellectual property.

– Network resources.

– Digital identities.

– Services.

14

Thinking about an Attack:
Owning the Bits

“Dark Arts”

and
“Defense Against the Dark Arts”

15

Learn to Think Like an Attacker

16

An Exploit through the Eyes of an
Attacker

• Exploit, redefined:
– A manipulation of a program’s internal state in a way not

anticipated (or desired) by the programmer.

• Start at the user’s entry point to the program: the attack
surface:
– Network input buffer

– Field in a form

– Line in an input file

– Environment variable

– Program option

– Entry in a database

– …

• Attack surface: the set of points in the program’s interface that
can be controlled by the user.

17

The Path of an Attack

p = requesttable;

while (p != (struct table *)0)

{

 if (p->entrytype == PEER_MEET)

 {

 found = (!(strcmp (her, p->me)) &&

 !(strcmp (me, p->her)));

 }

 else if (p->entrytype == PUTSERVER)

 {

 found = !(strcmp (her, p->me));

 }

 if (found)

 return (p);

 else

 p = p->next;

 }

 return ((struct table *) 0);

Thinking Like an Analyst

19

Things That We All Know

• All software has vulnerabilities.

• Critical infrastructure software is complex

and large.

• Vulnerabilities can be exploited by both

authorized users and by outsiders.

20

Key Issues for Security

• Need independent assessment

– Software engineers have long known that

testing groups must be independent of

development groups

• Need an assessment process that is NOT

based on known vulnerabilities

– Such approaches will not find new types and

variations of attacks

21

Key Issues for Security

• Automated Analysis Tools have Serious
Limitations:

– While they help find some local errors, they

• MISS significant vulnerabilities (false negatives)

• Produce voluminous reports (false positives)

• Programmers must be security-aware

– Designing for security and the use of secure
practices and standards does not guarantee
security.

22

Addressing these Issues

• We must evaluate the security of our code

– The vulnerabilities are there and we want to
find them first.

• Assessment isn’t cheap

– Automated tools create an illusion of security.

• You can’t take shortcuts

– Even if the development team is good at
testing, they can’t do an effective assessment
of their own code.

23

Addressing these Issues

• Try First Principles Vulnerability Assessment

– A strategy that focuses on critical resources.

– A strategy that is not based on known

vulnerabilities.

• We need to integrate assessment and remediation

into the software development process.

– We have to be prepared to respond to the

vulnerabilities we find.

24

Roadmap

• Introduction

• Pointers and Strings

• Numeric Errors

• Race Conditions

• Exceptions

• Privilege, Sandboxing and Environment

• Injection Attacks

• Web Attacks

25

26

Discussion of the Practices

• Description of vulnerability

• Signs of presence in the code

• Mitigations

• Safer alternatives

27

Pointers and Strings

28

Buffer Overflows
http://cwe.mitre.org/top25/archive/2011/2011_cwe_sans_top25.html#Listing

1. Improper Neutralization of Special Elements used in an SQL
Command ('SQL Injection')

2. Improper Neutralization of Special Elements used in an OS
Command ('OS Command Injection')

3. Buffer Copy without Checking Size of Input ('Classic Buffer
Overflow')

4. Improper Neutralization of Input During Web Page Generation
('Cross-site Scripting')

5. Missing Authentication for Critical Function

6. Missing Authorization

7. Use of Hard-coded Credentials

8. Missing Encryption of Sensitive Data

9. Unrestricted Upload of File with Dangerous Type

10. Reliance on Untrusted Inputs in a Security Decision

http://cwe.mitre.org/top25/archive/2011/2011_cwe_sans_top25.html

29

Buffer Overflows

• Description
– Accessing locations of a buffer outside the boundaries

of the buffer

• Common causes
– C-style strings

– Array access and pointer arithmetic in languages
without bounds checking

– Off by one errors

– Fixed large buffer sizes (make it big and hope)

