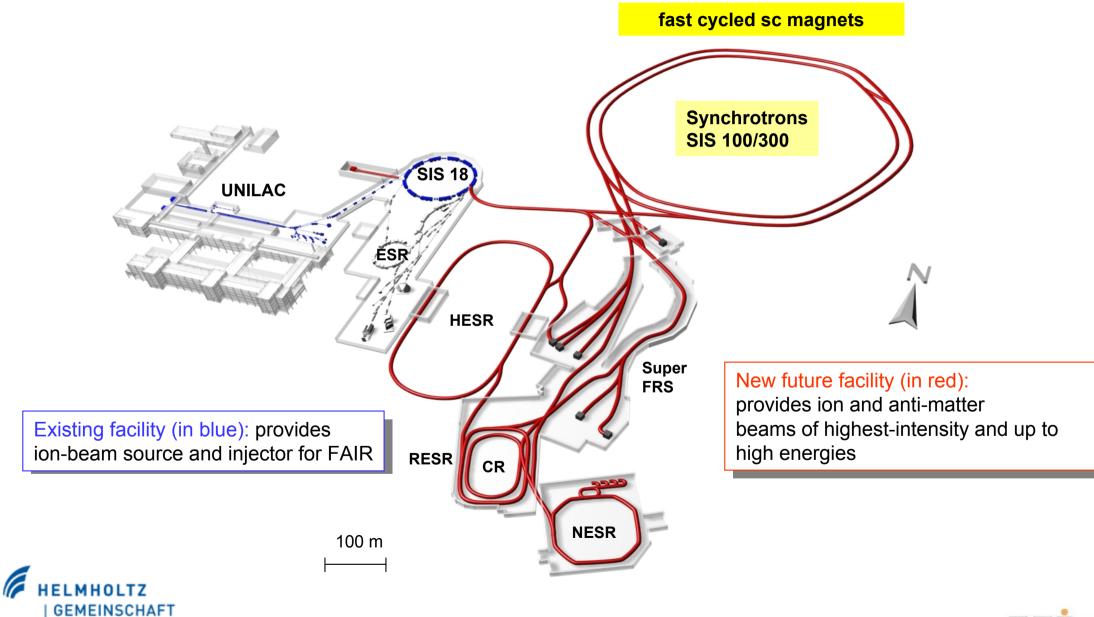


Full size model manufacturing and advanced design status of the SIS100 main magnets

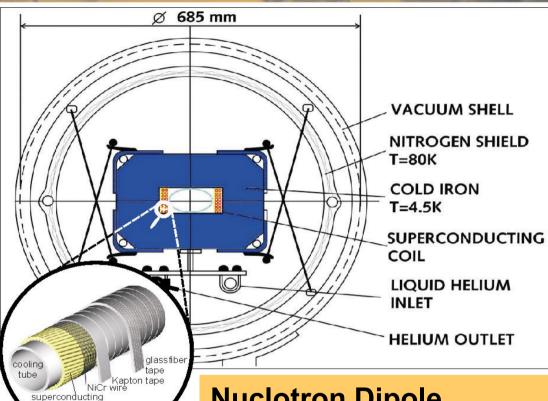
Egbert Fischer GSI CARE-HHH-AMT Workshop WAMSDO 19.-23. May 2008 CERN, Geneva


651

SIS100 main magnets: Contents

- Introduction: FAIR
- Basic magnet parameters of the SIS100
- Main R&D Results on Nuclotron based SC Magnets
- Full size models: Design and Manufacturing
 - Straight dipoles (BNG Wuerzburg, JINR Dubna)
 - Curved dipole (BINP Novosibirsk)
 - Quadrupole (JINR Dubna)
- Additional Requirements and Critical Operation Parameters
- Conclusions toward the final design of the SIS100 Main Magnets
 - Design of the <u>Curved SIS100</u> Dipole based on a <u>Single Layer Coil</u>
 - Main Operation Parameters of the <u>CSL</u>-Dipole
- Summary

FAIR: Facility for Antiproton and Ion Research



Basic magnet parameters of the SIS100

SIS100 Magnets	Number of magnets	nc/sc	Magnet design /type	Max. field (T), Gradient (T/m), etc.	Effective field length (m)	Bending angle(mrad) /radius (m)	*Useable horizontal / vertical aperture (mm)	Max. ramp rate (T/s,)
Dipole	108 + 1	SC	sf wf curved	1.9	3.062	58.18 / 52.632	115 / 60	4
Quadrupole	168 + 3	SC	superferric	27	1.3		135 / 65	57
Quadrupole Inj./Extr.	4	SC	superferric	27	1.3		135 / 65	
Correction Magnets								
Error Comp. Quadrupoles**	12	SC	cos-theta	0.75 T/m	0.75		150	5 T/m*s
Chromat. Sextupoles	48	SC	superferric	350 T/m2	0.5		135 / 65	2000 T/m2*s
Error Comp. Sextupoles**	12	SC	cos-theta	50 T/m2	0.75		150	210 T/m2*s
Resonance Sextupoles	12	nc	6-fold	150 T/m2	0.74		150	2000 T/m2 *s
Error Comp. Octupoles**	12	SC	cos-theta	2000 T/m3	0.75		150	8500 T/m3*s
Fast quadrupole	1	nc	4-fold	12.5 T/m	0.54		125	125 T/m*s
Steering magnets								
Comb. h/v	84	SC	cos-theta	0.3	0.5	1.5	135 / 65	1.5
Extraction system steerer	1	SC	cos-theta	0.3	0.5	1.5	135 / 65	
Magnetic Septa								
Injection septum	1	nc	wf	0,82	1,5	h: 69	70 / 40	
Lambertson septum	1	nc	wf	0,6		v: 5.6/166.67	30 / 40	
Extraction septum 1	1	nc	wf	0,35	1,5	v: 5.1	60 / 30	
Extraction septum 2	1	nc	wf	1	1	v. 10	70 / 35	
				v. 1.85		V: 40.5		
Extraction septum 3***	1	nc	wf	h: 0.25	2,2	h: 5	80 / 45	
Transfer septum 1	1	nc	wf	0,8	0,5	v. 4	40 / 40	
Transfer septum 2	1	nc	wf	1,57	3	v. 47.2	40 / 40	
* (horizontal x vertical) or diam	eter if circul	ar						
** form one magnet unit								
*** separate coils: vertical and	horizontal							

