

WAMSDO presentation

"NbTi and Nb₃Sn PIT strands for accelerators"

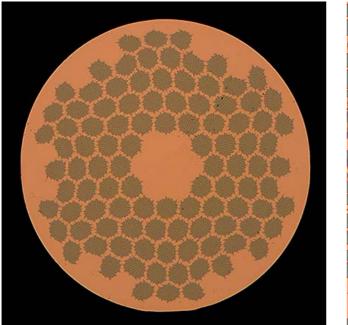
Manfred Thoener

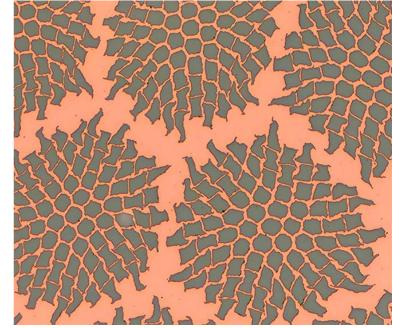
European Advanced Superconductors GmbH & Co. KG

Fine and very fine NbTi filament conductors

PIT Nb₃Sn conductors

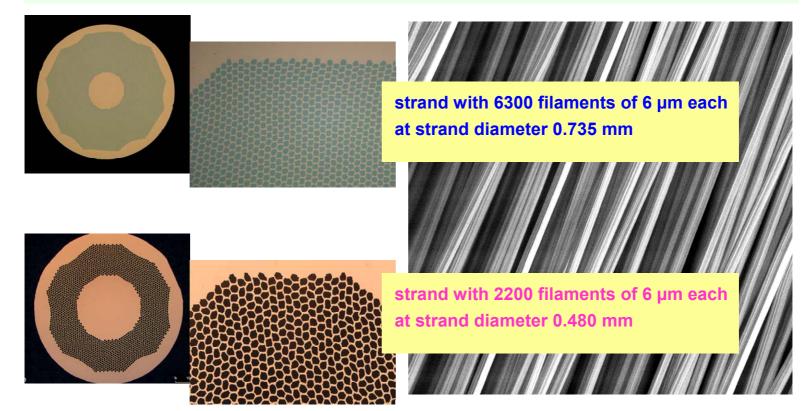
Keystone cables and cabling


NbTi – fine filaments


- # about 30000 km of inner dipole strands with 7µm(double stack technique) have been produced in the last 10 years
- # more than 2000 keystone cables (460m each) have been produced for the inner dipole magnets of LHC
- # about 13000 km of matching quadrupole strand with 6µm (single stack technique) have been produced in the last 7 years
- # about 600 keystone cables (530m 760m each) have been produced for the matching quadrupole magnets of LHC

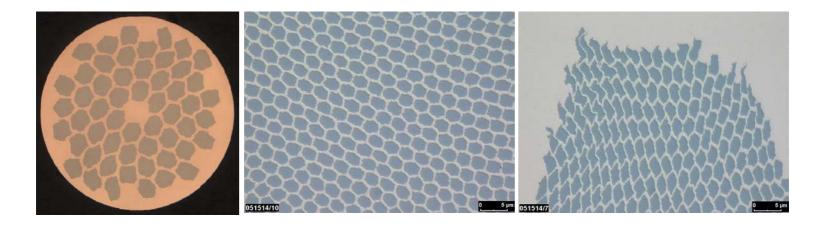
NbTi – LHC

7 μm filaments conductor for the inner dipoles of LHC - cross-section and filament array -

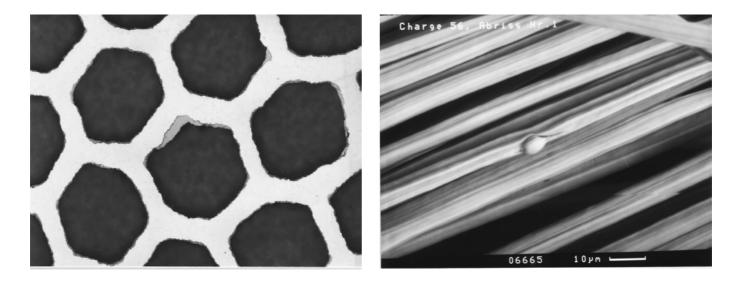


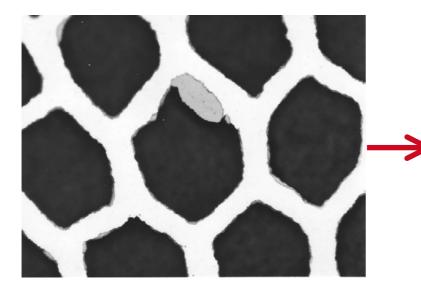
Strand with 102 x 85 (8670) filaments of 7µm each