– Decoupled buffer pointer and its size
• If size unknown overflows are impossible to detect

• Require synchronization between the two

• Ok if size is implicitly known and every use knows it (hard)

30

Why Buffer Overflows
are Dangerous

• An overflow overwrites memory adjacent
to a buffer

• This memory could be

– Unused

– Code

– Program data that can affect operations

– Internal data used by the runtime system

• Common result is a crash

• Specially crafted values can be used for an
attack

31

Buffer Overflow of User Data
Affecting Flow of Control

 char id[8];
 int validId = 0; /* not valid */

 gets(id); /* reads "evillogin"*/

 /* validId is now 110 decimal */
 if (IsValid(id)) /* <- false */
 validId = 1; /* not executed */
 if (validId) /* <- true */
 DoPrivilegedOp(); /* is executed */

e v i l l o g i 110

‘n’
\0 \0 \0

id validId

\0 \0 \0 \0

id validId

32

Numeric Errors

33

http://xkcd.com/571

34

Integer Vulnerabilities

• Description
– In many programming languages (C, C++, Java, Perl,

Python 2.x have problems; Python 3.x is OK), integers
are module 2n, allow silent unexpected results

• Overflow

• Truncation

• Signed vs. unsigned representations

– Code may be secure on one platform, but silently
vulnerable on another, due to different underlying
integer types.

• General causes
– Not checking for overflow

– Mixing integer types of different ranges

– Mixing unsigned and signed integers

The Cost of Not Checking…
4 Jun 1996:

35

An unchecked 64 bit floating point

number assigned to a 16 bit integer

Cost:

Development cost: $7 billion

Lost rocket and payload $500 million

Ariane 5 mission 501

36

Race Conditions

37

Race Conditions

• Description
– A race condition occurs when multiple threads of

control try to perform a non-atomic operation on a
shared object, such as

• Multithreaded applications accessing shared data

• Accessing external shared resources such as the file system

• General causes
– Threads or signal handlers without proper

synchronization

– Non-reentrant functions (may have shared variables)

– Performing non-atomic sequences of operations on
shared resources (file system, shared memory) and
assuming they are atomic

38

Race Condition on Data

• A program contains a data race if two threads

simultaneously access the same variable, where

at least one of these accesses is a write.

• Programs need to be race free to be safe.

Successful Race Condition Attack
void TransFunds(Account srcAcct, Account dstAcct, int xfrAmt)

{

 if (xfrAmt < 0)

 FatalError();

 int srcAmt = srcAcct.getBal();

 if (srcAmt - xfrAmt < 0)

 FatalError();

 srcAcct.setBal(srcAmt - xfrAmt);

 dstAcct.setBal(dstAcct.getBal() + xfrAmt);

}

39

Balances

Thread 1 Thread 2 Bob Ian
XfrFunds(Bob, Ian, 100) XfrFunds(Bob, Ian, 100) 100 0

srcAmt = 100

srcAmt = 100

srcAmt – 100 < 0 ?

srcAmt – 100 < 0 ?

srcAcct.setBal(100 – 100) 0
srcAcct.setBal(100 – 100) 0

dst.setBal(0 + 100) 100
dst.setBal(0 + 100) 200

time

Mitigated Race Condition Attack
public void TransFunds(Account srcAcct, Account dstAcct, int xfrAmt)

{

 if (xfrAmt < 0) FatalError();

 synchronized(srcAcct) {

 int srcAmt = srcAcct.getBal();

 if (srcAmt - xfrAmt < 0)

 FatalError();

 srcAcct.setBal(srcAmt - xfrAmt);

 }

 synchronized(dstAcct) {

 dstAcct.setBal(dstAcct.getBal() + xfrAmt);

 }

}

40

Thread 1 Thread 2 Bob Ian
XfrFunds(Bob, Ian, 100) XfrFunds(Bob, Ian, 100) 100 0

In use srcAcct? No, proceed.

