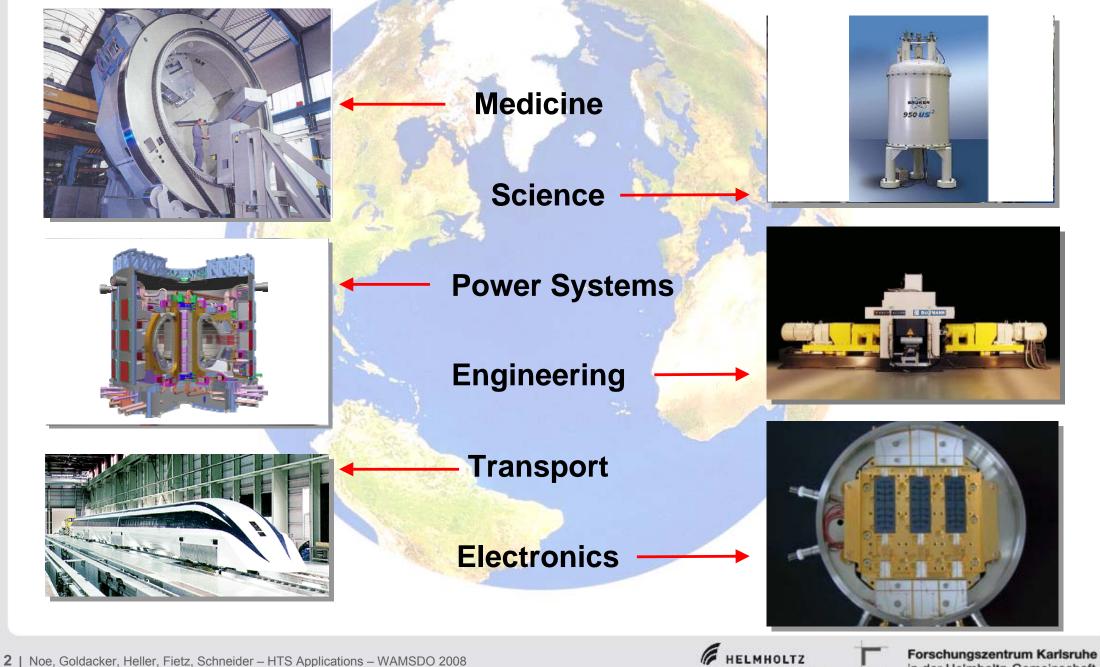


<u>Mathias Noe</u>, Wilfried Goldacker, Reinhard Heller, Walter Fietz, Theo Schneider Forschungszentrum Karlsruhe, Institute for Technical Physics

- Introduction to HTS Applications
- HTS Wires and Tapes
- HTS for Power System Applications
- HTS for Current Leads
- HTS for Fusion Magnets
- HTS for High Field Magnets
- Outlook

HELMHOLTZ



Applications of Superconductivity

in der Helmholtz-Gemeinschaft

GEMEINSCHAFT

Forschungszentrum Karlsruhe

in der Helmholtz-Gemeinschaft

HELMHOLTZ

GEMEINSCHAFT

HTS Applications

<u>Mathias Noe</u>, Wilfried Goldacker, Reinhard Heller, Walter Fietz, Theo Schneider, Forschungszentrum Karlsruhe, Institute for Technical Physics

- Introduction to HTS Applications
- HTS Wires and Tapes
- HTS for Power System Applications
- HTS for Current Leads
- HTS for Fusion Magnets
- HTS for High Field Magnets
- Outlook

Main Requirements for HTS Tapes and Cables

	LTS	HTS Bi	HTS YBCO CC (now)
Availability km batches several manufacturers 			□ Soon available ☑
 Stability mechanically stable, reinforced electrically, thermally stable 			
Current carrying capacitymultistrand cable to adapt current			□ First Roebel concepts
Low cost • less than 10 € per kA m		×	□ Seems possible
Low AC loss short twist thin filaments high transverse resistivity 			

Multistrand HTS Cable Concept

Preparation of Roebel Cables at FZK

Single coated conductor

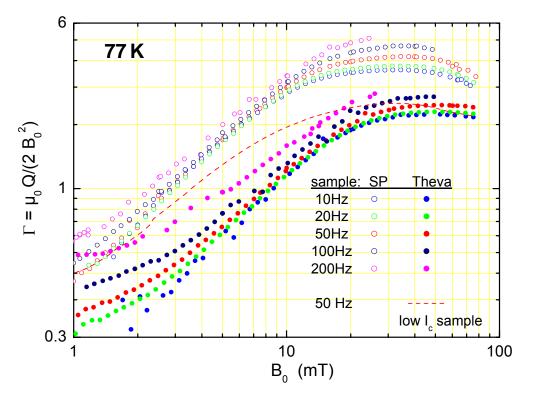
ROEBEL assembled coated conductor

Cable with interstrand connection

W.Goldacker et al. EUCAS-2005 Journal of Physics, Conf Series, Vol 43, 2006 p. 901

- Pure mechanical precision punching
- Tool optimized for material and thickness
- Very sharp clean cutting edges
- Sequential assembling to Roebel structure
- Upgrade to continous process

Multistrand HTS Cable Concept


Forschungszentrum Karlsruhe

in der Helmholtz-Gemeinschaft

DyBCO and YBCO tapes and geometry of Roebel cable

Loss function of Roebel Cables with YBCO coated conductors versus ac-field amplitude, with the frequency as a parameter