NbTi - LHC

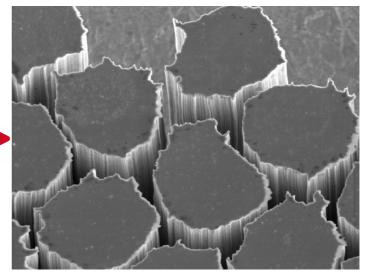

6 μm filaments conductor for the matching quadrupoles of LHC - cross-section, filament array, filament quality -

 # several conductors with 2.5µm filaments in CuMn matrix with 2300 A/mm² (5T- 4.2K) have been produced 1990 - 1992 for HEB (SSC) e.g.


> 42174 filaments (54 x 781) of 2.1µm each Ø 0.685mm, Cu/CuMn:NbTi = 1.5, Twist 4.7mm

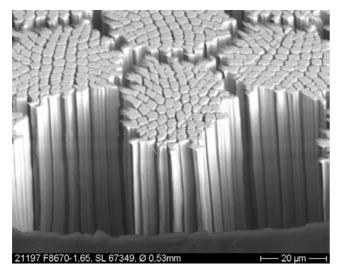

42174 filaments (54 x 781) of 2.1µm each Ø 0.685mm, Cu/CuMn:NbTi = 1.5, Twist 4.7mm

many wire breakages have occurred due to unsuited Nb barrier technique at that time e.g.

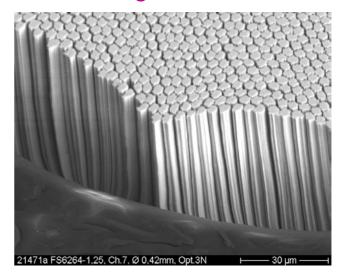


optimized Nb barrier techniques have been established within the LHC project e.g.

local Nb barrier defect leading to wire breakages



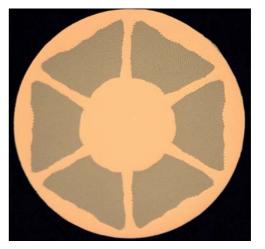
defect free Nb barriers leading to long length production



different conductor <u>samples</u> with 3.5µm filaments in Cu matrix with 2800 A/mm² (5T- 4.2K) have been produced 2003 - 2005 for FAIR (GSI) e.g.

double stack

single stack


numerous measurements and calculations have been performed

different conductor lengths with 4.3-4.5µm filaments in Cu matrix with 2700-2800 A/mm² (5T- 4.2K) have been produced in 2005 and delivered to GSI for SIS 100 and SIS 300 e.g.

Ø 0.5mm – Øfil ≈ 4.3µm 14km with Cu:NbTi ≈ 1.25 30km with Cu:NbTi ≈ 1.40 SIS 300

Ø 0.825mm – Øfil ≈ 4.5µm SnAg5 coated (0.5µm) 19km with Cu:NbTi ≈ 1.85µm

no funding for development of conductors with < 2.5µm filaments in CuMn matrix has been available since 1992

 # conductor design optimization with 2.0µm filaments in CuMn matrix have been performed 2007
 for the DISCORAP INFN experiment

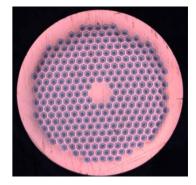
billet production needed to verify and to proof
 the conductor design on industrial scale

10

Nb₃Sn – PIT status

- # upscaled powder production
 has been installed in Hanau
- # industrial powder production
 in Hanau has started
- # PIT billets with these powders are under production

dedicated drawing bench installed and put into operation



Nb₃Sn – PIT status

- # NED /Care PIT design:
 - Ø 1.25mm with 288 filaments of ≈50µm each
- # samples of billet B207 and B215 have been delivered in the last years

- # B215 has been cabled last year at LBNL
- # 1000m of billet B228 has been delivered in April, 2008
- # 120kg are under production at the moment