In use srcAcct? Yes, wait.

srcAmt = 100

srcAmt – 100 < 0 ?

srcAcct.setBal(100 – 100) 0
In use dstAcct? No, proceed.

dst.setBal(0 + 100)

srcAmt = 0

srcAmt – 100 < 0? Yes, fail

100

time

41

File System Race Conditions

• A file system maps a path name of a file or other

object in the file system, to the internal identifier

(device and inode)

• If an attacker can control any component of the

path, multiple uses of a path can result in

different file system objects

• Safe use of path

– eliminate race condition

• use only once

• use file descriptor for all other uses

– verify multiple uses are consistent

File System Race Examples

• Check properties of a file then open
 Bad: access or stat open

 Safe: open fstat

• Create file if it doesn’t exist
 Bad: if stat fails creat(fn, mode)

 Safe: open(fn, O_CREAT|O_EXCL, mode)

– Never use O_CREAT without O_EXCL

– Better still use safefile library
• http://www.cs.wisc.edu/mist/safefile

James A. Kupsch and Barton P. Miller, “How to Open a File and Not Get
Hacked,” 2008 Third International Conference on Availability, Reliability and
Security (ARES), Barcelona, Spain, March 2008.

42

43

Race Condition Examples

• Your Actions Attackers Action
 s=strdup("/tmp/zXXXXXX")

tempnam(s)

// s now "/tmp/zRANDOM" link = "/etc/passwd"

 file = "/tmp/zRANDOM"

 symlink(link, file)

f = fopen(s, "w+")

// writes now update

// /etc/passwd

time

Safe Version

fd = mkstemp(s)

f = fdopen(fd, "w+")

44

Exceptions

45

Exception Vulnerabilities

• Exception are a nonlocal control flow
mechanism, usually used to propagate error
conditions in languages such as Java and C++.

try {

 // code that generates exception

} catch (Exception e) {

 // perform cleanup and error recovery

}

• Common Vulnerabilities include:
– Ignoring (program terminates)

– Suppression (catch, but do not handled)

– Information leaks (sensitive information in error
messages)

Proper Use of Exceptions

• Add proper exception handling
– Handle expected exceptions (i.e. check for errors)

– Don’t suppress:
• Do not catch just to make them go away

• Recover from the error or rethrow exception

– Include top level exception handler to avoid exiting:
 catch, log, and restart

• Do not disclose sensitive information in messages
– Only report non-sensitive data

– Log sensitive data to secure store, return id of data

– Don't report unnecessary sensitive internal state
• Stack traces

• Variable values

• Configuration data

46

Exception Suppression

1. User sends malicious data

boolean Login(String user, String pwd){

 boolean loggedIn = true;

 String realPwd = GetPwdFromDb(user);

 try {

 if (!GetMd5(pwd).equals(realPwd))

{

 loggedIn = false;

 }

 } catch (Exception e) {

 //this can not happen, ignore

 }

 return loggedIn;

}

user="admin",pwd=null

2. System grants access Login() returns true

47

Unusual or Exceptional
Conditions Mitigation

boolean Login(String user, String pwd){

 boolean loggedIn = true;

 String realPwd = GetPwdFromDb(user);

 try {

 if (!GetMd5(pwd).equals(realPwd))

{

 loggedIn = false;

 }

 } catch (Exception e) {

 loggedIn = false;

 }

 return loggedIn;

}

2. System does not grant access Login() returns false

48

1. User sends malicious data user=“admin”,pwd=null

WTMI (Way Too Much Info)

49

Login(… user, … pwd) {

 try {

 ValidatePwd(user, pwd);

 } catch (Exception e) {

 print("Login failed.\n");

 print(e + "\n");

 e.printStackTrace();

 return;

 }

}

void ValidatePwd(… user, … pwd)

 throws BadUser, BadPwd {

 realPwd = GetPwdFromDb(user);

 if (realPwd == null)

 throw BadUser("user=" + user);

 if (!pwd.equals(realPwd))

 throw BadPwd("user=" + user

 + " pwd=" + pwd

 + " expected=" + realPwd);

 …

Login failed.