Manufacturer	Theva (DyBCO)	SuperPower (YBCO)
Original tape width \times thickness Mean $I_{\rm c}$, self field at 77 K	$\begin{array}{c} 10{\times}0.1 \text{ mm}^2\\ 317A \pm 12A \end{array}$	$12 \times 0.1 \text{ mm}^2$ 230A ± 5A
Meander shaped strands width Mean $I_{\rm c}$, self field at 77 K	4 mm 99.7A ± 9.5A	5 mm 89.5A ± 1.7A
N° of tapes in cable <i>N</i>	11	12
Cable cross section <i>d</i> · <i>h</i>	10×0.9 mm²	12×0.8 mm²
Cabling (= sample) length L	123 mm	127 mm

HELMHOLTZ

GEMEINSCHAFT

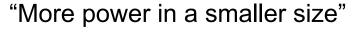
Main result: Coupling loss in Roebel cable is small in comparison to hysteresis loss

HTS Applications

<u>Mathias Noe</u>, Wilfried Goldacker, Reinhard Heller, Walter Fietz, Theo Schneider, Forschungszentrum Karlsruhe, Institute for Technical Physics

- Introduction to HTS Applications
- HTS Wires and Tapes
- HTS for Power System Applications
- HTS for Current Leads
- HTS for Fusion Magnets
- HTS for High Field Magnets
- Outlook

HTS for Power System Applications



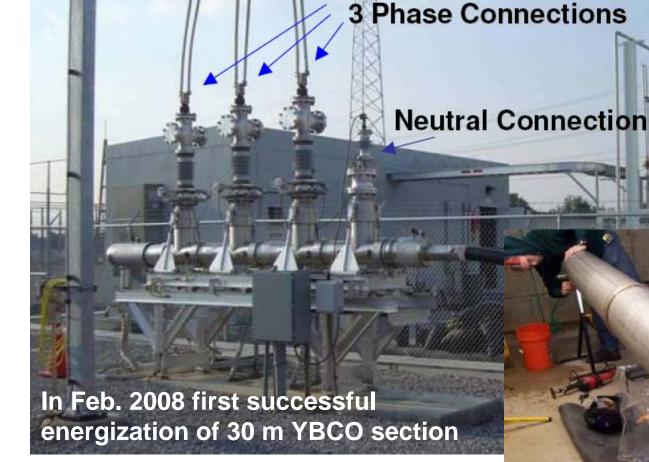
In present power systems

- More powerful conventional devices
 - Motors and Generators
 - Transformers
- Cables
- New devices
 - Superconducting fault current limiters
 - Superconducting magnetic energy storage
 - Current limiting systems

In future power systems

• Fusion power plants

Status of HTS Cable Development



Manufacturer	Year/Place ¹⁾	Туре	Data	Superconductor
Furukawa	Yokosuka, 2004	CD	77 kV, 1 kA, 500 m, 1-ph.	BSCCO
Innost	Yunnan, 2004	WD	35 kV, 2 kA, 33 m, 3-ph.	BSCCO
Sumitomo	Albany, 2006	CD	34.5 kV, 800 A, 350 m, 3-ph.	BSCCO
Ultera	Columbus, 2006	Triax	13.2 kV, 3 kA, 200 m, 3-ph.	BSCCO
Sumitomo	Korea, 2006	CD	22 kV, 1.25 kA, 100 m, 3-ph.	BSCCO
LS Cable	Gochang, 2007	CD	22 kV, 1.25 kA, 100 m, 3-ph.	BSCCO
Sumitomo	Albany, 2007	CD	34.5 kV, 800 A, 30 m, 3-ph.	YBCO
Nexans	Hannover, 2007	CD	138 kV, 1.8 kA, 30 m, 1-ph.	YBCO
Nexans	Long Island, 2008	CD	138 kV, 2.4 kA, 610 m, 3-ph.	BSCCO
Ultera	New York, 2010	Triax	13.8 kV, 4 kA, 240 m, 3-ph.	YBCO
Ultera	New Orleans, 2011	Triax	13.8 kV, 2.5 kA, 1700 m, 3-ph.	YBCO ?
Ultera	Amsterdam, ?	?	50 kV, 2.9 kA, 6000 m, 3-ph.	?
Nexans	Long Island II, ?	CD	^{138 k} Future Trends	
LS Cable	Gochang, 2011	CD	^{154 k} • YBCO coated conducto	r 2 G wire"
Sumitomo	Yokohama, 2010	CD	66 kV • longer lengths up to 6 k	
1) Year of first energization		 higher currents > 4 kA 		

13.2 kV, 3000 A, 200 m – Columbus Ohio

Successful energization July 2006 Bixby Substation, Columbus, Ohio

Picture: nkt cables

Electric Power, nkt cables Southwire,

ORNL

SuperConductor, Praxair,

American American

Partner

HELMHOLTZ

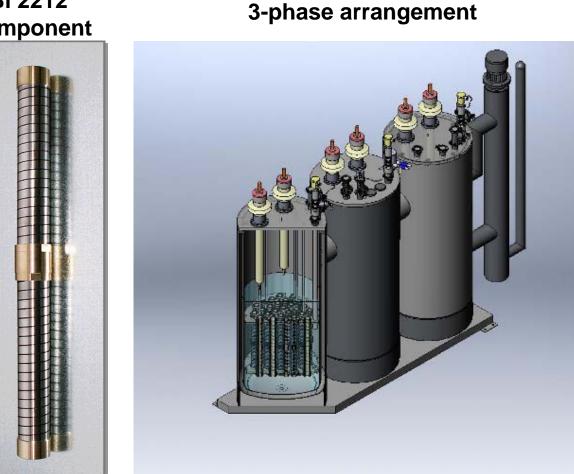
LIPA Cable (138 kV, 2.4 kA, 610 m)

