

High Field program in Europe

Gijs de Rijk CERN

Outline

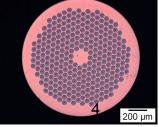
- Ongoing HFM programs
 - Collaborative programs: FP6-CARE-NED
 - Core programs
- Starting HFM programs
 - CERN High Field Magnet program
 - FP7-EuCARD WP8 HFMs

FP6-CARE-NED

The NED program was focused on Nb₃Sn conductor and insulation development. (after the initial "Next European Dipole" construction project funding was turned down)

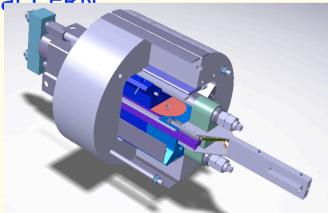
- NED has four Work Packages and one Working Group
 - 1 Management & Communication (M&C),
 - 2 Thermal Studies and Quench Protection (TSQP),
 - 3 Conductor Development (CD),
 - 4 Insulation Development and Implementation (IDI),
 - 5 Magnet Design and Optimization (MDO) Working Group.
- It involves 7 institutes (8 laboratories)

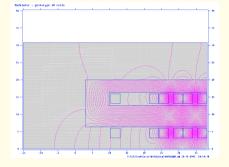
- •Total budget: ~2 M€; EU grant: 979 k€ (2005-2008).
- •1, 2, 4 and 5 completed (see: http://care.lal.in2p3.fr/Deliverables/CARE_Deliverables.htm)

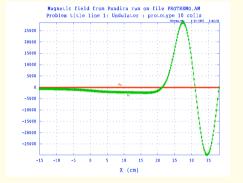


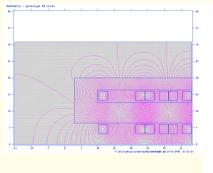
NED-CD: Conductor development

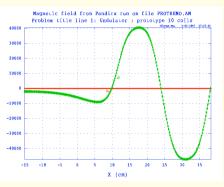
- 2 conductor development contracts for a 1.25 mm strand with filaments size down to 0.05 mm and a Jc up to 3000A/mm2 @ 12 T:
- EAS/SMI Powder in tube technology
- Results of development phase: Jc up to 2600A/mm2 with 0.05 mm ٠ filaments and RRR~200
- Final strand manufacturing (12.7 km of strand) is currently underway, with ٠ 1 km delivered last month (the remaining is expected during summer 2008)
- Part of the final strand (~ 1 length) will be used to produce at CERN a 14-• strand cable for Short Model Coil (SMC) program.
- Internal tin diffusion technology Alstom MSA
- Development phase finishing end 2008, good prospect to attain a Jc of • 2500A/mm2 (filament size 0.05 mm)
- Final strand production (20 km) in beginning of 2009 ٠ courtesy Thierry Boutboul and Luc Oberli


22 May 2008

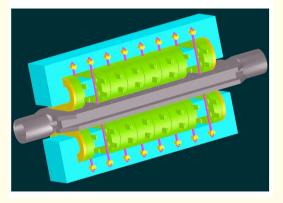



- Participant funding only (formally outside FP6-CARE-NED)
- STFC/RAL, CEA and CERN have agreed to manufacture and test a series of LBNL-type Short Model Coils wound from NED-sub-cables so as to investigate
 - cable and insulation performances in real coil environment
 - design limits for transverse and longitudinal loads
 - and to get experience with Nb₃Sn coil manufacturing
- Coil design and cold mass design being finalized, winding tests with dummy in progress by RAL-CERN team (interactions with LBNL).
- Nb₃Sn strand from NED will be available in July
 First magnet foreseen to be tested in Sept-Oct at CEPN
- SMC coil sets to be made and tested:
 - One with glass fibre-epoxy insulation by RAL
 - One with ceramic insulation by CEA
 - One with glass fibre-epoxy insulation by CERN



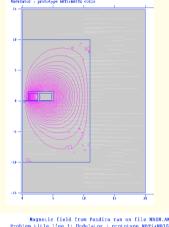


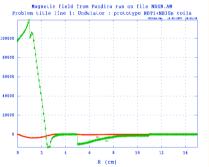
On going : undulators for lead ions in LHC



