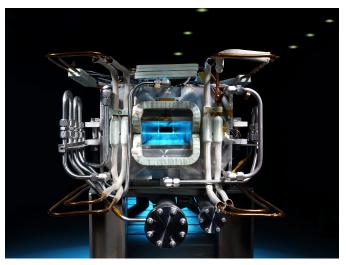
Superferric rapidly cycling magnets Optimized field design and Measurement

P. Schnizer¹, E. Fischer¹, P. Akishin², H. Kiesewetter¹, T. Knapp¹, F. Klos¹, R. Kurnyshov³, T. Mack¹, B. Schnizer⁴, P. Shcherbakov⁵

¹Gesellschaft für Schwerionenforschung, Darmstadt, Germany
 ²Joint Institut for Nuclear Research, Dubna, Moscow Region, Russia
 ³Electroplant, Moscow, Russia
 ⁴Technische Universität Graz, Austria
 ⁵Institut for High Energy Physics, Protvino, Moscow Region, Russia

WAMSDO@CERN 19 - 23 May 2008 p.schnizer@gsi.de

Outline


2 Calculations

- Field Description
- DC Calculations
- Calculations on the ramp
- Measuring the Field Quality
 - Approach

SIS 100: main parameters

- FAIR @ GSI \rightarrow 2 synchrotrons with superconducting machines
- SIS 100 \rightarrow core component
 - Nuclotron "father figure"
 - based on two phase cooled hollow cable
 - 2 T , 4 T / s,
 - 3.5 m long dipoles
 - 1 m long quadrupole in 5 m long SSS
 - $\bullet\,$ elliptic vacuum chamber 115 $\times\,$ 60 mm

SIS 100: Prototype Dipole

Courtesy of Babcock Noell GmbH

P. Schnizer et al. p.schnizer@gsi.de

Optimized field design and Measurement

Field Description DC Calculations Calculations on the ramp

Cicrular Multipoles for Elliptic Apertures

Standard field description: Circular Multipoles

$$\mathbf{B}(\mathbf{z}) = B_y + iB_x = \sum_{m=0}^{\infty} \mathbf{C}_m \left(\frac{\mathbf{z}}{R_{ref}}\right)^m. \tag{1}$$

- convergent also outside R_{ref}
- satisfactory field description only for analytical data
- cofficients \rightarrow FT on data on R_{ref} (FEM, measurement) \rightarrow thus with artifacts

Field Description DC Calculations Calculations on the ramp

Multipoles Scale Factors

for SIS 100

Aperture width w ... 115 mm Aperture height h ... 60 mm Coil diameter d ... 46 mm

$$\left(\frac{w}{h}\right)^n = (\approx 1.9)^n$$
$$\left(\frac{w}{r}\right)^n = (2.5)^n$$

Single rotating coil measurement, single expansion on numerical data \rightarrow not sufficient

n	w / d	w / h
1	1.00	1.00
3	6.25	3.67
5	39.06	13.50
7	244.14	49.58
9	1525.88	182.13
11	9536.74	669.06
13	59604.64	2457.87

◆ 同 ♪ ◆ 三 ♪

Field Description DC Calculations Calculations on the ramp

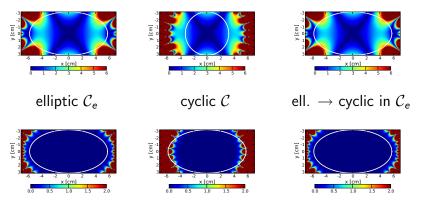
Elliptic Multipoles for Complex Magnetic Field I/II

Field expansion:

$$\mathbf{w} = \eta + i\psi$$
$$\mathbf{B}(\mathbf{w}) = \frac{\mathbf{e_0}}{2} + \sum_{n=1}^{\infty} \mathbf{e}_n \frac{\cosh[n(\eta + i\psi)]}{\cosh(n\eta_0)}$$

 $\eta = const...$ hyperbola $\psi = const...$ ellipse Expansion coefficients:

$$\mathbf{e}_n = rac{1}{2\pi} \int_{-\pi}^{\pi} \mathbf{B} ig(\mathbf{w} = e \cosh(\eta_0 + i\psi) ig) imes \ \cos(n\psi) \ d\psi.$$


