Rapid-Cycling Dipole using Block-Coil Geometry
and Bronze-Process Nb;Sn Superconductor
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LHC Luminosity Upgrade:
Inject from Super-SPS

 Replace SPS and PS with a rapid-cycling
superconducting injector chain

« 1 TeV in SPS tunnel: stack at injection to LHC
e Super SPS needs 5 T field, ~1 s cycle time
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Requirements for SuperSPS

PS and SPS will require pulsed magnets with a ramp rate
1.9-2T/sec, the magnet for SPS has to be
superconducting

Development of 2-3um size filament superconducting
strands

Magnet losses have to be contained at 10W/m peak

Optimized design for good quench/ magnetic field
performance

Design with Minimum amount of superconductor

Optimized for series production



One approach to rapid cycling

Schematic view of the Cos® geometry as upgrade option.

ends of one of 744 RHIC type dipole.
water-cooled OFHC Cross section and ends

copper dipoles of SPS

_ = Coil dominated: cos@
Peak Field: 2.02 T @ « Maximum field: 3.5 T->4T
57350 A (4350GeVic) » Ramp rate: 70 mT/s -> 1 T/s I

We think there may be a better way...



The Texas group Is developing high-
fleld d|poles to triple LHC energy

TAMUZ T Teola s =il TAMU4: 16 Tesla
Single-layer coil with ' r 4-layer
ITER cable
LHC-T: 25 Tesla

~. Nby5n-Bi-2212 hybrid



Flux plate redistributes flux to
suppresses multipoles
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Super-SPS: suppress PC multipoles during rapid cycling
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Cable orientation suppresses
source term for snap-back

Gradient force acting ona magretization current loop (red) in 2 sub-element of 3} a ace-on
cable ina cosBorcommaon-coil dipoke; b) anedge-on cable in a block-coil dipole.



Coupling currents can be controlled by
orienting cable | |field, coring cable
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A first taste of the benefits:
TAMUZ2 ramped to 0.75 T/s
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Conductor, cabling not optimized to minimize ac losses... or was it?

Let’s see what could be done to optimize for rapid cycling.



AC losses arise from several sources

e Coupling currents between strands in cable

— Block-coll configuration + cored cable can control
coupling currents between strands

e Hysteresis within subelements:
—need small subelement size

e Coupling between subelements:
—need optimum matrix resistance



Calculate losses from each mechanism:
matrix, hysteresis, para/trans coupling

Cos vs Block, Ramp Dependence (17/s)  SSC jnner strand
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Nb,Sn Bronze Process:
Ultimate In filament size,
Optimum matrix resistivity

Payoff from ITER:
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Fine-filament bronze-process Nb3Sn strand from Furukawa: 9800
filaments, 0.8 mm diameter filaments, Cu:SC = 0.2 :

. strand cross-section;
* Jsc Vs. B for nominal heat treat;

. optimization of heat treat for high current density.



Comparison of losses — 1 T/s

Dipole design Brax Ag Boredia. AC loss
(T) (cm?) (mm) (Jm/cycle

RHIC-typecos6 4 13 80 58
Tkachenkocos® 6 55 100 58
Simple block-coil 6 43 100 40

6 16 60 20

- bronze Nb;Sn



Payoff in refrigeration
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Nb;Sn: can use 5—6 K supercritical cycle, twice as efficient refrigeration,
larger AT for heat transport, twice the heat capacity



Optimum design using block-coil Nb;Sn bronze

supercritical He cooling channels

6 T NbTIi 60 mm bore diam.

7.6 T/s with AT = 0.5 K, 48 W/m
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Plans for first tests
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TAMUA4: 12 T background field, insert

TAMUS: 14 T dipole: IT Nb;Sn test winding for ramp rate studies/
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Conclusions

Block-coll configuration suppresses coupling losses

Flux plate suppresses ramp-induced persistent
current multipoles

ITER bronze strand suppresses matrix and
hysteresis losses

Nb,Sn gives x2 improvements in
— ac losses

— heat capacity

— heat transport

— refrigeration efficiency

We hope to show that bronze-process block coill
dipole could win the race!