BadPwd: user=bob pwd=x expected=password

BadPwd:

 at Auth.ValidatePwd (Auth.java:92)

 at Auth.Login (Auth.java:197)

 …

 com.foo.BadFramework(BadFramework.java:71)

 ...

User exists Entered pwd

User's actual password ?!?

(passwords aren't hashed)

Reveals internal structure

(libraries used, call structure,
version information)

The Right Amount of Information

50

Login {

 try {

 ValidatePwd(user, pwd);

 } catch (Exception e) {

 logId = LogError(e); // write exception and return log ID.

 print("Login failed, username or password is invalid.\n");

 print("Contact support referencing problem id " + logId

 + " if the problem persists");

 return;

 }

}

void ValidatePwd(… user, … pwd) throws BadUser, BadPwd {

 realPwdHash = GetPwdHashFromDb(user)

 if (realPwdHash == null)

 throw BadUser("user=" + HashUser(user));

 if (!HashPwd(user, pwd).equals(realPwdHash))

 throw BadPwdExcept("user=" + HashUser(user));

 …

}

Log sensitive information

Generic error message

(id links sensitive information)

User and password are hashed

(minimizes damage if breached)

51

Privilege, Sandboxing,
and Environment

52

Trusted Directory
• A trusted directory is one where only trusted

users can update the contents of anything in the
directory or any of its ancestors all the way to the
root

• A trusted path needs to check all components of
the path including symbolic links referents for
trust

• A trusted path is immune to TOCTOU attacks
from untrusted users

• This is extremely tricky to get right!

• safefile library
– http://www.cs.wisc.edu/mist/safefile

– Determines trust based on trusted users & groups

53

Directory Traversal

• Description

– When user data is used to create a pathname to a file

system object that is supposed to be restricted to a

particular set of paths or path prefixes, but which the

user can circumvent

• General causes

– Not checking for path components that are empty, "."

or ".."

– Not creating the canonical form of the pathname (there

is an infinite number of distinct strings for the same

object)

– Not accounting for symbolic links

54

Directory Traversal Mitigation

• Use realpath or something similar to

create canonical pathnames

• Use the canonical pathname when

comparing filenames or prefixes

• If using prefix matching to check if a path is

within directory tree, also check that the

next character in the path is the directory
separator or '\0'

Directory Traversal
(Path Injection)

• User supplied data is used to create a path, and program security

requires but does not verify that the path is in a particular subtree of

the directory structure, allowing unintended access to files and

directories that can compromise the security of the system.
– Usually <program-defined-path-prefix> + "/" + <user-data>

• Mitigations

– Validate final path is in required directory using canonical paths
(realpath)

– Do not allow above patterns to appear in user supplied part (if
symbolic links exists in the safe directory tree, they can be used to
escape)

– Use chroot or other OS mechanisms

55

<user-data> Directory Movement

../ up

./ or empty string none

<dir>/ down

56

Command Line

• Description

– Convention is that argv[0] is the path to the

executable

– Shells enforce this behavior, but it can be set

to anything if you control the parent process

• General causes

– Using argv[0] as a path to find other files

such as configuration data

– Process needs to be setuid or setgid to be a

useful attack

Environment

• List of (name, value) string pairs

• Available to program to read

• Used by programs, libraries and runtime
environment to affect program behavior

• Mitigations:

– Clean environment to just safe names & values

– Don’t assume the length of strings

– No user control of PATH, LD_LIBRARY_PATH,
and other variables that are directory lists
used to look for execs and libs

57

58

Injection Attacks

59

Injection Attacks

• Description

– A string constructed with user input, that is then

interpreted by another function, where the string is not

parsed as expected

• Command injection (in a shell)

• Format string attacks (in printf/scanf)