Nb₃Sn – PIT status

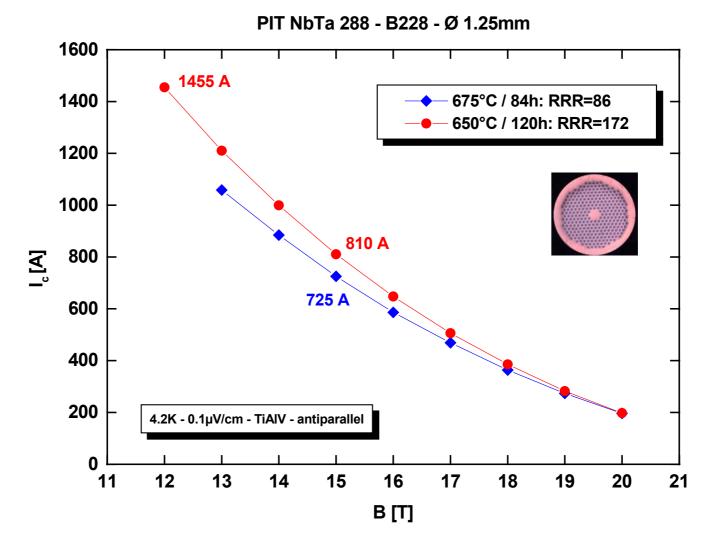
Oberli¹, D Pedrini⁵ and G Volpini⁵

13

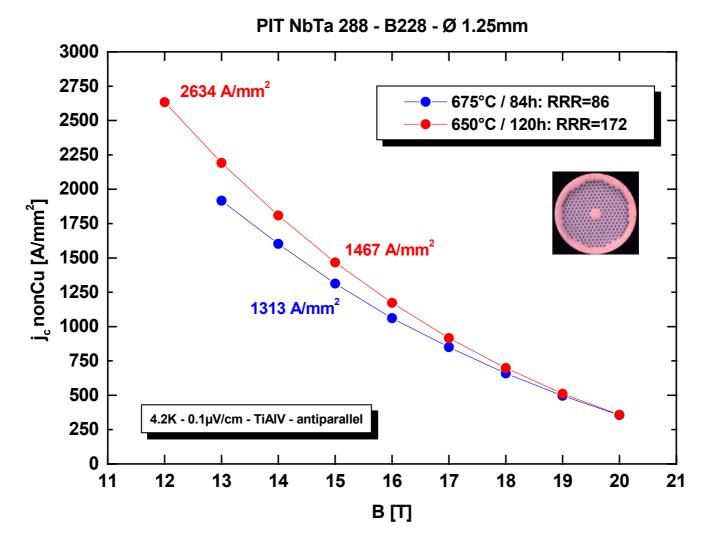
 # NED /Care PIT - many measurements and investigations have been published on B207 and B215 already e.g. EUCAS 2007

T Boutboul¹, A den Ouden², A Devred^{1,3}, P Fabbricatore⁴, M Greco⁴, D Leroy¹, L

Nb₃Sn conductor development and characterization for NED⁺



Sample SIS00215A01UX.031 84h @ 675 L=3.3 m --+-4.5 K + 10 K 0.8 1800 Pependicular Field 1600 0.4 B215, 4.2 K M (emu) 1400 Critical current [A] 000 000 000 000 -0.4 -0.8 -1.2 -2 2 400 B (T) ♦ Twente □ Geneva 200 J.non-Cu, 4.2 K. Wire Wire dia. SE dia. Cu/non-RRR Ic, 4.2 K, Ic, 4.2 K, 0 [mm] [µm] Cu 12 T[A] 15 T[A] $12 \text{ T} [\text{A/mm}^2]$ 10 13 20 11 12 14 15 16 17 18 19 Applied magnetic field [T] B207 1.255 53 0.96 250 1315 708 2084 B215 1.257 50 1.22 84 1397 756 2499 Manfred Thoener, WAMSDO - CERN, May 21, 2008


15.05.2008 M. Thoener

$Nb_3Sn - PIT I_c$

$Nb_3Sn - PIT j_{cnonCu}$

15.05.2008 M. Thoener

Keystone cables and cabling

- # cabling of keystone cables <u>without</u> core is an established process and has been proven within the LHC project on several cabling machines on industrial scale
- # cabling of keystone cables with core has to be proven and optimized for industrial production (e.g. the shape stability of the cable after retwisting for flushing the mineral oil)
- # fine tuning of the cabling tools and cabling parameters has to be performed with original superconducting strand material
- # several billets will be needed to optimize these parameters
- # EAS is in discussion with several potential partners for cabling

Acknowledgement

"I like to thank you for your kind attention"

Manfred Thoener