Courtesy: Nexans

Partner

HELMHOLTZ

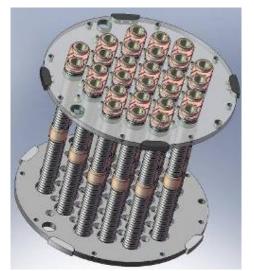
Status of SCFCL Development


Lead company	Year/Coutry ¹⁾	Туре	Data ²⁾	Superconductor	Field test
ACCEL/Nexans SC	2004	Resistive	6.9 kV, 600 A, 3-ph.	BSCCO 2212 bulk	+
KEPRI	2004	Resistive	3.8 kV, 200 A, 3-ph.	YBCO thin films	-
CRIEPI	2004	Resistive	1 kV, 40 A, 1-ph.	YBCO thin films	-
Mitsubishi	2004	Resistive	200 V, 1 kA, 1-ph.	YBCO thin films	-
Yonsei University	2004	Diode bridge	3.8 kV, 200 A, 3-ph.	BSCCO 2223 tape	-
CAS	2005	Diode bridge	6 kV, 1.5 kA, 3-ph.	BSCCO 2223 tape	+
CESI Research	2005	Resistive	3,2 kV, 215 A, 3-ph.	BSCCO 2223	-
KEPRI	2007	Reshybrid	13.2 kV, 630 A, 3-ph.	BSCCO 2212 bulk	-
Innopower	2007	DC biased iron core	20 kV, 1.6 kA, 3ph.	BSCCO 2223 tape	?
Toshiba	2008	Resistive	6.6 kV, -, 3-ph.	YBCO coated cond.	+
Siemens / AMSC	2007	Resistive	7.5 V, 267 A, 1-ph.	YBCO coated cond.	-
Hyundai / AMSC	2007	Resistive	13.2 kV, 630 A, 1-ph.	YBCO coated cond.	-
Nexans	2008	Resistive	6.9 kV, 800 A, 3-ph.	BSCCO 2212 bulk	+
Zenergy Power	2008	DC biased iron core	7.6 kV, 1.2 kA, 3-ph.	BSCCO 2223 tape	+
IGC Superpower	2009	Resistive	80 kV, -, 3-ph.	YBCO coated cond.	+
AMSC / Siemens	2011	Resistive	66 kV, -, 3-ph.	YBCO coated cond.	+
Rolls Royce	-	Resistive	6.6 kV, 400 A, -	MgB ₂	-
KEPRI	2010	Resistive	22.9 kV, 3 kA, 3-ph.	YBCO coated cond.	+

1) Year of test

2) Phase to ground voltage

First Commercial SCFCL Installation



Bi 2212 component

Courtesy: Nexans SuperConductors

Courtesy: **Nexans SuperConductors**

Rated voltage 12 kV Rated current 800 A Max. current 1.8 kA Lim. time 120 ms $Lim_current < 27 kA$

Courtesy: Nexans SuperConductors

6 HELMHOLTZ GEMEINSCHAFT

SCFCL Prototype 13 kV, 1.2 kA

Courtesy: Zenergy Power

Short-circuit tests at Powertech Labs British Columbia, December 2007

HELMHOLTZ

Summary HTS for Power Systems

Forschungszentrum Karlsruhe

in der Helmholtz-Gemeinschaft

HELMHOLTZ

GEMEINSCHAFT

• Many demonstrator and prototype tests showed the technical feasibility of HTS in power system applications (Rotating machines, cables, transformers, current limiters, SMES)

 Superconducting cables and superconducting fault current limiters seem very close to commercialization

 Power system applications may open a continuous demand for HTS and therefore accelerate the R&D for HTS material and tapes

 At a cost level of less than 10 k€ per kA and m a broad application of HTS devices seems very likely

• Power system industry needs low cost and low loss cables "ready to use"

HTS Applications

<u>Mathias Noe</u>, Wilfried Goldacker, Reinhard Heller, Walter Fietz, Theo Schneider, Forschungszentrum Karlsruhe, Institute for Technical Physics

- Introduction to HTS Applications
- HTS Wires and Tapes
- HTS for Power System Applications
- HTS for Current Leads
- HTS for Fusion Magnets
- HTS for High Field Magnets
- Outlook

HELMHOLTZ

Why HTS for Current Leads?

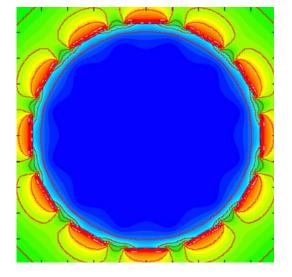
HTS Conventional Cooling Power for ITER **Current Lead Current Lead Current Leads** Current Current Conv. CL Type 300 K TF (18) 1.175 MW PF (12) 0.530 MW Heat exchanger $P_{\rm C}$ CS (12) 0.459 MW Total 2.164 MW 50 K He 65 K P_C **HTS Module** HTS CL Тур Saving TF (18) 0.37 MW 69% 4.5 K Q Q PF (12) 0.14 MW 73% P_C CS (12) 0.12 MW 73% 4 K He 4 K He NbTi NbTi-Total 0.63 MW 71% Coil Coil 6 Forschungszentrum Karlsruhe HELMHOLTZ in der Helmholtz-Gemeinschaft GEMEINSCHAFT

19 | Noe, Goldacker, Heller, Fietz, Schneider – HTS Applications – WAMSDO 2008

20 | Noe, Goldacker, Heller, Fietz, Schneider – HTS Applications – WAMSDO 2008

HTS Current Lead Design Principles

Binary Current Lead


- HTS Part (4.5 K to 50 80 K), active or conduction cooling
- Heat Exchanger (50/80 K to 300 K), active cooling

