Electromagnetic Design of the Dipole Model for the FAIR SIS 300

M. Sorbi, F. Alessandria, G. Bellomo, P. Fabbricatore,
S. Farinon, U. Gambardella, R. Musenich and G. Volpini

Milan University \& INFN Sez. di Milano, Genova, L.N.F.

Contents:

1. Magnet parameters
2. 2-D design of the magnet
3. Field quality perturbation for pulsed regime
4. Losses in conductor
5. Electromagnetic design of coil-ends
6. Eddy current \& losses in collar and yoke lamination
7. Conclusions

Main dipole parameters

MAIN

Nominal field
Ramp rate
Radius of curvature
Magnetic length
Bending angle
Coil aperture diameter
Max operating temperature of cooling GHe
Field quality
Reference radius for field quality
Yoke outer radius

Value

1.5-4.5 T
1.0 T/s
66.667 m
7.756 m
$62 / 3 \mathrm{deg}$.
100 mm
4.7 K
$\pm 2 * 10^{-4}$
35 mm ($7 \underline{0} \% \mathrm{Rm}$)
$<250 \mathrm{~mm}$

2-D magnet design

Block number	5
Turn number:	$17-9-4-2-2$
Current	8924 A
Bpeak (with self-field)	4.90 T
Bpeak / Bo	1.09
Temperature margin	0.99 K
Coil inner radius	50 mm
Yoke inner radius	98 mm

$$
\left(\mu_{\mathrm{r}} \text { yoke }=\infty\right)
$$

Harmonics (units 10^{-4}) at ref. radius $\mathrm{R}=35 \mathrm{~mm}$

b3	b5	b7	b9	b11	b13
0.10	0.10	0.40	0.48	0.95	-1.11

Field perturbation

Different approaches have been used to compute field perturbation

Sextupole and decapole field harmonic, due to persistent currents (ref. radius $=35 \mathrm{~mm}$, units $\times 10^{-4}$)

Bo (T)	$\mathbf{0 . 5}$	$\mathbf{1 . 5}$	$\mathbf{3 . 0}$	$\mathbf{4 . 5}$
	$\delta \mathbf{b} 3 / \delta b 5$	$\delta \mathbf{b} 3 / \delta b 5$	$\delta \mathbf{b} 3 / \delta b 5$	$\delta \mathbf{b} 3 / \delta \mathbf{b} 5$
Fortran code	$-3.65 /-0.44$	$-0.72 /-0.09$	$-0.25 /-0.03$	$-0.13 /-0.02$
Ansys dipole	$-3.41 /-0.55$	$-0.70 /-0.08$	$-0.24 /-0.05$	$-0.12 /-0.03$
Opera	$-3.67 /-0.45$	$-0.72 /-0.09$	$-0.25 /-0.04$	$-0.13 /-0.02$
Ansys	$-3.54 /-0.38$	$-0.74 /-0.09$	$-0.26 /-0.04$	$-0.14 /-0.02$
Roxie	$-3.49 /-0.37$	$-0.72 /-0.09$	$-0.25 /-0.04$	$-0.13 /-0.02$

Sextupole and decapole field harmonic, due to inter-filament coupling currents (ref. radius $=35 \mathrm{~mm}$, units $\times 10^{-4}$)

Bo (T)	$\mathbf{0 . 5}$	$\mathbf{1 . 5}$	$\mathbf{3 . 0}$	$\mathbf{4 . 5}$
	$\delta \mathbf{b 3} / \mathbf{\delta b} 5$	$\delta \mathbf{b} 3 / \delta \mathbf{b} 5$	$\delta \mathbf{b} 3 / \delta \mathbf{b} 5$	$\delta \mathbf{b 3} / \delta \mathbf{b} 5$
Fortran code	$-0.63 / 0.10$	$-0.16 / 0.02$	$-0.06 / 0.01$	$-0.04 / 0.00$
Opera	$-0.63 / 0.08$	$-0.17 / 0.02$	$-0.06 / 0.01$	$-0.03 / 0.00$
Roxie	$-0.63 / 0.09$	$-0.17 / 0.02$	$-0.06 / 0.01$	$-0.03 / 0.00$

Sextupole and decapole field harmonic, due to inter-strand coupling currents (ref. radius $=35 \mathrm{~mm}$, units $\times 10^{-4}$)