EARE

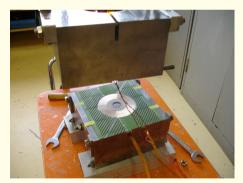
	PRC	TONS	LEAD IONS		
Period length	:	280 mm	140		
mm					
Number of perio	ods:	2	2		
Minimum Peak	Field				
on the Beam ax	is :	5T	3 T		
Gap Size:		60 mm	60 mm		


Courtesy Remo Maccaferri



On going : mini dipole split coils

Ceramic wet winding



Reached 12 Tesla in the gap,10.5 Tesla on the coils I_{max} 1250 A (short sample) at 4.2 K with **no** training quenches

Courtesy Remo Maccaferri

CEA Nb₃Sn quadrupole

Model 1 m quadrupole with Nb₃Sn coils with the identical cross section as the LHC main arc quadrupole

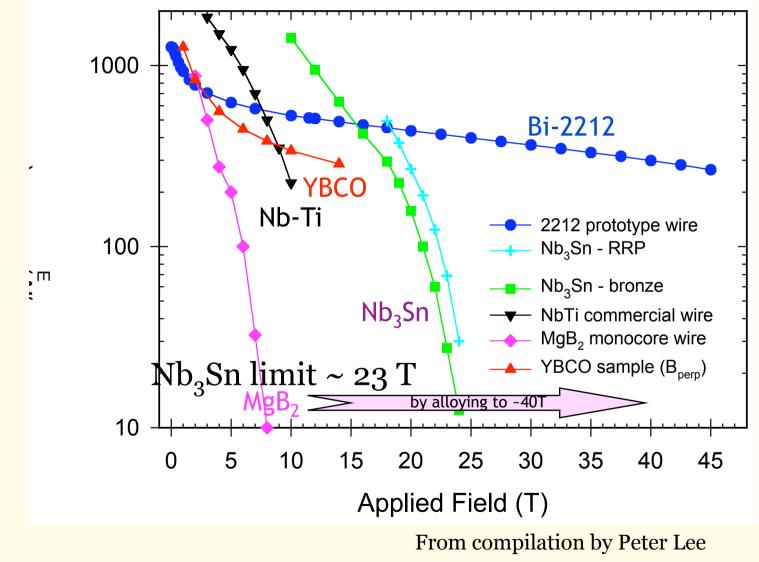
- aim learn Nb₃Sn coil technology
- Design gradient 211 T/m in a 56 mm diameter bore
- Test this summer

See presentation by J-M. Rifflet

- Need for HFM program
 - LHC luminosity upgrade: high field low beta quadrupole magnets
 - Increase luminosity by a factor 1.4 due to the high fields alone
 - Larger apertures possible (high B_{max}) ==> needed for high beam currents
 - Special magnets in LHC at high radiation zones (cleaning insertions, dispersion suppressors, etc.). Presently posing limits
 - (far) Future new machines: neutrino factories, LHC doubler
- The conductor: Nb_3Sn (and some HTS)
 - Critical parameters Nb₃Sn vs Nb-Ti
 - field: 27 T vs 13 T temp: 18 K vs 9 K
 - But : not easy due to brittleness and stress sensitivity
- Vigorous R&D program needed if we want this technology to be applied for the LHC phase II upgrade in 2017
- CERN High Field Magnet program starting in 2008 with several funding sources: "white paper" program, FP7-IA-EuCARD, CERN core program

Nb₃Sn magnets

• To date:


- Accelerator quality Nb₃Sn magnet start to exist but are not yet 'installable'
- All dipole or quadrupoles are either short or have an insufficient field quality or a too small aperture
- One 4 m racetrack magnet exists now since this summer (LARP)
- The LARP program (FNAL, LBNL, BNL) is working on Nb₃Sn quadrupoles since a few years (+ FNAL, LBNL, BNL core programs) and getting to working magnets. They need support and competition/ collaboration (hardware).
- Nb-Ti technology is limited to a maximum field of 9 T at operational currents and with limited temperature margin
- Nb₃Sn solenoids exist commercially up to ~20 T
- If we need higher fields (Max B > 9T) in accelerators then we have to get Nb₃Sn technology under control also for dipole and quadrupole coil geometries