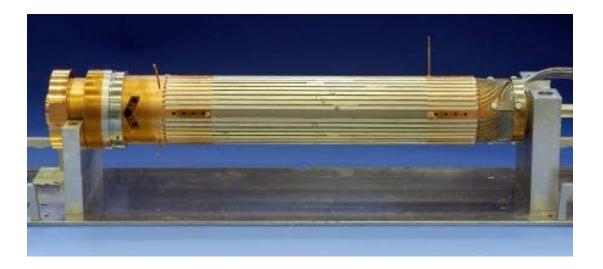
HTS Part

- Circular arrangement to account for the anisotropic field dependence of Ic
- Heat sink made of stainless steel or similar to prevent fast thermal runaway in case of loss of coolant flow or quench

Heat Exchanger

- High efficient heat exchanger optimized for minimum coolant flow at nominal conditions and large thermal mass in case of loss of coolant flow
- Different types of heat exchangers are used

HELMHOLTZ


13 kA HTS Current Lead for LHC (CERN)

HTS Part

- Bi 2223 HTS tapes manufactured by AMSC and EHTS
- Active cooling with 4.2 K He
- Maximum operating temperature of HTS = 50 K

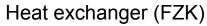
Heat exchanger

- Corrugated plates around a central Cu conductor
- Active cooling with 20 K He

Heat Exchanger (CERN)

HTS Part (CERN)

68 kA HTS Current Lead for ITER (FZK/CRPP)

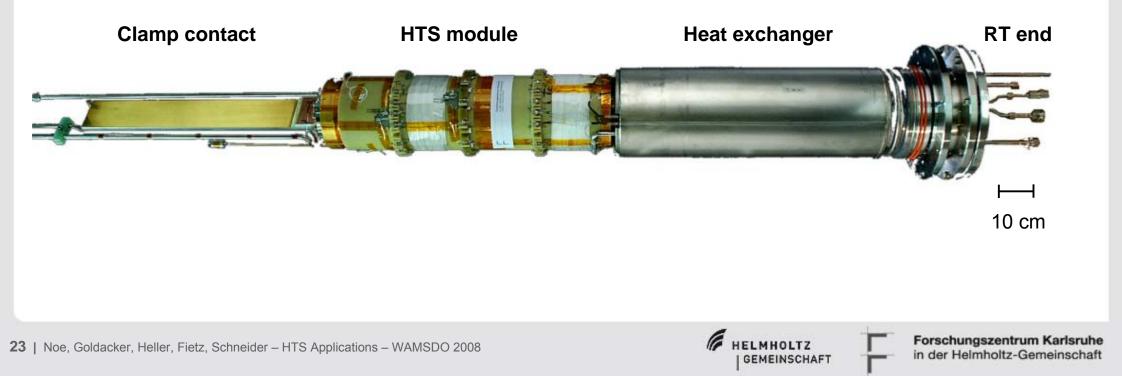

HTS Part

- Bi 2223 HTS tapes manufactured by AMSC
- Conduction cooling from 4.5 K end •
- Maximum operating temperature of HTS = 65 K

Heat Exchanger

- Perforated plates around a central Cu conductor
- Active cooling with 50 K He

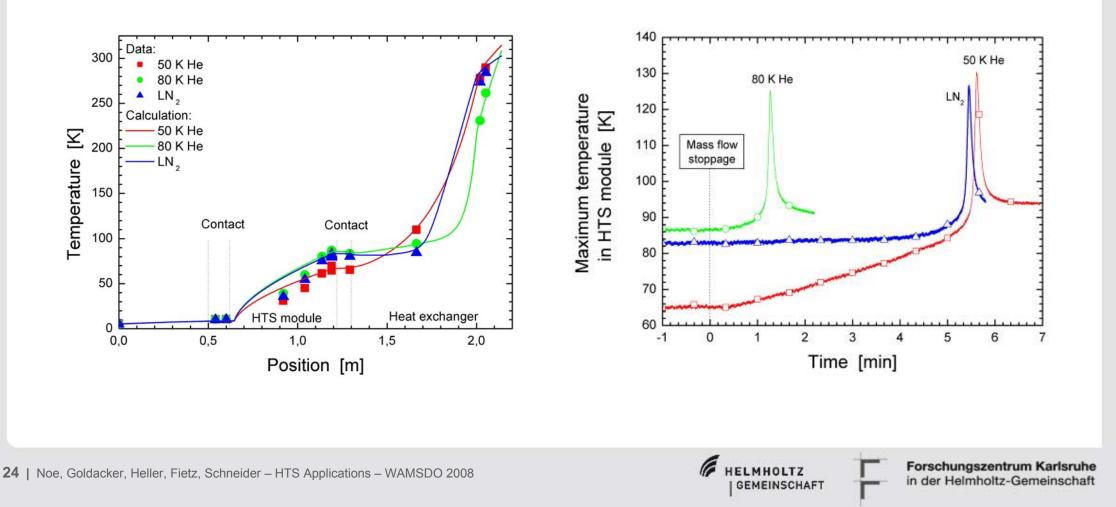
HTS part (FZK)


68 kA HTS Current Lead for ITER (FZK/CRPP)

HTS Part

- Bi 2223 HTS tapes manufactured by AMSC
- Conduction cooling from 4.5 K end
- Maximum operating temperature of HTS = 65 K

Heat Exchanger


- Perforated plates around a central Cu conductor
- Active cooling with 50 K He

68 kA HTS Current Lead for ITER (FZK/CRPP)

Test Results

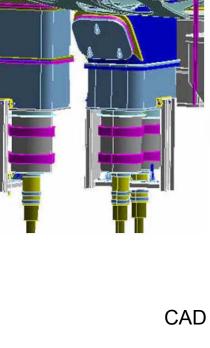
- Transport currents up to 80 kA (world record)
- Stable operation with 50 K He gas, 80 K He gas und LN₂
- Energy consumption is 20 30% compared to conventional current lead