• SQL injection

• Cross-site scripting or XSS (in HTML)

• General causes

– Allowing metacharacters

– Not properly neutralizing user data if metacharacters

are allowed

60

SQL Injections

• User supplied values used in SQL
command must be validated, quoted, or
prepared statements must be used

• Signs of vulnerability

– Uses a database mgmt system (DBMS)

– Creates SQL statements at run-time

– Inserts user supplied data directly into
statement without validation

61

SQL Injections:
attacks and mitigations

• Dynamically generated SQL without
validation or quoting is vulnerable

 $u = " '; drop table t --";

 $sth = $dbh->do("select * from t where u = '$u'");

 Database sees two statements:

 select * from t where u = ' '; drop table t --'

• Use prepared statements to mitigate
 $sth = $dbh->do("select * from t where u = ?", $u);

– SQL statement template and value sent to
database

– No mismatch between intention and use

62

http://xkcd.com/327

63

Command Injections

• User supplied data used to create a string
that is the interpreted by command shell such
as /bin/sh

• Signs of vulnerability
– Use of popen, or system

– exec of a shell such as sh, or csh

– Argument injections, allowing arguments to begin
with "-" can be dangerous

• Usually done to start another program

– That has no C API

– Out of laziness

64

Command Injection Mitigations

• Check user input for metacharacters

• Neutralize those that can’t be eliminated or
rejected
– replace single quotes with the four characters, '\'',

and enclose each argument in single quotes

• Use fork, drop privileges and exec for more
control

• Avoid if at all possible

• Use C API if possible

65

Perl Command Injection
Examples

• open(CMD, "|/bin/mail -s $sub $to");

– Unsafe if $to is "badguy@evil.com; rm -rf /"

• open(CMD, “|/bin/mail -s '$sub' '$to'");

– Unsafe if $to is "badguy@evil.com'; rm -rf /'"

• ($qSub = $sub) =~ s/'/'\\''/g;

($qTo = $to) =~ s/'/'\\''/g;

open(CMD, "|/bin/mail -s '$qSub' '$qTo'");

– Safe from command injection

• open(cmd, "|-", "/bin/mail", "-s", $sub, $to);

– Safe and simpler: use this whenever possible.

66

Eval Injections

• A string formed from user supplied input that is

used as an argument that is interpreted by the

language running the code

• Usually allowed in scripting languages such as

Perl, sh and SQL

• In Perl eval($s) and s/$pat/$replace/ee

– $s and $replace are evaluated as perl code

67

Python Command Injection
Danger Signs

• Functions prone to injection attacks:

– exec() # dynamic execution of Python code

– eval() # returns the value of an expression or

 # code object

– os.system() # execute a command in a subshell

– os.popen() # open a pipe to/from a command

– execfile() # reads & executes Python script from

 # a file.

– input() # equivalent to eval(raw_input())

– compile() # compile the source string into a code

 # object that can be executed

Successful OS Injection Attack

1. User sends malicious data

3. System executes nslookup x.com;rm –rf /*

68

String rDomainName(String hostname) {

 …

 String cmd = "/usr/bin/nslookup " + hostname;

 Process p = Runtime.getRuntime().exec(cmd);

 …

hostname="x.com;rm –rf /*"

2. Application uses nslookup to get DNS records

4. All files possible are deleted

Mitigated OS Injection Attack

3. System returns error "Invalid host name"

69

String rDomainName(String hostname) {

 …

 if (hostname.matches("[A-Za-z][A-Za-z0-9.-]*")) {

 String cmd = "/usr/bin/nslookup " + hostname);

 Process p = Runtime.getRuntime().exec(cmd);

 } else {

 System.out.println(“Invalid host name”);

 …

1. User sends malicious data

hostname="x.com;rm –rf /*"