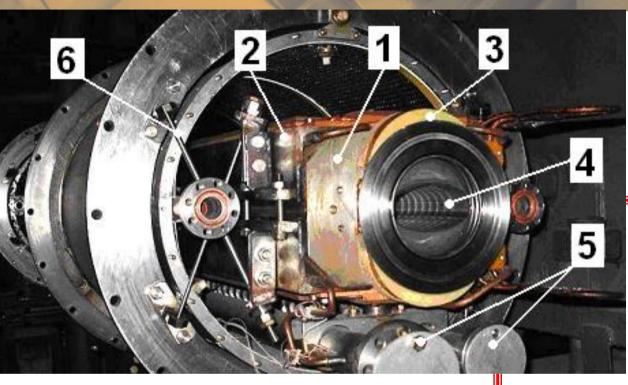
GSİ

Main R&D Results on Nuclotron based SC Magnets

R&D goals

Reduction of eddy / persistent current effects at 4K (3D field quality, losses)

> Improvement of DC/AC - field quality


- 2D / 3D calculations
- magnetic measurements

Guarantee of long term mechanical stability $(\geq 2.10^8 \text{ cycles})$ Main concern: fatigue of the conductor and precise positioning

Nuclotron Dipole

- Iron Dominated (window frame type) superferric design
- cold iron
- Maximum magnetic field: 2 T, Ramp rate: 4 T/s
- Hollow superconducting cable, indirectly cooled
- Two-phase helium cooling

Main R&D Results: short test models & FEM

Test measurements on magnet modifications

FEM calculations on detailed 3D-models

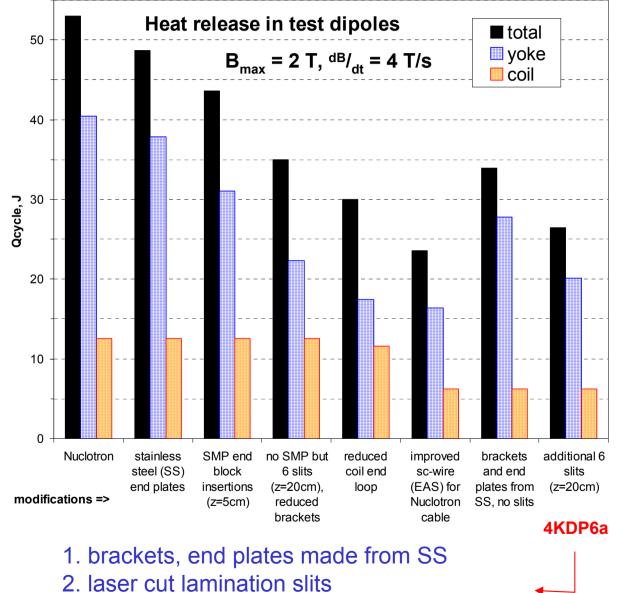
2

Nuclotron dipole inside cryostat:

- 1 yoke end plate
- 2 brackets
- 3 coil end loop
- 4 beam pipe
- 5 helium headers
- 6 suspension

6

ELMHOLTZ GEMEINSCHAFT


7 - laminated yoke

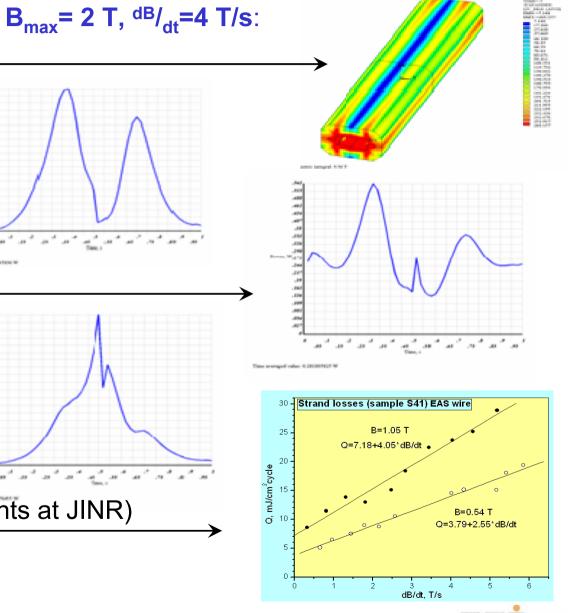
GSI.

3

Main R&D Results: status of loss reduction

3. minimized coil ends

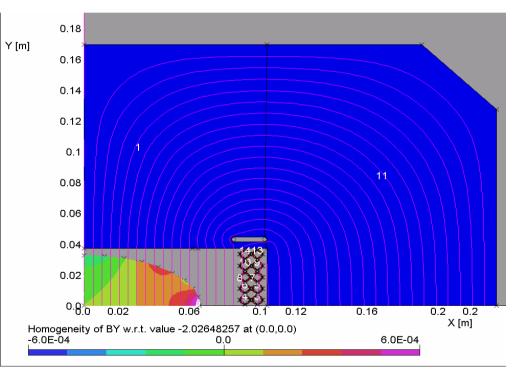
Original Nuclotron	P _{eddy} , W	P _{hyst} W	Sum, W	Calorimetric measurements, W
Yoke (SI)	9.51	9.04	18.6	@ JINR Dubna
Endplate (ST3)	8.37	2.21	10.6	
Brackets (ST3)	10.5	5.42	15.9	
Total	28.4	16.7	45.1	42 ± 2

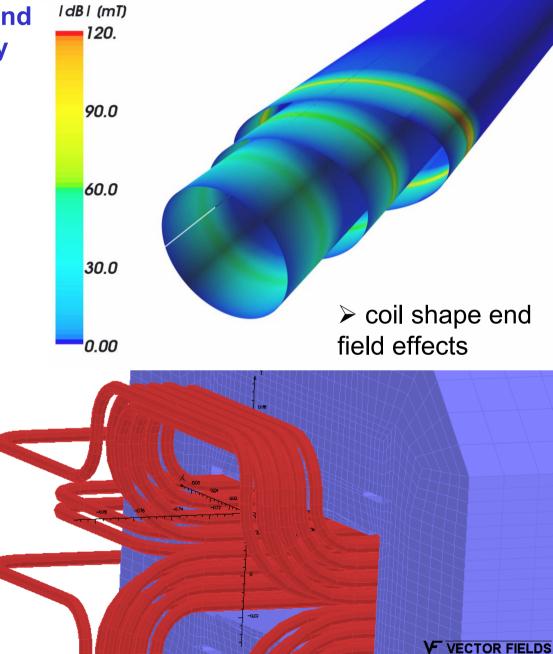

Calculated 45.1 W - measured 42 +/- 2 W

Good agreement with experimental results!