25 | Noe, Goldacker, Heller, Fietz, Schneider – HTS Applications – WAMSDO 2008

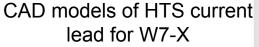
HTS Current Leads under Construction

Outlook

FZK is constructing, manufacturing and testing HTS current leads for


- W7-X
- JT60-SA

HTS Current Leads for W7-X


- 14 leads
- I_{max} = 18.2 kA
- U_{test} = 13 kV (Paschen tight)
- Orientation: upside-down
- Material: Bi 2223 stacks supplied by EHTS

HTS Current Leads for JT60-SA

- 26 leads
- $I_{max} = 26 \text{ kA (TF)} \text{ and } 20 \text{ kA (CS/PF)}$
- U_{test} = 7/21 kV (Paschen tight)
- Orientation: vertical

Forschungszentrum Karlsruhe

in der Helmholtz-Gemeinschaft

FZK is constructing, manufacturing and testing HTS current leads for

W7-XJT60-SA

Outlook

HTS Current Leads for W7-X

- 14 leads
- I_{max} = 18.2 kA
- U_{test} = 13 kV (Paschen tight)
- Orientation: upside-down
- Material: Bi 2223 stacks supplied by EHTS

HTS Current Leads for JT60-SA

- 26 leads
- $I_{max} = 26 \text{ kA (TF)} \text{ and } 20 \text{ kA (CS/PF)}$
- U_{test} = 7/21 kV (Paschen tight)
- Orientation: vertical

Benefits

- High load cycling tolerance in strength
- High uniformity of tape geometry

Summary HTS for Current Leads

Forschungszentrum Karlsruhe

in der Helmholtz-Gemeinschaft

HELMHOLTZ

GEMEINSCHAFT

 Current leads are the component of a sc magnet system where HTS material has been commercialized.

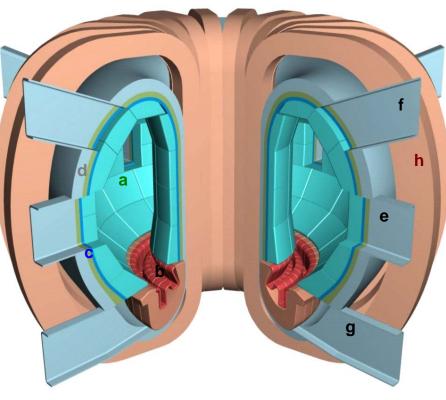
- This states for small magnet systems with current in the kA range as well as for large current capacity leads used or under construction in accelerators and fusion devices.
- First large scale application are the HTS current leads developed for LHC (up to 13 kA).
- Second example is the ITER HTS current lead demonstrator (68 kA) which led to the decision to use HTS current leads in ITER. But also other fusion devices in operation or under construction like EAST (China), W7-X (Germany) and JT60-SA (Japan) use HTS current leads.

HTS Applications

<u>Mathias Noe</u>, Wilfried Goldacker, Reinhard Heller, Walter Fietz, Theo Schneider, Forschungszentrum Karlsruhe, Institute for Technical Physics

- Introduction to HTS Applications
- HTS Wires and Tapes
- HTS for Power System Applications
- HTS for Current Leads
- HTS for Fusion Magnets
- HTS for High Field Magnets
- Outlook

Why HTS for Fusion Magnets?


Cooling Power of Fusion Power Plant

Cooling Power

• at 4.5 K	74 kW		
• at 80 K	1400 kW		

RT Electric Power for Cooling

• at 4.5 K	19 MW
• at 80 K	14 MW
Total	33 MW

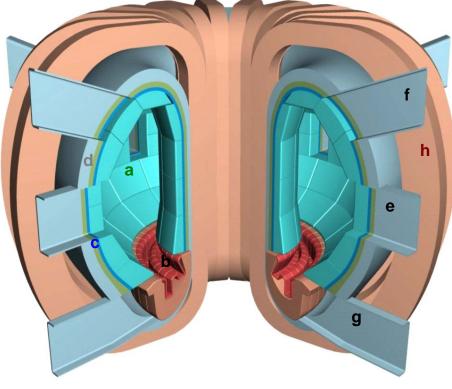
DEMO (EU-Study)

Why HTS for Fusion Magnets?

Cooling Power of Fusion Power Plant

Cooling Power

at 4.5 K
at 80 K
74 kW
1400 kW


RT Electric Power for Cooling

• at 50 K	12 MW (Δ 7 MW)
• at 80 K	14 MW	
Total	26 MW	

Possible reduction of cooling Power by 21 % with HTS Magnets

The complex radiation shield could be avoided

J.L Duchateau et al, EFDA Contract TW4-TMS-HTSMAG: First Intermediate Report, AIM/NTT-2006.004 (2006),

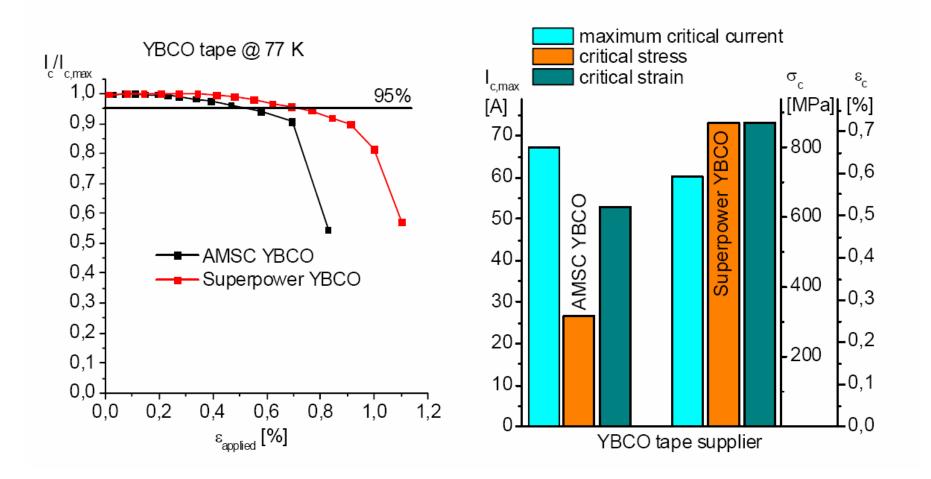
DEMO (EU-Study)