High field superconductors

everything starts with $J_e(B)$

Summary: requirements

	Field	Aperture (mm)	Rad. load	e.m. Forces	Peak field	Radiation Hardness	Heat removal	Temp. margin
Low-beta insertion quadrupoles	>140 T/m	>130	high	large	>9 T	increased	very good	large
Early separation dipole in front of TAS	8 T	70	high	large	>9 T	increased	very good	large
Dipole corrector in front of Q1	4 T -6 T	>130	high	as Ihc	9 T	increased	very good	large
Dogleg dipole	5 T	>56	high	as Ihc	9 T	increased	very good	large
Dispersion suppressor dipole	12 T	>56	high	large	>12 T	increased	very good	large
Multipole correctors	Moderate	>130	High	as Ihc	9 T	increased	very good	large
Beta beam decay ring*	4-8 T	large	high	?	9 T	increased	very good	large
Muon decay ring	4-8 T	large	high	?	9 T	increased	very good	large

Common points:

All magnets need radiation hardness, good heat removal and a large temperature margin

and

The Low-beta quad, dispersion suppressor dipole and early separation dipole need the Nb_3Sn high Jc @ 12 T

CERN High field magnet program: 4 "chapters" of R&D

Conductor

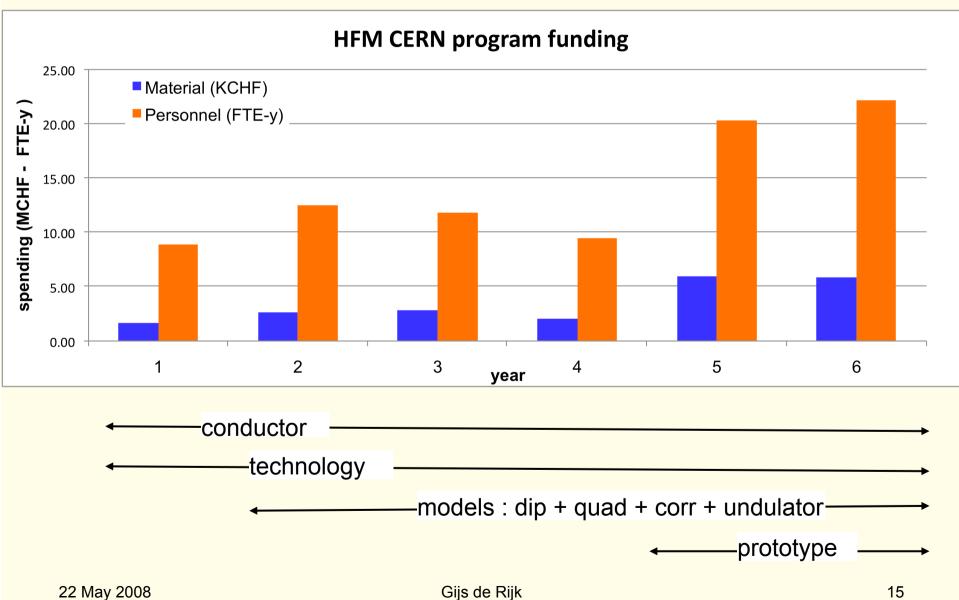
6 yr continuous development program (aim: Jc=3000 A/mm², filaments <0.05 mm, low and understood stress sensitivity)

Enabling technologies

- design choices(cos(theta) vs block coil, collars vs shell)
- Insulation, thermal effects, radiation hardness, mechanical tests
- Subscale models (racetrack coil tests)
- High temp superconductor: prospect insert coils to go up to 20 T
- Models
 - Dipole model (1.5 m long, 100 mm aperture, 13 T) ==> FP7-IA-EuCARD 2010-2011
 - Quadrupole model (1 m, 130 mm aperture, >150 T/m) 2012
 - Corrector models 2012
- Prototype magnet
 - 4 m long prototype 2012-2013

Very important: In collaboration with other institutes: (e.g. BNL, CEA, CIEMAT, CNRS, FNAL, FZK, INFN, KEK, LBNL, RAL, TUT, UNIGE, UT, PWR, etc)

HFM "building program"


Dipole model

- 1.5 m long, 13T bore field, 100 mm aperture model magnet for Fresca
- Undulator/wiggler
 - 140 mm period, 60 mm gap for LHC with lead ions
 - 40 mm period, 10 mm gap, for CLIC damping ring
- Quadrupole model
 - Start coils not before mid-2012 to fully benefit from LARP experience, 1.5 m long, 130 mm aperture or larger, G ~180T/m
- Corrector models
 - quadrupole / sextupole / octupole, wound from single wire conductor around a 130 mm aperture (start 2012)
- 20 T HTS insert
 - HTS insert in the 1.5 m model to provide ~6 T additional field,
 Bi-2212 round wire (Rutherford cable) or YBCO 2nd generation tape
- 4 m Prototype
 - 13 T, 100 mm aperture dipole or 180 T/m, 130 mm aperture quad,
 Type and parameters to be defined depending on LHC relevance