$\mathbf{B o}(\mathbf{T})$	$\mathbf{0 . 5}$	$\mathbf{1 . 5}$	$\mathbf{3 . 0}$	$\mathbf{4 . 5}$
	$\delta \mathbf{b} 3 / \delta \mathbf{b} 5$			
Excel code	$0.03 /-0.08$	$0.01 /-0.03$	$0.00 /-0.01$	$0.00 /-0.01$
Roxie	$0.04 /-0.15$	$0.01 /-0.04$	$0.00 /-0.02$	$0.00 /-0.01$

Losses in conductor

Summary of the losses in conductors during ramp-up

Power distribution in conductor @ $\mathrm{Bo}=4.5 \mathrm{~T}$

[Peak power $1080 \mathrm{~W} / \mathrm{m}^{3}$]

Coil-ends design

The magnetic optimization of the coil-ends has been performed with ROXIE and OPERA 3-D

The lay-out of the blocks has been chosen to satisfy the following conditions:

- Minimize the stresses on the conductor ("constant perimeter" condition);
- Reduce the integral values of sextupole and decapole;
- Control the peak-field on the conductor.

Averaged harmonics in symmetric coil-end "in air":

$b_{3}^{\text {coil-end }}=\frac{1}{B_{0}} \frac{1}{\Delta z} \int_{0}^{\Delta z} \mathrm{~B}_{3} d z=0.63$ units
$b_{5}^{\text {coil-end }}=\frac{1}{B_{0}} \frac{1}{\Delta z} \int_{0}^{\Delta z} \mathrm{~B}_{5} d z=0.04$ units
with :
$B_{0}=4.5 \mathrm{~T}, \Delta z=300 \mathrm{~mm}$

ROXIE $_{9.0}$

In order to decrease the peak-field in conductor, a configuration with "short yoke" has been adopted.

	$2-\mathrm{D}$ analysis	Long yoke Yoke up to $z=206 \mathrm{~mm}$	Short yoke No yoke from $z=0$
$\mathrm{~B}_{\text {peak }}$ on cond. (T)	$\mathbf{4 . 8 7}$	4.96	4.59
$\mathrm{~T}_{\mathrm{g}}(\mathrm{K})$	5.73	5.69	5.88
$\mathrm{~L}_{\mathrm{m}}(\mathrm{mm})$	-	125.0	100.7

Losses in laminations

The losses due to the eddy currents in the laminations of the collar and of the yoke can be evaluated easily in the straight part of the magnet with a 2-D analysis.

The 2-D magnetic field B has only components parallel to the lamination.

The eddy currents have components mainly parallel to the lamination AND have simple symmetries along the thickness.

The RMS current density (averaged on the lamination thickness $\Delta s)$ can be evaluated analytically with a " $1-\mathrm{D}$ analysis":

$$
\left[J_{B_{\|}}(x, y)\right]_{\Delta s-R M S}=\frac{1}{2 \sqrt{3} \rho} \dot{B}(x, y) \Delta S
$$

where the magnetic field B is approximated to the magneto-static field (the field perturbation due to eddy currents is neglected).

As consequence the volumetric losses in the laminations can be calculated easily:

$$
p_{B / /}(x, y)=\rho \cdot\left\{\left[J_{B / /}\right]_{\Delta s-R M S}\right\}^{2}=\frac{1}{12 \rho} \dot{B}(x, y)^{2} \Delta s^{2}
$$

This simplified 1-D model has been validated by a complete 3-D description of the collar, with ELEKTRA-3D

$$
P_{B / /}=\int_{\text {Collararea }} \frac{1}{12 \rho} \dot{B}^{2} \Delta s^{2} d \Sigma \cong P_{3-D}(\text { ELEKTRA })=5.7 \mathrm{~mW} / \mathrm{m}
$$

Plot of the eddy current pattern, in a full 3-D description of the collar with the true lamination thickness.

In the coil end, there is also the z-component of the field B (in addition to the parallel components of the field), which produces additional eddy currents $J_{B \perp}$ in the x and y directions.