Main R&D Results: loss calculation and measurement

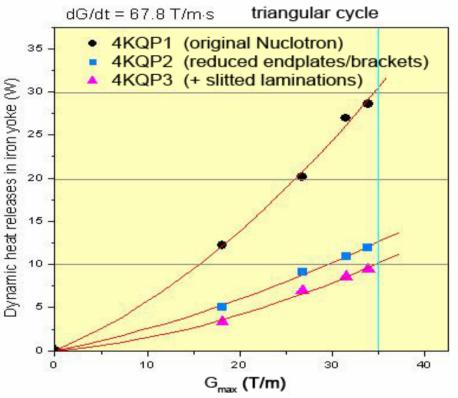
4KDP6a results for the triangular cycle with B_{max}= 2 T, ^{dB}/_{dt}=4 T/s:


- Hysteresis loss in the laminated yoke = 9.56 J/cycle
- Eddy current loss in the yoke ends
 = 4.81 J/cycle
- Eddy current loss in the ss end plates = 0.28 J/cycle
- Eddy current loss in the ss brackets
 = 1.53 J/cycle
- AC loss in the superconducting coil
 = 6.4 J/cycle (from short sample measurements at JINR)
- see also next session at WAMSDO:
 "Cold testing of rapidly cycling model magnets..."


Main R&D Results: field quality analysis

2D and 3D FEM studies (using OPERA and ANSYS) for optimization of the field quality

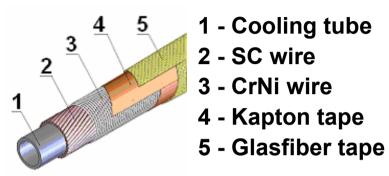
Theoretical R&D for effective magnetic field representation: Elliptical Multipoles



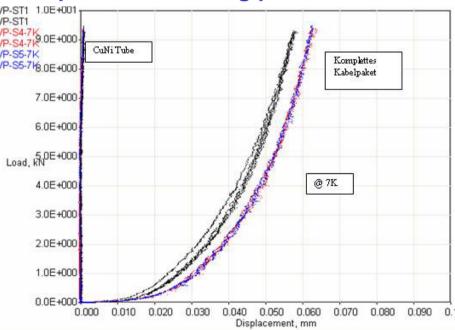
see also next session at WAMSDO: "Optimized magnetic field design for superferric rapidly-cycling ..."

Main R&D Results: for Quadrupoles analogous to DP

▲ Test measurements on quadrupol modifications


 FEM calculations on detailed 3D-models

Nuclotron Quadrupole :


Nominal gradient: 34 T/m
Ramp rate: 68 T/m·s

Main R&D Results: Coil mechanics

Nuclotron cable:

stress strain load tests on the complete coil winding pack:

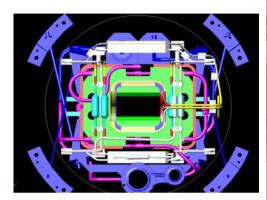
Analysis of:

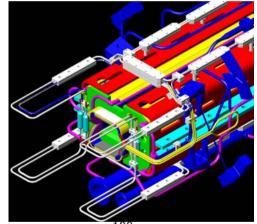
- wire and cable design
- Insulation concept
- Winding scheme
- Technological optimization
- ANSYS Models
- Substrate: comb or block
- Model coils production (BNN)
 - Mechanical tests

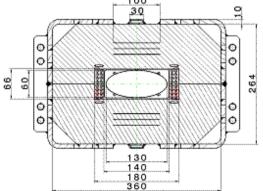
Main R&D Results on Nuclotron based SC Magnets

- The sources of the loss generation are understood, numerical calculations match the respective measurements
- Stainless steel end plates and brackets
- Minimized coil end loops
- Laminated and horizontally cut endblocks
- > New wire with higher current density and lower losses
- > More rigid coil structure
- Decision: design and build full size models (contracts Dec. 2006)
 - Two straight dipoles: BNG Wuerzburg (Industry), JINR Dubna (Institute) → different manufacturing technologies and materials
 - Quadrupole: JINR Dubna
 - Curved dipole: BINP Novosibirsk
 - \rightarrow "no sagitta": significant benefits for lattice design and operation

6 S J


SIS 100 full size models: design parameters

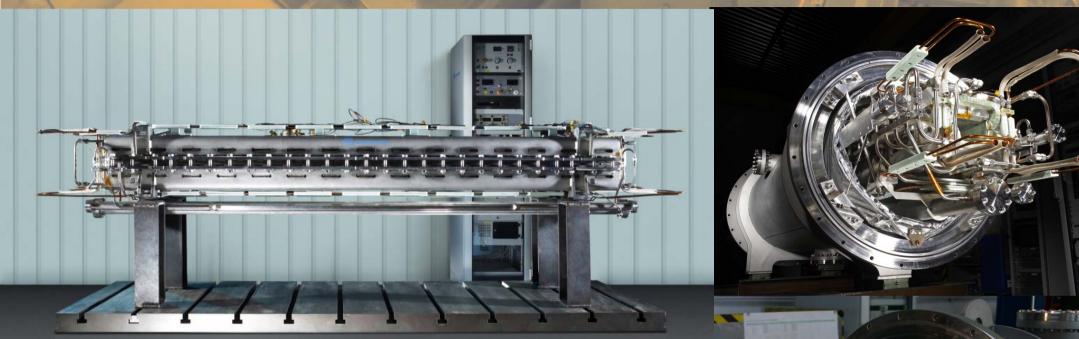

N


		Straight dipole FBTR (March 2006)	Curved dipole (Oct. 2006)
B x L _{effective}	[Tm]	5.818	5.818
В	[T]	2.11	1.9
L _{effective}	[m]	2.756	3.062
Estimated L _{yoke}	[m]	2.696	3.002
Bending angle	[deg]	3 1/3	3 1/3
Radius of curvature	[m]	47.368	52.632
Aperture (h x v)	[mm]	130 x 60	115 x 60
		Quadrupole FBTR (March 2006)	Quadrupole elongated (Oct. 2006)
B' x L _{effective}	[T]	35	35

B' x L _{effective}	[T]	35	35
B'	[T/m]	32	27
L _{effective}	[m]	1.1	1.3
Estimated L _{yoke}	[m]	1	1.2
Aperture (h x v)	[mm]	135 x 65	135 x 65

SIS 100 full size model: dipole from Babcock Noell GmbH

full size dipole manufacturing



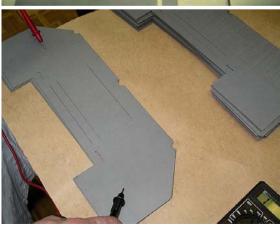
SIS 100 full size model: dipole from Babcock Noell GmbH

1st Full Size Dipole is ready for testing!

see also Industry session at WAMSDO: BNG Company presentation and "Manufacturing of the first SIS100 full size model"