Linear Analytic Transformation to Circular Ones

P. Schnizer, B. Schnizer, P. Akishin, and E. Fischer Field representation for elliptic apertures. Technical report, Feb. 2007, Jan. 2008

MT20: Magnetic field analysis for superferric accelerator magnets using elliptic multipoles and its advantages, 3L06

Field Description DC Calculations Calculations on the ramp

Elliptic Multipoles \Leftrightarrow Circular Multipoles

 $\begin{array}{ccc} \Delta \text{ elliptic } \mathcal{C}_e & \Delta \text{ cyclic } \mathcal{C} & \Delta \text{ ell.} \rightarrow \text{ cyclic in } \mathcal{C}_e \\ \text{Illustrated for CSLD at Injection Field } (\approx 0.25 \text{ } T) \end{array}$

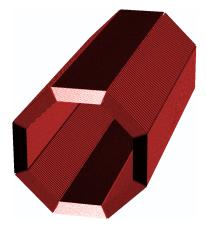
▲□ ► < □ ► </p>

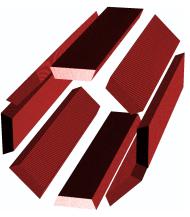
Field Description DC Calculations Calculations on the ramp

Literature

- P. Schnizer, B. Schnizer, P. Akishin, and E. Fischer. Field representation for elliptic apertures. Technical report, Gesellschaft für Schwerionenforschung mbH, Planckstraße 1, D-64291 Darmstadt, February 2007.
- P. Schnizer, B. Schnizer, P. Akishin, and E. Fischer.
 Magnetic field analysis for superferric accelerator magnets using elliptic multipoles and its advantages.
 In *The 20th international conference on magnet technology*. IEEE, August 2007.
- P. Schnizer, B. Schnizer, P. Akishin, and E. Fischer.
 Field representation for elliptic apertures.
 Technical report, Gesellschaft für Schwerionenforschung mbH, Planckstraße 1, D-64291 Darmstadt, January, 2008;

Field Description DC Calculations Calculations on the ramp


Static calculations: Challenges

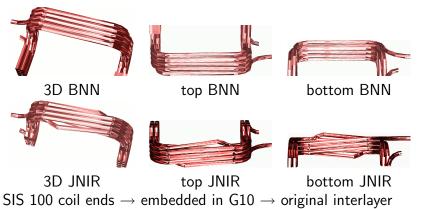

- \bullet SIS 100 magnets \rightarrow superferric \rightarrow iron dominated
- Nuclotron cable
 - superconducting wires wound around tube
 - small current carrying layer
 - not directly supported by TOSCA 3D
 - $\bullet \ \rightarrow \ modelling \ required$
- influence of the coil not negibible

Field Description DC Calculations Calculations on the ramp

Modelling the Nuclotron Conductor

|/||

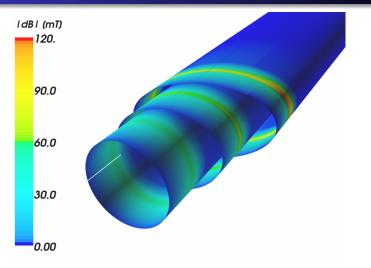
 $\begin{array}{ccc} model & exploded \\ round shape modelled as bricks \rightarrow many elements \rightarrow careful \\ & selection of longitudinal length \ensuremath{\carefit}$


P. Schnizer et al. p.schnizer@gsi.de

Optimized field design and Measurement

Field Description DC Calculations Calculations on the ramp

Modelling the Nuclotron Conductor



connection too complicated \rightarrow field change acceptable?

・ロト ・同ト ・ヨト ・

Field Description DC Calculations Calculations on the ramp

Interlayer connection: Field difference

maximum difference 0.1 T at a small spot; acceptable

P. Schnizer et al. p.schnizer@gsi.de Optimized field design and Measurement

Field Description DC Calculations Calculations on the ramp

Calculation on the ramp

- $\bullet~SIS~100$ magnets \rightarrow nominal ramp rate 4 T / s
- eddy currents
 - in the yoke
 - in the vacuum chamber
 - in the eddy currents

based on R&D presented in:

Cryogenics 2007: E. Fischer, R. Kurnishov, and


P. Shcherbakov; Finite element calculations on detailed 3D models for the superferric main magnets of the FAIR SIS100 synchrotron.