If the B_{z} varies smoothly in z-direction, we can assume $J_{B \perp}$ is constant in the lamination thickness Δs :

Consequently the $J_{B \perp}$ can be calculated with ELEKTRA 3-D, assuming, instead of lamination, an anisotropic material with electrical conductivity σ :

$$
\left\{\begin{array}{c}
\sigma_{\mathrm{x}}=1 / \rho \\
\sigma_{\mathrm{y}}=1 / \rho \\
\sigma_{\mathrm{z}}=0
\end{array}\right.
$$

$$
\text { with } \rho=\rho_{\text {collar }} \approx \rho_{\text {iron }} \approx 5.3 \cdot 10^{-7} \Omega \mathrm{~m}
$$

If we are interested to the total power density in the lamination $p_{\Delta s-a v}(x, y)$:

$$
p_{\Delta s-a v .}(x, y)=p_{B / /}(x, y)+p_{B \perp}(x, y)=\frac{1}{12 \rho} \dot{B}_{/ /}(x, y)^{2} \Delta s^{2}+\rho \cdot J_{B \perp}(x, y)^{2}
$$

The $B z$ component of the magnetic field in the yoke is strongly dependent by the actual reluctivity of iron lamination, which is reduced by the stacking factor.

Moreover stacking factor introduces an anisotropic behavior for the magnetic field.

The complete and coupled problem (transient analysis, with magnetic, anisotropic and non-linear material) has been solved with ELEKTRA 3-D.

$1 / 8$ of the model (1.2 m long)

The first conclusion is that the electrical contact between the yoke lamination and the He cylindrical vessel increases losses.

Losses (colours) and current (arrows) @ 4.5 T

Current in the He cylindrical vessel @ 4.5 T

With no-electrical continuity between laminations and vessel, the losses are much lower (especially at low field).

Losses (colours) and current (arrows) @ 4.5 T

Other main sources of losses are the eddy currents in pins and keys in the collar and yoke laminations (they are like short-circuit for eddy current)

The study of these dissipative powers has been done with OPERA3D \& validated with analytical approaches.

Summary of losses in the magnet during ramp-up at $1 \mathrm{~T} / \mathrm{s}$

	In straight section (W/m)		In each coil end (W)			
Bo	$\mathbf{1 . 5 ~ T}$	$\mathbf{3 . 0} \mathbf{~ T}$	$\mathbf{4 . 5} \mathbf{~ T}$	$\mathbf{1 . 5 ~ T}$	$\mathbf{3 . 0} \mathbf{~ T}$	$\mathbf{4 . 5 ~ T}$
Conductor	4.500	3.300	2.600	0.630	0.462	0.364
Collar eddy	0.006	0.006	0.006	0.284	0.579	0.418
Yoke eddy	0.002	0.002	0.002	0.326	1.465	1.834
Collar pins	0.124	0.124	0.100	0.024	0.024	0.000
Collar keys	0.580	0.572	0.484	0.113	0.112	0.094
Yoke pins	0.316	1.824	1.064	0.408	0.356	0.000
Yoke keys	0.000	0.000	0.000	0.040	0.120	0.044
Yoke hyst.	~ 1.33	~ 1.33	~ 1.33	~ 0.259	~ 0.259	~ 0.259
Beam tube	1.000	1.000	1.000	0.195	0.195	0.195
TOTAL	$\mathbf{7 . 8 6}$	$\mathbf{8 . 1 6}$	$\mathbf{6 . 5 9}$	$\mathbf{2 . 2 8}$	$\mathbf{3 . 5 7}$	$\mathbf{3 . 2 1}$

Bo (T)	In the $\mathbf{3 . 8} \mathbf{~ m}$ long dipole (W)	In the 7.6 $\mathbf{~ m}$ long dipole (W)
1.5	34.4	64.3
3.0	38.1	69.1
4.5	31.4	56.5

Conclusions

- The 2-D magnetic design of the curved dipole for SIS300 is defined.
- Several methods and codes have been used to evaluate the field harmonic perturbation due to pulsed regime of the magnet: the agreement in the results is very good
- The losses on the conductor in the 2-D configuration have been evaluated
- The losses in laminations have been evaluated (both in straight sections and in coil-ends)
- The total estimated power dissipated in the magnet ranges between $6 \mathrm{~W} / \mathrm{m}$ and $9 \mathrm{~W} / \mathrm{m}$.

The end!

APPENDIX

Conductor parameters

cable twist pitch	p	0.1	m
crossover resistance	Rc	200E-02	ohm
adjacent resistance	Ra	200E-04	ohm
number of strands	N	36	
radius of fil't boundary	$\mathrm{a}_{\text {tb }}$	0.3690	mm
matrix ratio	mat	1800	
filament filling factor	λf	0.357	
wire trans res'y intercept	$C_{\rho e t}$	4.00E-10	ohmm
vire trans res'y gradient	$\mathrm{m}_{\text {pet }}$	200E-10	ohmm/T
vire twist pitch	p_{w}	5.00E-03	m
filament diameter	d_{f}	3.50E-06	m
cooking factors		1.00	