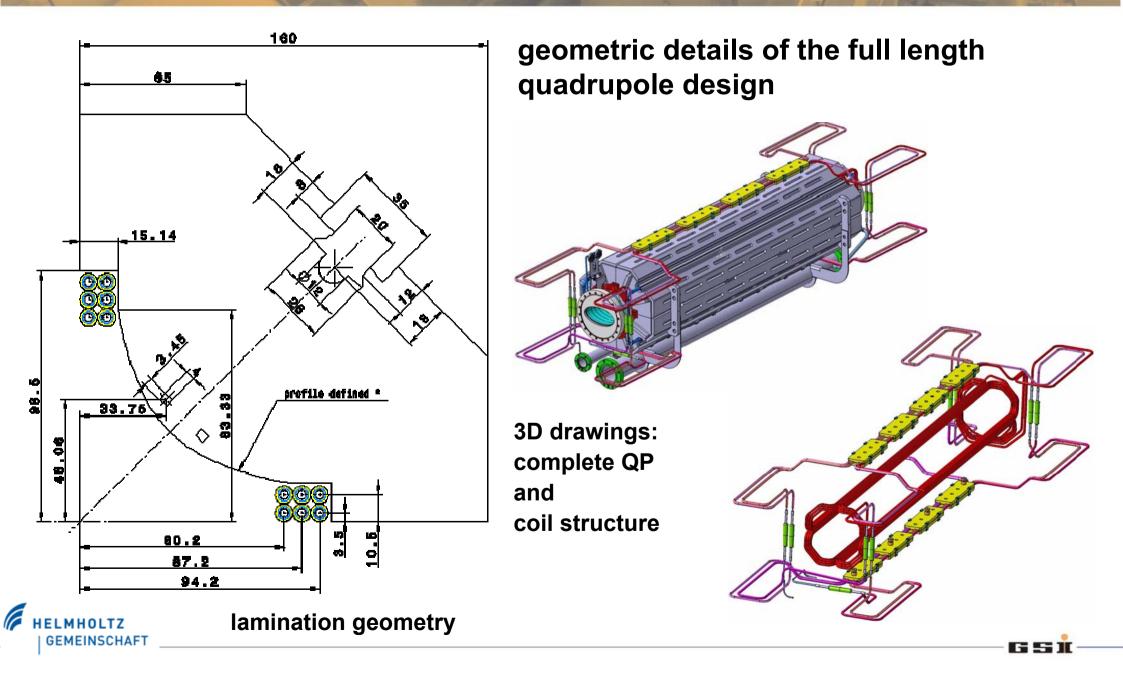
SIS 100 full size model: dipole from Babcock Noell GmbH

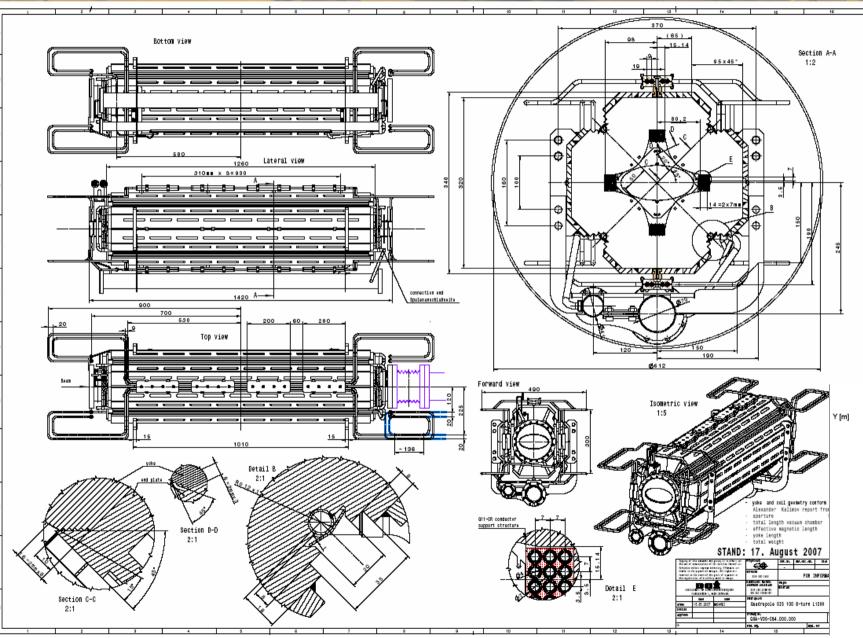
SIS 100 full size model: dipole manufacturing at JINR


COIL MANUFACTURING TIME WAS REDUCED. WINDING PROCESS IS MUCH EASY

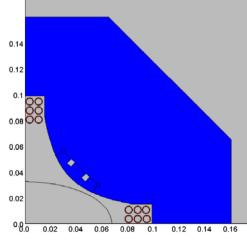
GSI

SIS 100 full size model: dipole manufacturing at JINR

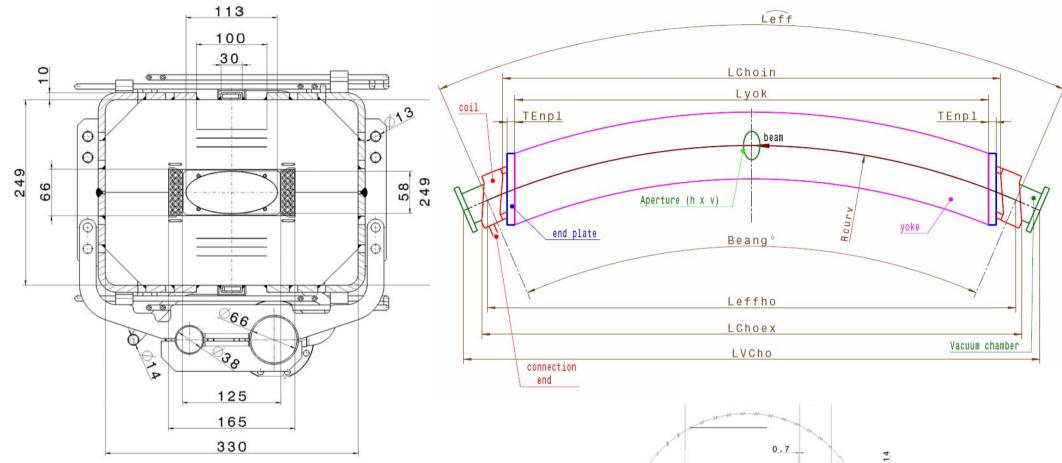



high quality and reproducible production of the lamination shape and the the iron yoke