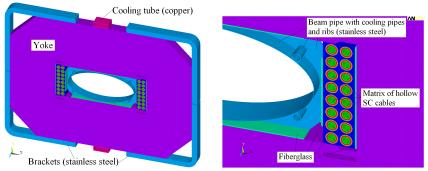
A (a) > (b) = (b) (a)

Field Description DC Calculations Calculations on the ramp

Prototype Magnet: To be tested

magnet

vacuum chamber model consists of: beam pipe ribs, cooling tubes


・ 一 ・ ・ ・ ・ ・ ・

Courtesy of Babcock Noell GmbH

Field Description DC Calculations Calculations on the ramp

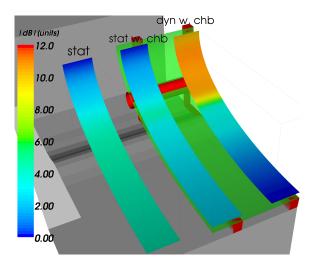
Magnet Design

3D modell of a period in the magnet

total zoom EUCAS 2007: E. Fischer, R. Kurnyshov, and P. Shcherbakov; Analysis of Coupled Electromagnetic-Thermal Effects in Superconducting Accelerator Magnets

P. Schnizer et al. p.schnizer@gsi.de Optimized field design and Measurement

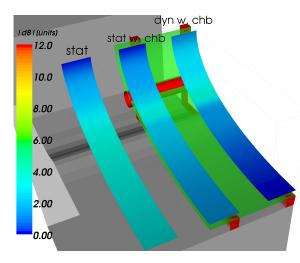
Field Description DC Calculations Calculations on the ramp


Method of Calculation and Results

- \bullet calculated for triangular cycle (0T \rightarrow 2T \rightarrow 0T, 4T/s)
- time points at $\approx 0.25 T$, $\approx 1.04 T$, $\approx 1.83 T$, $\approx 2.00 T$
- data
 - field on ellipses (maximum errors at the border)
 - circular multipoles (calculated from elliptic ones)

A (1) < A (

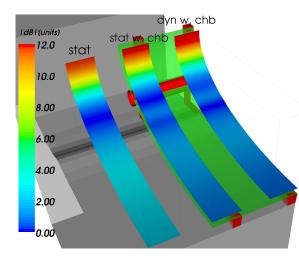
Field Description DC Calculations Calculations on the ramp


Impact on the field quality

Field to 0.248T (injection) field distortion \rightarrow static 5 units, dynamic $\times 3!$

Field Description DC Calculations Calculations on the ramp

Impact on the field quality

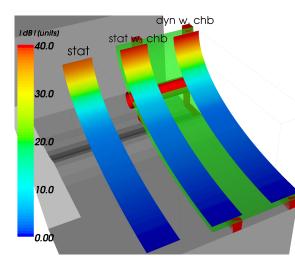


Field to 1.04T t = 0.25sfield distortion \rightarrow 4 units (= 400 ppm) dynamic to higher variation

II/IV

Field Description DC Calculations Calculations on the ramp

Impact on the field quality



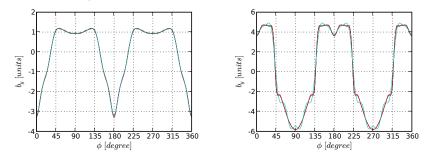
Field to 1.832Tsaturation \rightarrow field distortion dynamic to higher variation dynamic $3\times$, static $10\times$ higher than injection

III/IV

Field Description DC Calculations Calculations on the ramp

Impact on the field quality

Field to 2.00T saturation \rightarrow field distortion (much larger than at 1.83 T) eddy currents to not significant dynamic $3\times$, static $10 \times$ higher than injection