2. Application uses nslookup only if input validates

Code Injection

• Cause

– Program generates source code from template

– User supplied data is injected in template

– Failure to neutralized user supplied data

• Proper quoting or escaping

• Only allowing expected data

– Source code compiled and executed

• Very dangerous – high consequences for

getting it wrong: arbitrary code execution

70

71

Code Injection Vulnerability

%data = ReadLogFile('logfile');

PH = open("|/usr/bin/python");

print PH "import LogIt\n";w

while (($k, $v) = (each %data)) {

 if ($k eq 'name') {

 print PH "LogIt.Name('$v')";

}

2. Perl log processing code – uses Python to do real work

name = John Smith

name = ');import os;os.system('evilprog');#

1. logfile – name's value is user controlled

import LogIt;

LogIt.Name('John Smith')

LogIt.Name('');import os;os.system('evilprog');#')

3. Python source executed – 2nd LogIt executes arbitrary code

Start Python,

program sent

on stdin

Read

logfile

72

Code Injection Mitigated

%data = ReadLogFile('logfile');

PH = open("|/usr/bin/python");

print PH "import LogIt\n";w

while (($k, $v) = (each %data)) {

 if ($k eq 'name') {

 $q = QuotePyString($v);

 print PH "LogIt.Name($q)";

}

2. Perl log processing code – use QuotePyString to safely create string literal

name = John Smith

name = ');import os;os.system('evilprog');#

1. logfile – name's value is user controlled

import LogIt;

LogIt.Name('John Smith')

LogIt.Name('\');import os;os.system(\'evilprog\');#')

3. Python source executed – 2nd LogIt is now safe

sub QuotePyString {

 my $s = shift;

 $s =~ s/\\/\\\\/g; # \ \\

 $s =~ s/\n/\\n/g; # NL \n

 return "'$s'"; # add quotes

}

73

Web Attacks

74

Cross Site Scripting (XSS)

• Injection into an HTML page

– HTML tags

– JavaScript code

• Reflected (from URL) or

persistent (stored from prior attacker visit)

• Web application fails to neutralize special characters in

user supplied data

• Mitigate by preventing or encoding/escaping special

characters

• Special characters and encoding depends on context

– HTML text

– HTML tag attribute

– HTML URL

75

Reflected Cross Site Scripting
(XSS)

•••

String query = request.getParameter("q");

if (query != null) {

 out.writeln("You searched for:\n" + query);

}

•••

<html>

•••

You searched for:

widget

•••

</html>

http://example.com?q=widget

 3. Generated HTML displayed by browser

1. Browser sends request to web server

2. Web server code handles request

76

Reflected Cross Site Scripting
(XSS)

•••

String query = request.getParameter("q");

if (query != null) {

 out.writeln("You searched for:\n" + query);

}

•••

<html>

•••

You searched for:

<script>alert('Boo!')</script>

•••

</html>

http://example.com?q=<script>alert('Boo!')</script>

 3. Generated HTML displayed by browser

1. Browser sends request to web server

2. Web server code handles request

77

XSS Mitigation

•••

String query = request.getParameter("q");

if (query != null) {

 if (query.matches("^\\w*$")) {

 out.writeln("You searched for:\n" + query);

 } else {

 out.writeln("Invalid query");

 }

}

•••

<html>

•••

Invalid query

•••

</html>

http://example.com?q=<script>alert('Boo!')</script>

 3. Generated HTML displayed by browser

1. Browser sends request to web server

2. Web server code correctly handles request

78

Cross Site Request Forgery (CSRF)

• CSRF is when loading a web pages causes a malicious

request to another server

• Requests made using URLs or forms (also transmits any

cookies for the site, such as session or auth cookies)

– http://bank.com/xfer?amt=1000&toAcct=joe HTTP GET method

– <form action=/xfer method=POST> HTTP POST method

 <input type=text name=amt>

 <input type=text name=toAcct>

</form>

• Web application fails to distinguish between a user

initiated request and an attack

• Mitigate by using a large random nonce

79

Cross Site Request Forgery (CSRF)