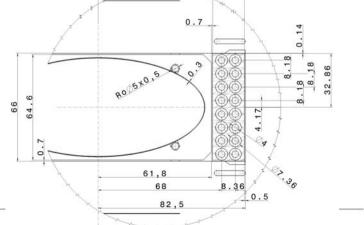
Full size model: quadrupole manufacturing at JINR


Full size model: quadrupole manufacturing at JINR

Completion of manufacturing and ready for tests of full length main magnets produced at JINR Dubna:

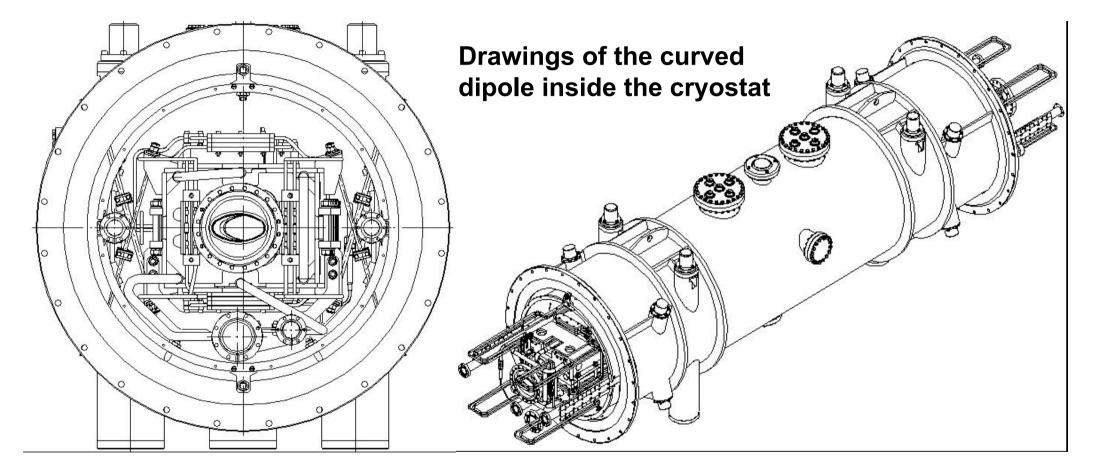

Dipole: July 2008:

Quadrupole: October 2008



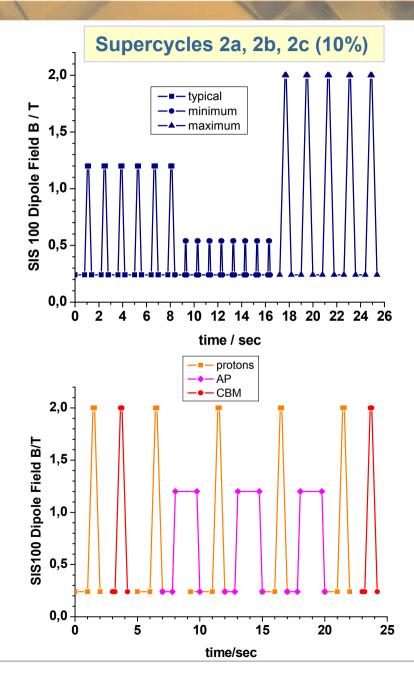
651

Full size model: curved dipole geometric parameters


Geometrical details and dimensions

651

HELMHOLTZ


Full size model: curved dipole assembly at BINP

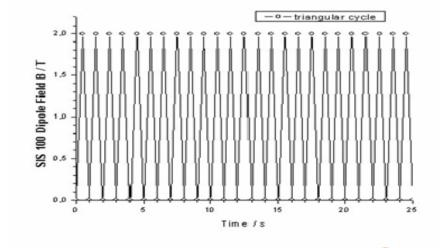
- ► Yoke and cryostat from BINP Novosibirsk
- SC coil will be produced at JINR Dubna
- completion scheduled for July 2008

NSCHAFT

Requirements and Operation Parameters: FAIR cycles

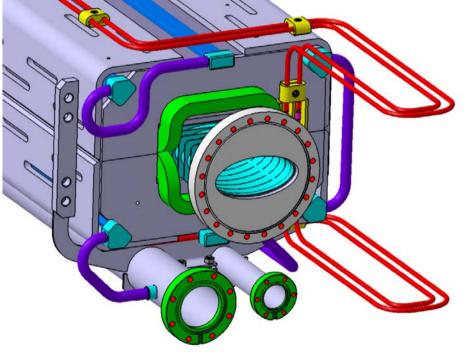
Requested SIS100 operation cycles and expected losses

cycle	B _{max} (T)	t _f (s)	cycle period (s)	Q _d (J/cycle)	P _d (W)	Q _q (J/cycle)	P _q (W)
1	1.2	0.1	1.4	35.2	25.2	13.1	9.4
2a	1.2	0.1	1.4	35.2	25.2	13.1	9.4
2b	0.5	0.1	1.0	8.8	8.8	3.3	3.3
2c	2.0	0.1	1.82	89	48.9	24.4	18.9
3 a	1.2	1.3	2.6	35.2	13.5	13.1	5.0
3b	0.5	1.0	1.9	8.8	4.6	3.3	1.8
3 c	2.0	1.7	3.4	89	26.2	34.4	10.1
4	2.0	0.1	5.0	89	17.8	34.4	6.9
5	2.0	0.1	5.0	89	17.8	34.4	6.9

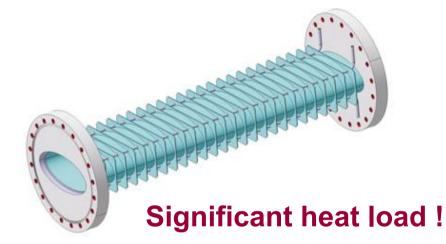

Supercycle 5 (30% annual beam time)

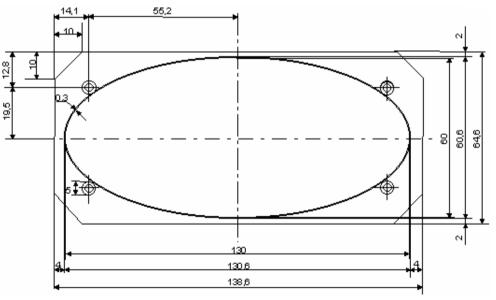
Additional requirements: triangular cycle with 1Hz

FAIR Supercycles for Parallel Operation


- Purpose: Standard scenario for layout of magnets, cryogenics, power supplies etc.
- Each cycle may run for several hours (... days)
- Different extraction energies may be used, but for the standard supercycles, for each experiment, a typical energy was chosen.
- For the calculation of a mean energy consumption of the accelerator complex, a percentage of the annual beam time is assigned to each cycle.
- During commissioning of experiments, many other operation modes may occur.
 - March 2007: Additional requirements from beam dynamics: continously triangular cycle must be provided,

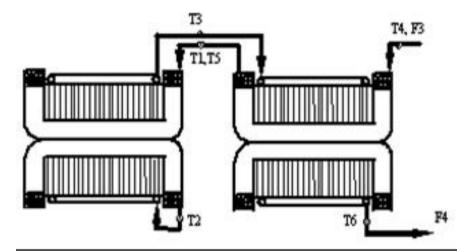
i.e.
$$B_{max} = 2T$$
, ${}^{dB}/_{dt} = 4$ T/s, f = 1 Hz!