APPENDIX

SUMMARY OF CABLE LOSSES (averaged 1.5 T - 4.5 T @ 1 T/s)

	ramp'g	loss/	fraction
power	cycle	of total	
	W / m	J / m	$\%$
transv'se cros'r	0.11	0.7	3.3%
transv'se adj'nt	0.23	1.4	6.8%
parallel adjacent	0.00	0.0	0.1%
fil'nt coupling	0.69	4.1	20.0%
total hysteresis	2.41	14.4	69.8%
total magnet	3.45	20.7	$\mathbf{1 0 0 . 0 \%}$

The power is averaged on the ramp up
The loss/cycle is averaged on the full cycle (up and down)

APPENDIX

Magnetization and eddy current in the beam tube.

- Analytical calculation gives zero contribution on harmonics (only very small dipole error $b l \approx-0.1$ unit)

Magnetization of beam tube
$B_{\text {inner }}=B_{0}\left[1-\frac{\left(\mu_{r}-1\right)^{2}}{4 \mu_{r}}\left(1-\frac{r_{\text {int }}{ }^{2}}{{r_{\text {ext }}{ }^{2}}^{2}}\right)\right]$

Eddy current in beam tube
$J_{Z \text { eddy }}(\vartheta)=-\frac{1}{\rho} \dot{B}_{0} r_{a v .} \cdot \cos (\vartheta)$

- These results are confirmed by 2-D calculation with OPERA
(Warning: the LOSSES are not negligible!)

APPENDIX

Eddy current in beam pipe

- In this case the eddy currents are directed in z direction, and the power/length \boldsymbol{P} can be analytical calculated:

$$
P=\int_{r_{\text {imer }}}^{r_{\text {aupr }}} \int_{0}^{2 \pi} \rho \cdot J_{Z}{ }^{2} \cdot r \cdot d \theta d r \approx \frac{\pi}{\rho} \dot{B}_{0}{ }^{2} \cdot r_{a v}{ }^{3} \cdot \Delta r
$$

where $\boldsymbol{r}_{\boldsymbol{a v}}=\mathbf{4 4} \mathbf{~ m m}$ is the average radius of the beam pipe and $\Delta r=2 \mathbf{~ m m}$ is the pipe thickness

$$
P=1.0 \mathrm{~W} / \mathrm{m}
$$

(not negligible as thermal load for the cooling gas)

APPENDIX

$$
p_{\Delta s-a v .}(x, y)=\rho \cdot\left\{\left[J_{t o t}\right]_{\Delta s-R M S}\right\}^{2}=\rho \cdot\left\{\left[J_{B \perp}+J_{B / /}\right]_{\Delta s-R M S}\right\}^{2}
$$

$$
\begin{aligned}
& \left\{\left[J_{B \perp}+J_{B / /}\right]_{\Delta s-R M S}\right\}^{2}=\frac{1}{\Delta s} \int_{\Delta s}\left[J_{B \perp}+J_{B / /}\right]^{2} d z=\frac{1}{\Delta s} \int_{\Delta s}\left[J_{B \perp}{ }^{2}+2 J_{B \perp} \cdot J_{B / /}+J_{B / /}{ }^{2}\right] d z= \\
& =\frac{1}{\Delta s} \int_{\Delta s} J_{B \perp}{ }^{2} d z+\frac{1}{\Delta s} \int_{\Delta s} J_{B / /}^{2} d z=\left\{\left[J_{B \perp}\right]_{\Delta s-R M S}\right\}^{2}+\left\{\left[J_{B / /}\right]_{\Delta s-R M S}\right\}^{2}
\end{aligned}
$$

APPENDIX

The power:

$$
p_{\Delta s-a v}(x, y)=p_{B / /}(x, y)+p_{B \perp}(x, y)=\frac{1}{12 \rho} \dot{B}_{/ /}(x, y)^{2} \Delta s^{2}+\rho \cdot J_{B \perp}(x, y)^{2}
$$

So the losses can be calculated "easily" in all the laminated regions without the necessity of modeling each single lamination.

It is possible just to add the two powers!

APPENDIX

Stored energy and inductance

2 D calculation

Stored energy / length $\quad 116.8 \mathrm{~kJ} / \mathrm{m}$
Inductance / length
Total magnet energy (7.76 m)
$2.9 \mathrm{mH} / \mathrm{m}$

Total magnet inductance
Currentramp (@dB/dt=1 T/s)
L dI/dt
0.90 MJ
22.5 mH

1980 A/s
45 V