1. User loads bad page from web server

– XSS – Fake server

– Bad guy’s server – Compromised server

2. Web browser makes a request to the victim web server

directed by bad page

– Tags such as

– JavaScript

3. Victim web server processes request and assumes

request from browser is valid

– Session IDs in cookies are automatically sent along

SSL does not help – channel security is not an issue here

80

Successful CSRF Attack

•••

String id = response.getCookie(“user”);

userAcct = GetAcct(id);

If (userAcct != null) {

 deposits.xfer(userAcct, toAcct, amount);

}

<html>

•••

•••

</html>

http://bank.com/xfer?amt=1000&toAcct=evil37

2. evil.com returns HTML

3. Browser sends attack

4. bank.com server code handles request

http://evil.com

1. User visits evil.com

81

CSRF Mitigation

•••

String nonce = (String)session.getAttribute(“nonce”);

String id = response.getCookie(“user”);

if (Utils.isEmpty(nonce)

 || !nonce.equals(getParameter(“nonce”) {

 Login(); // no nonce or bad nonce, force login

 return; // do NOT perform request

} // nonce added to all URLs and forms

userAcct = GetAcct(id);

if (userAcct != null) {

 deposits.xfer(userAcct, toAcct, amount);

}

2. evil.com returns HTML

3. Browser sends attack
4. bank.com server code correctly handles request

1. User visits evil.com Very unlikely

attacker will

provide correct

nonce

Session Hijacking

• Session IDs identify a user’s session in

web applications.

• Obtaining the session ID allows

impersonation

• Attack vectors:

– Intercept the traffic that contains the ID value

– Guess a valid ID value (weak randomness)

– Discover other logic flaws in the sessions

handling process

82

Good Session ID Properties

• Hard to guess

– Large entropy (big random number)

– No patterns in IDs issued

• No reuse

83

http://xkcd.com/221

Session Hijacking Mitigation

• Create new session id after

– Authentication

– switching encryption on

– other attributes indicate a host change (IP address
change)

• Encrypt to prevent obtaining session ID through
eavesdropping

• Expire IDs after short inactivity to limit exposure of
guessing or reuse of illicitly obtained IDs

• Entropy should be large to prevent guessing

• Invalidate session IDs on logout and provide logout
functionality

84

Session Hijacking Example

1. An insecure web application accepts and

reuses a session ID supplied to a login page.

2. Attacker tricked user visits the web site

using attacker chosen session ID

3. User logs in to the application

4. Application creates a session using attacker

supplied session ID to identify the user

5. The attacker uses session ID to impersonate

the user

85

86

Successful Hijacking Attack

1. Tricks user to visit

if(HttpServletRequest.getRequestedSessionId() == null)

{

 HttpServletRequest.getSession(true);

}

...

http://bank.com/login;JSESSIONID=123

3. Creates the
session

HTTP/1.1 200 OK

Set-Cookie:

JSESSIONID=123

http://bank.com/login;JSESSIONID=123

2. User Logs In

http://bank.com/home

Cookie: JSESSIONID=123

4. Impersonates the user

87

Mitigated Hijacking Attack

1. Tricks user to visit

HttpServletRequest.invalidate();

HttpServletRequest.getSession(true);

...

http://bank.com/login;JSESSIONID=123

3. Creates the
session

HTTP/1.1 200 OK

Set-Cookie:

JSESSIONID=XXX

http://bank.com/login;JSESSIONID=123

2. User Logs In

4. Impersonates the user

http://bank.com/home

Cookie: JSESSIONID=123

88

Secure Coding Practices
(and Other Good Things)

James A. Kupsch

Barton P. Miller
{kupsch,bart}@cs.wisc.edu

Elisa Heymann

Elisa.Heymann@uab.es

http://www.cs.wisc.edu/mist/

http://www.cs.wisc.edu/mist/papers/VAshort.pdf