Additional requirements: Beam pipe as cryopump

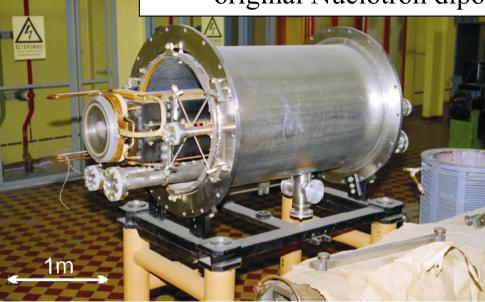
- elliptical cross section
- wall thickness: 0.3 mm (minimize AC-losses!)
- strengthening of chamber by ribs
- T_{max} < 15 K (to be cooled by forced flow or yoke)</p>

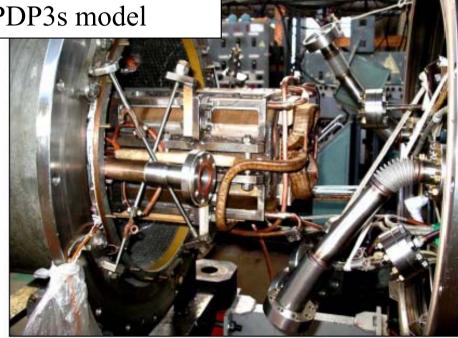
 see also next session at WAMSDO: "Optimized magnetic field design...",
 Cold testing of rapidly cycling..."



Schematic drawing of cross section of the dipole vacuum chamber

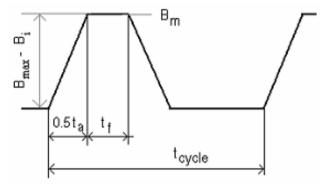
GSİ

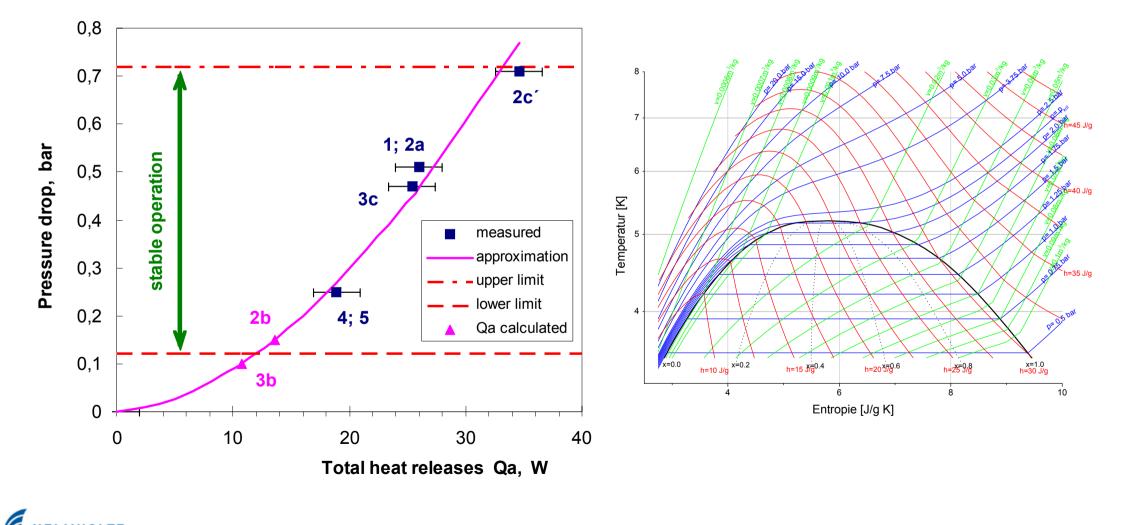

Critical Operation Parameters: Test on composite DP



Equivalent model for cooling tests

Fig. 1. Flow diagram of the new model magnet:
T1,T6 - temperature measurement points,
F4 - helium flow measurement point.

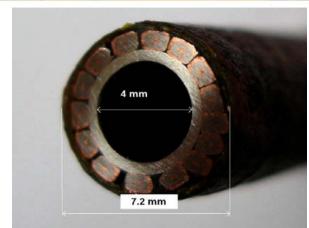

original Nuclotron dipole + PDP3s model

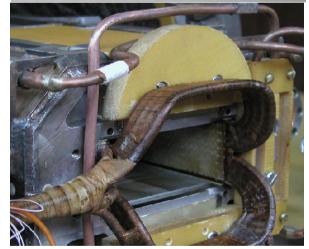

JINR Dubna: experimental results at 4KDP7 for FAIR cycles

cycle	B _m (T)	I (A)	t _f (s)	t _c (s)	t _a (s)	P _{loss_su} m	P _{loss_dyn} (W)	ΔP bar	Remarks
						(W)			
1*	1.2	3340	0.1	1.4	0.6	35.1 ^{*)}	25.5 ^{*)}	0.74	at $x_6 \approx 0.9$
1	0.96	2710	0.1	1.4	0.48	23.9	14.2	0.51	at $x_6 \approx 0.9$
2a	0.96	2710	0.1	1.4	0.48	23.9	14.2	0.51	0.51 bar (x ₆ ≈0.9)
2b	0.26	720	0.1	1.0	0.13	P _{loss_dyn} below measurable level		0.15	at x ₆ ≈0.9 Stable operation yet
2c*	1.76	5000	0.7	2.2	1.0	30.0	20.3	0.72	Unstable operation
3a	0.96	2710	1.3	2.6	0.48		not n	neasure	d
3b	0.26	720	~ 0	1.9	0.13	P _{loss_dyn} below measurable level		0.1	at x ₆ ≈0.9 Unstable operation
3c	1.76	5000	1.7	3.4	0.88	22.8	13.1	0.47	at $x_6 \approx 0.9$
4	1.76	5000	0.7	5.2	0.88	18.3	8.6	0.25	at $x_6 \approx 0.9$
5	1.76	5000	0.7	5.2	0.88	18.3	8.6	0.25	at $x_6 \approx 0.9$

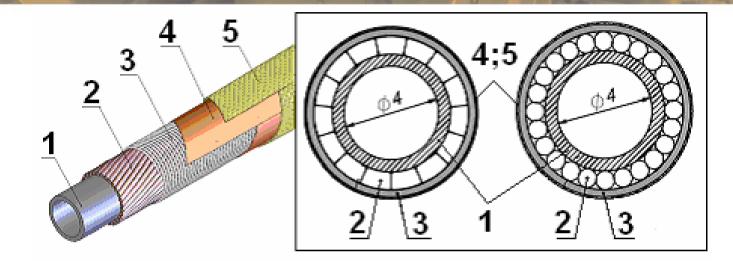
Experimental results for the full length model agree with the estimation based on the measurements of the short model within 15 %

The hydraulic restistance of the coil limits the feasibility of the cycles!