HELMHOLTZ

Main Requirements for HTS Fusion Magnet Conductors

Forschungszentrum Karlsruhe

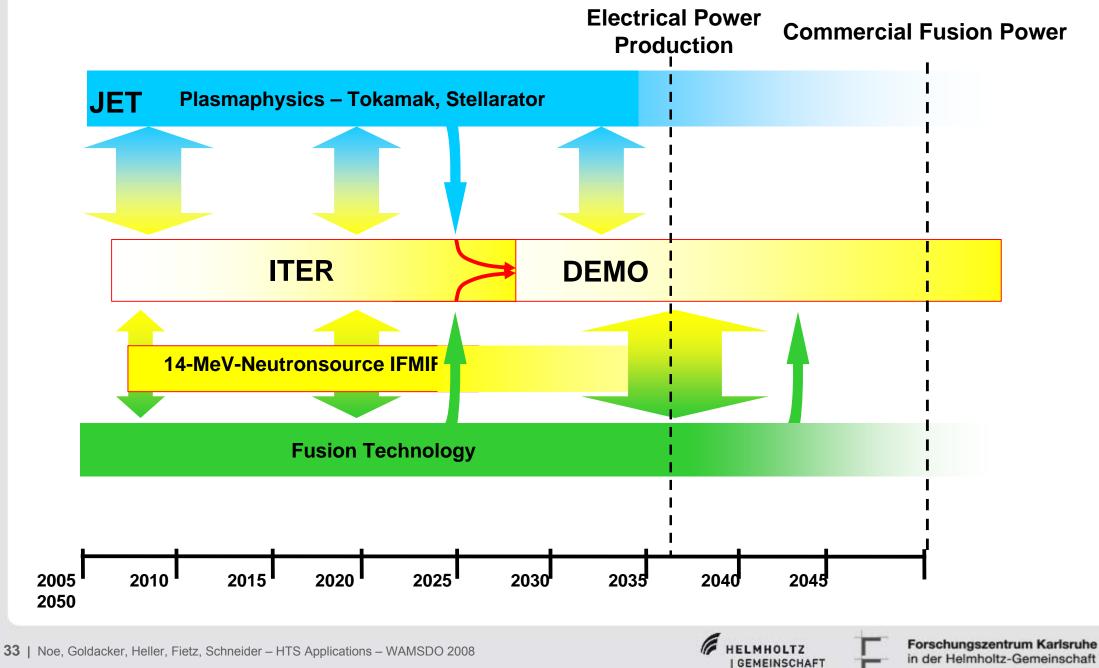
in der Helmholtz-Gemeinschaft


HELMHOLTZ

GEMEINSCHAFT

- High engineering current 10-20 kA in the conductor at the specific temperature 50-70 K and field 10-15 T.
- Sufficient mechanical strength (stress-strain characteristics) or option for reinforcement.
- Tolerable hotspot and quench behaviour of the HTS conductor (stabilisation).
- Optimized current distribution, i.e. feasibility of good joints and optimized interstrand resistance and inductance.
- Possibilities to limit the AC losses.
- Cooling requirements.

31 | Noe, Goldacker, Heller, Fietz, Schneider – HTS Applications – WAMSDO 2008


Mechanical properties of YBCO coated conductor

It is shown that YBCO coated conductor has the potential to fullfill the requirements for a fusion magnet cable

HELMHOLTZ

Road Map to the Fusion Reactor (Fast Track) Karlsruhe Institute of Technology

Outlook on HTS for Fusion Magnets

FZK has started a program HTS⁴Fusion to develop HTS conductors for fusion magnets

Conductor development (\rightarrow 2014)

- HTS material development
- Development of cabling/bundling techniques for both wires and tapes
- Develop HTS cable concept for 20 kA class 12 T, >50 K
- Characterisation of HTS strands and sub-size cables in upgraded FBI (warm bore)
- Conductor development

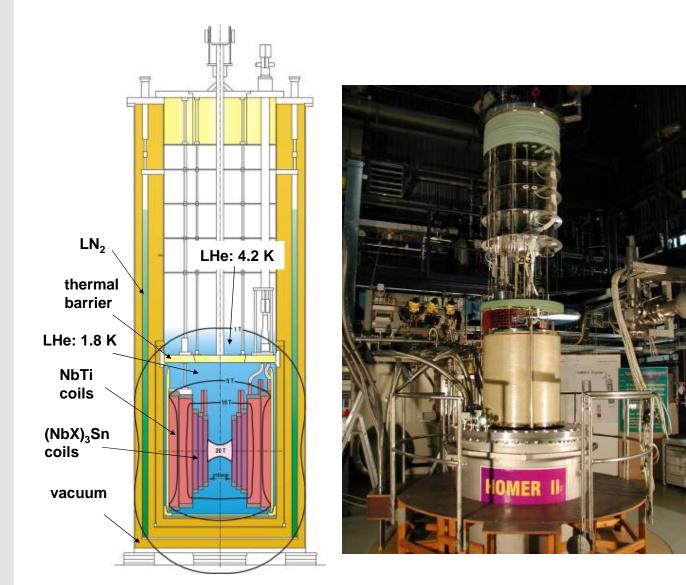
Structural material in the cryogenic lab (continuous)