CERN Funding

planning 2008 2009 2010 2012 2013						
WP WP						
WP1 Project management						
WP2 Contingency						
Conductor						
WPA1 Strand development WPA2 Cable development						
WPA3 Cable production						
Enabling Technologies						
WPB1 Coil concept study for dipole WPB2 Coil concept study for quadrupole						
WPB3 Coil concept study for open mid plane dipole						
WPB5 Ceramic insulation development						
WPB6 Glass fibre insulation development WPB7 Impregnation development						
WPB8 Thermal design of coil WPB9 Racetrack test coil design and construction						
WPB10 Racetrack test coil cold tests						
WPB11 Thermal tests WPB12 Mechanical tests on coil samples and models						
WPB13 Radiation qualification of coil WPB14 Quench protection and trigger R&D						
WPB15 Special instrumentation for constr and test of 5 WPB16 Short period Wiggler	S					
WPB17 Very High field HTC dipole insert						
WPB18 Very High field solenoids for accelerators						
Model Magnet						
WPC1 Electro-magnetic design of the dipole model WPC2 Design of the dipole model magnet						
WPC3 Electro-magnetic design of quadrupole model WPC4 Design of the quadrupole model magnet						
WPC5 Prepare short model test station						
WPC6 1.5 m tooling design and construction WPC7 Components design for Nb3Sn magnets						
WPC8 Construct coils for quadrupole model WPC9 Construct quadrupole model cold mass						
WPC10 Test guadrupole model magnet						
WPC11 Construct coils for dipole model WPC12 Construct dipole model cold mass						
WPC13 Test dipole model magnet WPC14 design feedback from cold tests						
WPC15 Design of the corrector model						
WPC16 Corrector magnet model construction						
Prototype Magnet WPD1 Long reaction furnace						
WPD2 Installation of long magnet tooling						
WPD3 Design of 4 m coils WPD4 Design of 4 m cold mass						
WPD5 Construction of 4 m long coils WPD6 Construction of 4 m cold mass						
WPD7 Cryostating of 4 m prototype						
WPD8 Prepare test station and instrumentation for cc WPD9 Sold test 4 m prototype						
WPD9 Gold test 4 monotope WPD10 Design Reddback prototype cold tests	Gijs de Rijk					

FP7-EuCard-WP8

- WP8 HFM: Superconducting High Field Magnets for higher luminosities and energies
 - Task1: Coordination and Communication.
 - Task 2: Support studies
 - Task 3 High field model
 - Task 4 Very high field dipole insert
 - Task 5 High Tc superconducting link
 - Task 6 Superconducting wiggler for ANKA
 - Task 7 Short period helical superconducting undulator
- WP8 is a CERN, CEA, CNRS, COLUMBUS, DESY, EHTS, FZK, INFN, PWR, SOTON, STFC, TUT, UNIGE collaboration
- Status: proposal submitted
- Project time span: 2009-2012
- "cog-wheels" with the programs in the participating labs (at CERN it is part of the HFM program)

FP7-EuCard-WP8

• EuCARD evaluation result received this Tuesday: 14.5 points out of 15

2 citations from the evaluation report:

ана ингтенногое ана ехрана ехізніну сонавоганоно.

The RTD activities will lead to clear progress beyond the state-of-the-art. These include, for example, prototyping next generation accelerator magnets of ~20T field, of a hybrid Nb3Sn + High-Tc superconductor design, which the Panel considered to be the strongest component of the JRA.

The Panel recommends that R&D on high-field magnets (WP8) are given highest priority. There is

In the coming weeks the partners will be contacted for the "negotiation phase" of the EuCARD proposal

Outlook

- After the LHC completion we enter again in a new round of HFM R&D
- The difference with the last round in the 1990-ies : x1.5 in field for SLHC and x2.5 for DLHC
- The last round took 22 years between first ideas and machine commissioning (1986-2008)
- We have to hurry up if we want 12 T grade magnets in 2017-2018 for SLHC
- The 20 T frontier has to be attacked now in order to have something ready for a DLHC in 20 years