GEMEINSCHAFT


651

- The estimated limits of the actual full size models are not sufficient for the recently changed requirements of the SIS100 machine (also a significant operation margin has to be provided).
- Redesign options to satisfy the updated operation parameters:
 - > new cable design (with lower hydraulic resistance)
 - > shorter coil length
 - CSLD (curved single layer dipole)

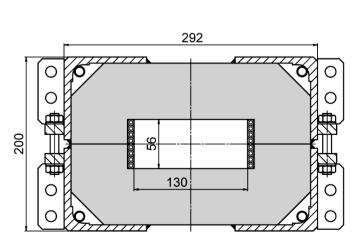


Magnet Design Options: New cable and single layer coil

"DESIGN AND TEST OF A HOLLOW SUPERCONDUCTING CABLE BASED ON KEYSTONED NbTi COMPOSITE WIRES", ASC 2004, October 2004, Jacksonville, USA H. G. Khozhibagiyan et al., ASC2004, Jacksonville, Florida, USA, IEEE Trans. on Supercond., Vol. 15, No. 3, Part II, pp. 1529-1532, June 2005

cycle limit estimations for a round wire cable CSLD with 8 turns (detailed specification in MT-INT-EF-2007-002, GSI):

Dynamical heat release (cycle 2c)	W	≈ 31
Pressure drop for cycle 2c	bar	≈ 0.42
Maximal temperature of helium in the coil (2c)	к	4.7
Dynamical heat release ($B_{max} = 1.9 \text{ T}$, f = 1 Hz)	W	≈ 54
Pressure drop (B_{max} = 1.9 T, f = 1 Hz)	bar	≈ 0.7
Maximal temperature of helium in the coil (triangular cycle with $B_m = 1.9 \text{ T}$, f = 1 Hz)	к	4.8

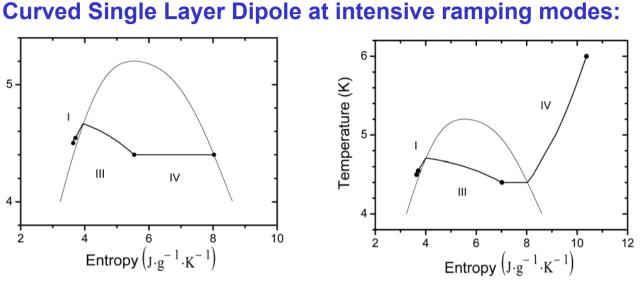

651

Design and test of a single layer coil model

- advantages of a high current cable:
 - single layer coil
 - allows reducing the <u>aperture</u> and AC loss
 - simplifies cooling
 - simpler coil mechanics

model dipole with a single layer coil, tested at JINR Dubna in 2004

Main Operation Parameters of the CSL-Dipole


Parameter Version	straight	curved	C2LD-a	CSLD
Maximum field, T	2.11	1.9	1.9	1.9
Magnetic length, Tm	2.756	3.062	3.062	3.062
Turns per coil	16	16	16	8
Usable aperture, mm ²	$130 \cdot 60$	$115 \cdot 60$	$115 \cdot 60$	$140 \cdot 60$
Cables				
Number of strands	31	31	38	23
Outer diameter, mm	7.36	7.36	7.5	8.25
Cooling tube inner	4	4	4.7	4.7
diameter, mm	-	7	/	H •7
Length of the cable in the coil, m	110	110	110	57
Bus bars length, m	37	39	39	39
Operating current	7163	6500	6500	13000
Critical current @ 2.1 T,	11900	11900	11900	19840
4.7 K	11700	11700	11700	17040
Wires				
Strand diameter, mm	0.5	0.5	0,46	0.8
Filament diameter, µm	2.5 - 4	2.5 - 4	2.5 - 4	3.5 - 4
Filament twist pitch, mm	4 – 5	4-5	4 - 5	5 - 8
loss and hydraulic				
Static heat flow, W	7	7	7	7
Heat load to bus bars, W	0.5	0.5	0.5	0.5
	cycle 2	lc		
AC losses, W	36.3	35.4	35.4	35.7
Pressure drop, bar	1.10	1.15	0.604	0.389
T_{max} of <i>He</i> in the coil	4.94	4.95	4.78	4.64
(for $x_6 \approx 1$), K				
triangular cycle				
AC losses, W	75.1	74.0	74.0	74.6
Pressure drop, bar	1.14	1.20	0.657	0.486
T_{max} of <i>He</i> in the coil, K	5.08	5.10	4.86	4.72
-	at $T_6 = 8K$	at $T_6 = 8K$	at $T_6 = 8K$	at $T_6=7K$

LMHOLTZ

IEINSCHAFT

Femperature (K) Ш IV 10

Entropy $(J \cdot g^{-1} \cdot K^{-1})$

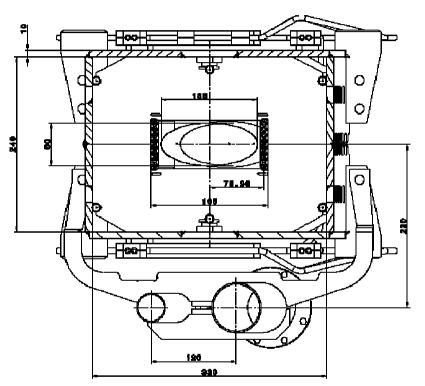
T – S diagrams for the CSLD operation Helium flow trough the bus bars I, the coil III and the iron yoke IV at cycles - 2c (left) and triangular (right)

Single Layer Dipole:

"Minimization of AC Power Losses in Fast Cycling Window Frame 2T Superferric Magnets with the Yoke at T=4.5K", E.Fischer et al., ASC 2004, 3LR04; Internal Note GSI: MT-INT-EF-2004-09