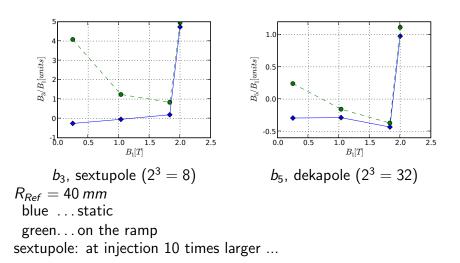

▲ □ ▶ ▲ □ ▶ ▲

IIII/IV

Field Description DC Calculations Calculations on the ramp

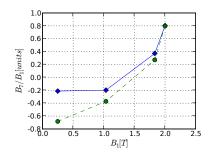
Static to dynamic: Integral over one Period

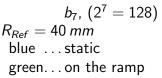
Deviation of B_{γ} in units once around the ellipse

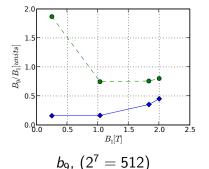


static dynamic with vacuum chamber at injection: ramp effects factor of 2 - 3!

- **→** → **→**

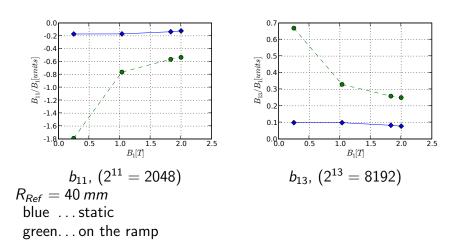

Field Description DC Calculations Calculations on the ramp


Expected Multipole Errors



Field Description DC Calculations Calculations on the ramp

Expected Multipole Errors



-

Field Description DC Calculations Calculations on the ramp

Expected Multipole Errors

Magnetic Measurement: Accuracy Targets

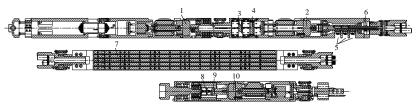
- integral strength \rightarrow 250 ppm
- field angle \rightarrow 0.5 mrad
- field axis (quadrupole) \rightarrow 0.25 mm
- higher order harmonics \rightarrow 10ppm

Main Target \rightarrow strength, angle, axis

Magnetic measurement: field quality

- superferric design: field formed by magnet poles
- deterioriated by the yoke
 - permeability of the iron
 - mechanical artifacts
 - manufacturing tolerances
 - eddy currents
- deterioriated by the vacuum chamber
 - geometry of the vacuum chamber
 - permeability of the steel
 - resistivity of the chamber
- Standard Magnetic Measurement not inside vacuum chamber \rightarrow field mainly created by yoke
- vacuum chamber distortion \rightarrow calculated \rightarrow checked by special measurement

Selected method


- series tests \rightarrow measurement equipment @ 300 K \rightarrow anticryostat
- $\bullet\,$ moveable anti-cryostat $\rightarrow\,$ covers (nearly) whole ellipse, thus no extrapolation
- rotating coil probe for DC, step by step coil probe on the ramp \rightarrow same equipment for both magnet operations
- based on "bucking coil probes" \rightarrow requirements for field homogeneity reduced by $\frac{1}{100}$

MT20: P. Schnizer et al. : A mole for measuring pulsed superconducting magnets, 4N10

(4月) (1日) (日)

Approach

Sketch of the Mole

1 levelling piezo motor 2 coil rotation piezo motor 3, 4 inclinometers 5 slip rings 6 angular encoder with 512 ticks, 7 coil probes 8 angular encoder with 7500 counts 9 its inclinometer and 10 levelling motor

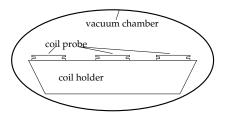
Approach

The mole

P. Schnizer et al. p.schnizer@gsi.de Optimized field design and Measurement

Approach

The mole



P. Schnizer et al. p.schnizer@gsi.de

Optimized field design and Measurement

Vacuum chamber artifacts: special measurement

- Vacuum chamber → elliptic vacuum chamber
- coil probes on a common support placed laterally separate
- allow to compare calculations to measurements

Conclusion

- SIS 100 Dipoles: first prototype produced
- DC and ramp field quality calculated
- Vacuum chamber adds considerably to the field distortion
- Standard Magnetic Measurement not inside vacuum chamber → field mainly created by yoke
- \bullet vacuum chamber distortion \rightarrow calculated \rightarrow checked by special measurement