- Prepare material database for structural materials beyond ITER
- Tests of advanced structural materials

Demo-Solenoid (2015 \rightarrow)

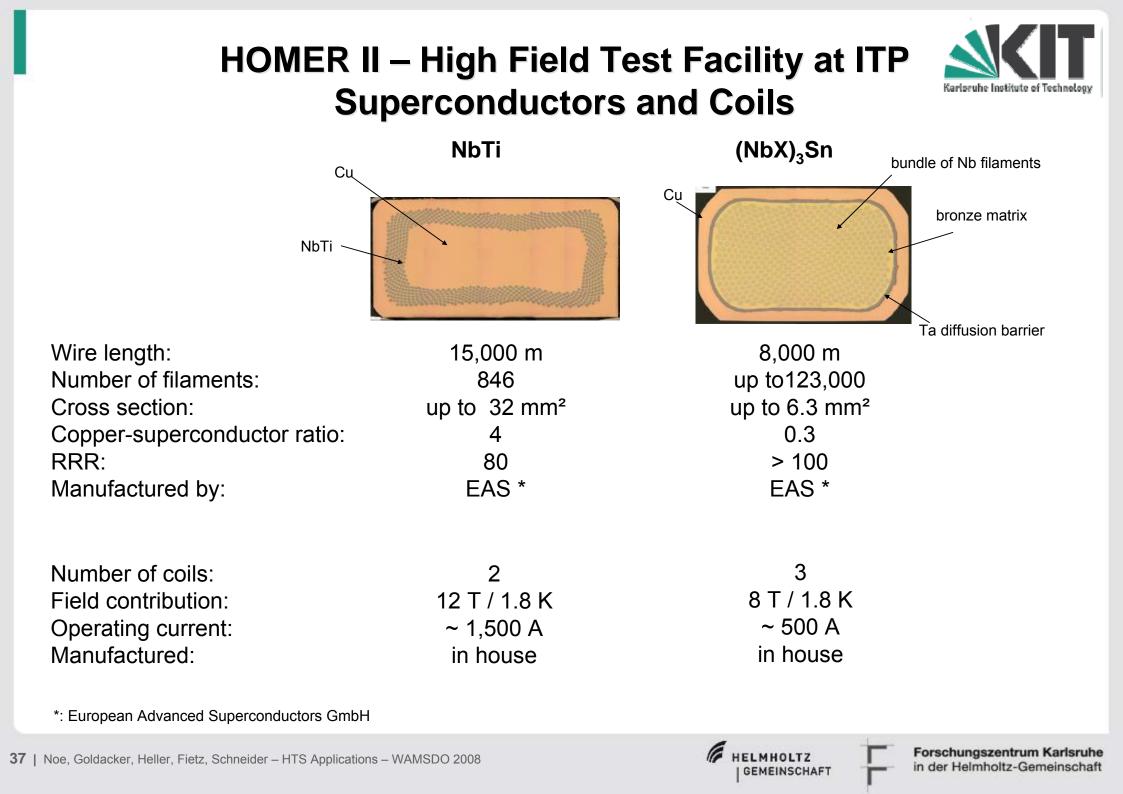
- Demo-Solenoid Design & Construction
- Demo-Solenoid test in TOSKA

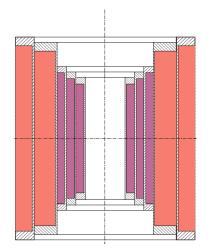
HTS TF-Demonstration Coil (2020 \rightarrow)

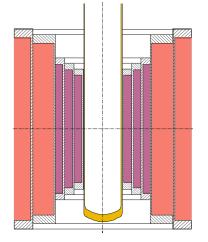


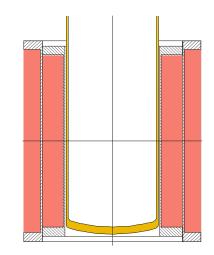
<u>Mathias Noe</u>, Wilfried Goldacker, Reinhard Heller, Walter Fietz, Theo Schneider, Forschungszentrum Karlsruhe, Institute for Technical Physics

- Introduction to HTS Applications
- HTS Wires and Tapes
- HTS for Power System Applications
- HTS for Current Leads
- HTS for Fusion Magnets
- HTS for High Field Magnets
- Outlook


HOMER II – High Field Test Facility at ITP


In 2006 20 T / ø185 mm / T = 1.8 K


Data at 20 T Flux: 0.54 Wb Magnetic pressure: 160 MPa Flux density: 20 Vs / m² Stored energy: 24 MJ

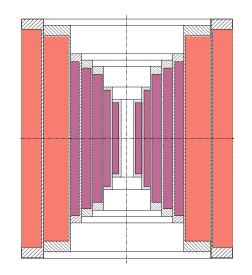


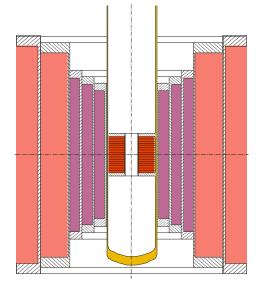
HOMER II – Magnet Configurations

B₀ = 20 T; ∅ = 185 mm; T = 1.8 K

Test of superconductors under increasing, simultaneous Lorentz force $B_0 = 20 \text{ T}; \emptyset = 160 \text{ mm};$ Temperature variable up to RT

HTS-characterisation


 $B_0 = 12 \text{ T}; \emptyset = 410 \text{ mm};$


Temperature variable up to RT

Testing of fusion conductors

HOMER II – Future Magnet Configurations

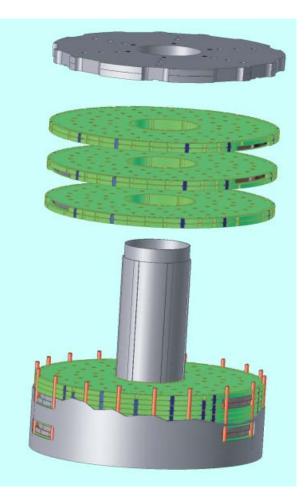
 $B_0 = 24 \text{ T}; \emptyset = 50 \text{ mm}; \text{ T} = 1.8 \text{ K}$ with (NbX)₃Sn coils

already in progress \checkmark

 $B_0 = 25 \text{ T}; \emptyset = 50 \text{ mm}; \text{T} \ge 4.2 \text{ K}$ with HTS insert coils

♦ Stability of HTS ?