Curved Single Layer Dipole:

"Full Size Model Magnets for the FAIR SIS100 Synchrotron"; Egbert Fischer, Hamlet Khodzhibagiyan, Alexander Kovalenko; MT-20; 4V07; 2007; Internal Note GSI: MT-INT-EF-2007-03

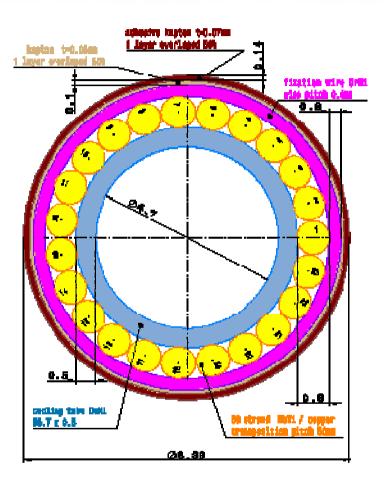

651

for details see \rightarrow

Dipole redesign: magnet parameters (TDR)

Name of the magnet		SIS 100 Main Ring Dipole
Number of magnets		108 + 1 reference magnet
Design		Window-frame, laminated cold iron
		yoke, lamination thickness 1mm, one
		layer coil with 8 turns
Max. Field	Т	1.9
Min. Field	Т	0.23
Bending angle	Deg.	3.33
Edge angles (entrance / exit)	Deg.	1.665 / -1.665
Orbit curvature radius, R	m	52.632
Effective magnetic length, L	m	3.062
Coil aperture	mm	165 · 68
Aperture (good field region):	mm	115 · 60
Field quality (goal)		$\pm 6 \cdot 10^{-4}$
Overall magnet length (slot length)	m	3.354
Overall width (cryostat)	m	1.0
Overall height (cryostat)	m	1.0
Overall weight	kg	1850
Current at max. field	А	12745
Inductance	mН	0.55
Ramp rate	T/s	4
High field flat top duration	S	0.1
Low field flat top duration	S	0.8
Cycle length	S	1.735
AC loss per cycle @4.2K per magnet	J	62
(cycle number 2c, no beam pipe))		

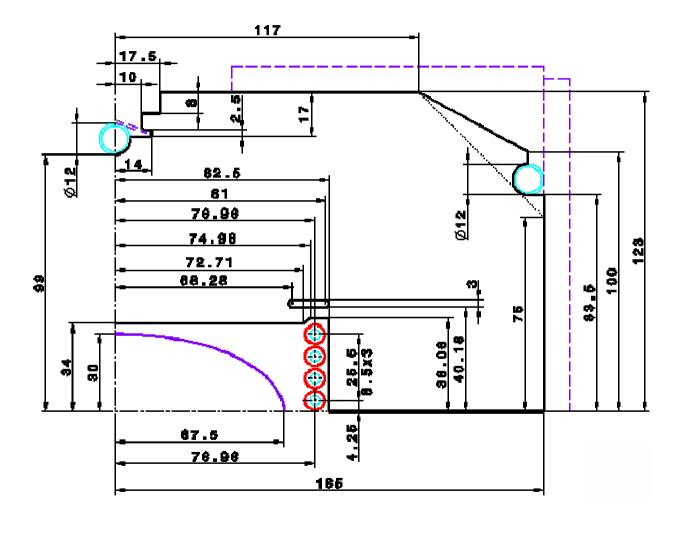
GEMEINSCHAFT


curved single layer dipole (CSLD) (details: see Technical Design Report, GSI Darmstadt, 2008)

GSİ

Dipole redesign: cable parameters (TDR)

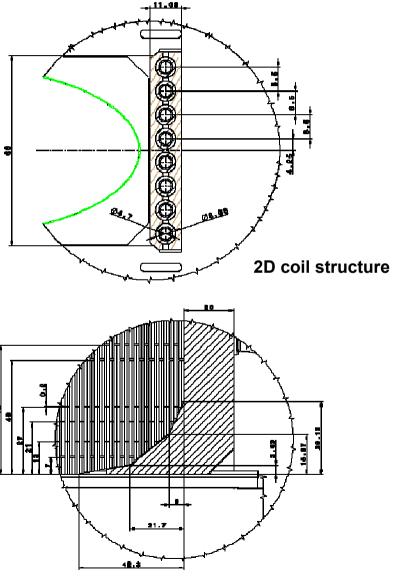
Numł	per of strands			23	
Trans	position pitch			50	mm
Cooli	ng tube material			Cu-Ni	
Cooli	ng tube outer diameter			5.7	mm
Cooli	ng tube wall thickness			0.5	mm
Critic	al current @ 2.1 T, 4.2 K			19840	Α
1st in	sulating layer	with epoxy in	npregnatio	on	
	material	kapton	tape	2	layers
	thickness/layer			50	microns
2nd in	nsulating layer	with epoxy in			
	material			2	layers
	thickness	kapton	tape	70	microns
Wire					
Stran	d diameter			0.8	mm
Filam	ent diameter			3.5	microns
Numb	per of filaments			18144	
	ent twist pitch			5-8	mm
Super	conducting material			NbTi	
Copper to superconductor ratio				1.5	
Copper RRR				196	
Trans	verse resistivity				Ωm
Fixati	ion of the strands	CrNi-wire	D=0.2	transp. $= 0.4$	mm
Coati	ng	epoxy compo	und		


ELMHOLTZ GEMEINSCHAFT

Cross section of the cable adopted for the SIS100 dipole coils (Nuclotron-type cable).

GSI

Dipole redesign: geometric details (TDR)



lamination geometry

6

ELMHOLTZ

GEMEINSCHAFT

lamination slits near yoke end

GSI

Summary

- The main R&D goals for the SIS100 magnets have been reached and were used to specify the design of the first full length model magnets for industrial production.
- The first full size dipole is ready for testing at GSI, a second dipole, a quadrupole and a curved dipole will be ready in III 2008.
- The comprehensive test of these models will give us important information required to optimize the final design and to specify the pre-series magnets.
- The redesign toward an optimized curved dipole with a single layer coil can fulfill the recently updated operation requirements of the FAIR SIS100 accelerator.

Thank you for your attention!

Acknowledgement

- H. Kodhzibagijan, A. Kovalenko (JINR/LHE)
- J. Macavei, P. Schnizer (GSI)
- W. Gaertner, G. Sikler (BNG)
- P. Akishine (JINR/LIT)
- R. Kurnyshov (Electrostal)
- P. Shcherbakov (IHEP)
- A. Kalimov (SPTU)

and for all the professional contributions of our colleagues from GSI, JINR, BNG, BINP and FZK to this work