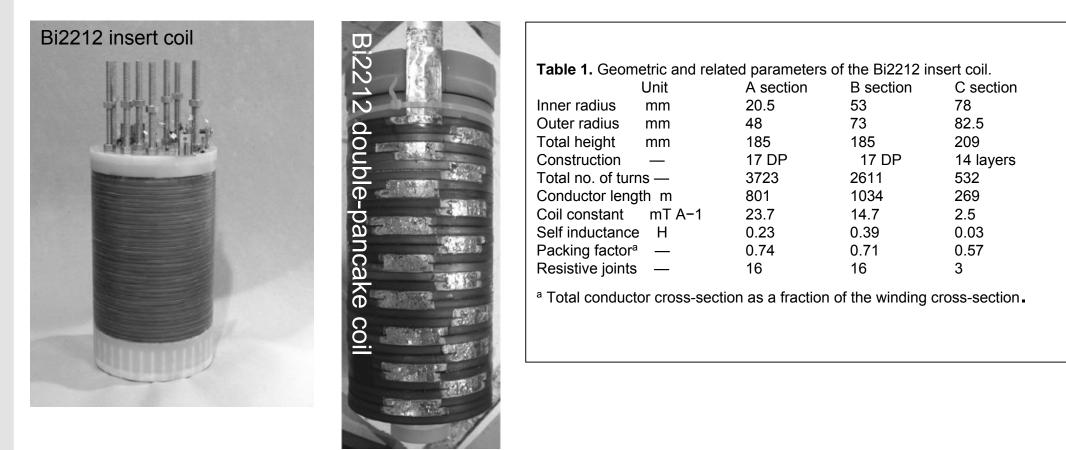
HTS High Field Insert Coils



Forschungszentrum Karlsruhe Bi2223 double pancake coil 2004

Design of 5 T Bi-2223 Insert Coil → Stacked double pancake layout

Design:	stacking of 16 double pancakes
HTS material:	reinforced AMSC Bi-2223 tapes
Technique:	react & wind
Joints:	made of copper
Height incl. flanges:	177 mm
Free bore:	50 mm
OD incl. jacket tube:	185 mm
Number of turns:	5402
Coil constant:	35.41 mT/A


We reached 5 T in a background field of 10 T but after warming up, ballooning of the tape was observed presumably due to the penetration of superfluid helium.

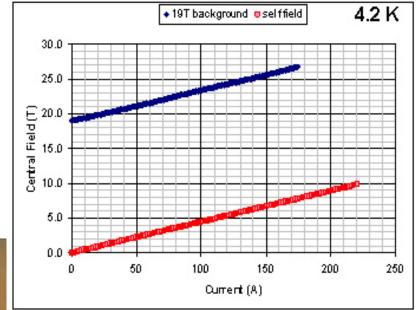
HTS High Field Insert Coils

Bi2212 insert coil NHFML-Tallahassee-2004

The generation of 25.05 T using a 5.11 T Bi2Sr2CaCu2Ox superconducting insert magnet H.W.Weijers et al.; Supercond. Sci. Technol. 17 (2004) 636–644

HELMHOLTZ


HTS High Field Insert Coils


SuperPower YBCO double pancake coil 2007

Average Ic of Tapes in Coil	~ 78 A (77K, sf)
4.2 K Coil Ic - Self field	221 A
4.2 K Amp Turns @ Ic- self field	612,612
4.2 K Central Field – self field	9.81 T
4.2 K Coil Ic – 19 T Background (axial)	175 A
4.2 K Amp Turns @ Ic – 19 T Background (axial)	485,100
4.2K Central Field – 19 T Background (axial)	26.8 T

Coil ID	9.5 mm (clear bore)
Winding ID	19.1 mm
Winding OD	~ 87 mm
Coil Height	~ 51.6 mm
# Pancakes	12 (6 x double)
2G Wire Used	~ 462 m
#Turns	~ 2772
Coil Je	~1.569 A/mm² per A
Coil Constant	~ 44.46 mT/A

Measurement at NHFML

http://www.superpower-inc.com

HELMHOLTZ

HTS Applications

<u>Mathias Noe</u>, Wilfried Goldacker, Reinhard Heller, Walter Fietz, Theo Schneider, Forschungszentrum Karlsruhe, Institute for Technical Physics

- Introduction to HTS Applications
- HTS Wires and Tapes
- HTS for Power System Applications
- HTS for Current Leads
- HTS for Fusion Magnets
- HTS for High Field Magnets
- Outlook

Outlook HTS Magnet Applications

	LTS now	HTS now	HTS future
MRI Magnets	V	-	?
NMR Magnets	V	-	✓ HTS insert
Accelerator Magnets		-	☑ High fields
Fusion Magnets		-	Long term
SMES Magnets	V	-	
Induction Heater Magnets	-		
Current Leads	-		

Many thanks for your attention!

45 | Noe, Goldacker, Heller, Fietz, Schneider – HTS Applications – WAMSDO 2008

HELMHOLTZ

6