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Outline

e Reminder - Origins of J, (stability current), influence of
d.¢ and RRR, postulated reasons for RRR influence

e Observation of localized RRR degradation in cables

e Analytic form of J, and functional dependence on d  and
RRR

e Origins of RRR Influence (K, 7, current sharing)

Finally, an attempt to answer the questions
e Where (within the strand) does RRR have to be good?

e Can there be a d_¢ small enough for full adiabatic
stability for in-service strands/cables?
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Origins of a defined J, (Initial Observation of Problem)

Obser| Experiments of many groups led to an
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Small d Improves adiabatic stability,

high RRR improves dynamic stability
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Questions
nat iIs functional dependence on d ¢« ?

nat iIs functional dependence on RRR?

nat Is specific origin of RRR influence?

RRR where? In the shell, near the filaments?
How will magnet potting influence things?

How will cablmg strands affect d 4 and RRR?
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How will cabling strands affect d ¢ and RRR?

e OSU/FNAL Collaboration to Study Influence of
Cabling on RRR -especially at Cable ends

e RRP strands were extracted from a set of 27- and
28- strand, mixed-strand cables with a variety of
packing factors ranging from light (85% to heavier
OX%)

e Samples were HT, RRR was measured on the flats

B

and bends
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RRR Results on Cabled, Extracted,
Reacted Strands

W/

Edge RRR Edge Contact Ave | Whole
// \\ Lengths, mm Local | strand
RRR RRR
est Cac
1-2 | 34 | 56 == --
|+ -1 -1 - 13.5| 30.7
3 8 | 10 | 10 || 223]| 99.7
13 11 9 15.1 ] 98.7
9 10 | 10 18.4] 93.3
12 10 7 7.35| 88.0
7 8 6 8.17| 70.1
11 11 11 7.25| 67.7
12 8 10 5,58 | 62.5
10 8 5 145 84.8
8 6 11 11.1| 875
8 8 10 104 85.3
7 7 11 17.7] 86.4
8 9 12 9.86 | 68.6
8 6 10 9.24| 824
15 726 | 76.4| 69.8 | 129 131 101 130 9 6 8 19.1 115
16 68.5 | 65.5| 78.1 | 111 108 89.9 110 9 11 12 16.3]| 745
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SEM/
EDS

| eeetan T") substantially at the edges of
1 Rutherford cables
3 e
4
5

Barrier thinning

No barrier
thinning
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What is the Origin of the RRR Influence

Options
Dynamic Stability Increases via heat transfer
(increasing heat removal -- K)

Dynamic Stability via increasing heat
deposition time (magnetic diffusion 7)

Current sharing Effects

Answering this question will also tell us where
RRR needs to be high

WaAmSDO
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Self Field vs Magnetization
Instability

e Both individual filament and SF
distributions will play into instabilities.

e SF Should be dominant near zero field

e At higher fields, magnetization
Instabilities seem to dominate (be
controlling), but this may not be the
case as d.¢ continues to be reduced

WhmSDO
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Why Magnetization Instability

Reasons for interest in magnetization
Instability

1. Morerestrictive Jg criterion set by
field ramping conditions

2. Increase of middle region
stability (2-6 T plateau) with
decreasing subelement d

We will find that results seem to bein
agreement with model
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Sublement Magnetic Instability Model (1+B)

All stability calculations concerning the SC material
(as opposed to cryostability, which focuses on the
stabilizer), start from the following heat balance

Stimulating Induced Volumetric Heat Transfer Coefficient
HeatSPuIse _|_ Heat —| Spec. Ht. *AT _I_ * Surface Area per Unit
[J/m] Generation [IMPK * K] Volume* time *AT

[I/m’] [W/m?K m?/m>* sec]K]

Slab model of Wilson ®
e, 8:Y)

2 .
UAI AAT & hz,AT  Introduction
AQ, + = JCAT +
a
WaAmSDO
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Results for Slab (Wilson)

AAJ a’

=——— = CAT +
2 >’

Heat Generated
by Flux incursion

hz, AT

=

Heat
Perturbation

Heat removed by
cryogen

AJ. isthe change in J, dueto the heat pulse

a isthe dab width

Heat absorbed by
strand (deltaT)

¥C = volumeltric specific heat
h = heat transfer coefficient

Wgr>tifhe constant for shielding current decay

2008
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Results for Slab Conductor, with
Cu stabilization Iayers and current

A2J%(dy /2
S:ﬂo C( o 12f 3 1+—(1+|)v
WCAT (1+ 3 ) 7’
Centerline !
shift (increases
Herei =1/, and v flux motion
ISacooling and energy
parameer Time constant
Increase due to
longer current
WAMSDO decay
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For Round Strands

For round strands, Term 1 and Term 3 OK
Term 2: needs modified for cylinder magnetization
Term 4: Heat removal from cylinder rather than slab

Ilgnoring for a moment the magnetization change
(expect order of 20-30%) but changing the heat
removal term, we get (very similar to Wilson)

A2J2d2 f? _
AT, 1+3%) 1 7 pIC
WaAmM S DO
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What IS J;;ic?

So, starting with
_ puAdidg 53 { 8 } _ hau,(1-2)
SR R 7Y T

T
What | = J/J_ can be reached before full instability occurs?
Setting f= 1, wefind

and V

1+32)< AL | where  F =1+
U, A Ja T

YCAT_F J:

Setting i = I/1,= J/J.= ] wefind
J<\/

WhmSDO
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Implicit expression for J;; i

Replacing )CAT with the full heat capacity term H,

Tc(B) Tc(B)

H,= [H(T)= [T +6T°

Using T = T(1-b)¥152 [Godeke, Maki-
only the cubic term mattersand H,

We integrate up to the current sharin
J=J,(1-T/T), wecanset T= T,

T = T(1)). Thus, dsousing J.=

_ |olrs'a-p*a-br=-44) {1+ 8
A, A2(dy, /2f

J

limit

WAMSDO
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Explicit form for J;;.i¢ --1

J

limit

<\/5(TC04(1— j)4(1—b)2'63—44){1+£v}_JCZ[C(l—b)ZJZ

411,%(d 12 7’ 3 | A+b"?

Let j =J/J, then we can write above asj’>=A+B(1-j)*

— 445 F_1{ (1—}32)}2

T Zu P(d, 12?2 3| A+b?
Let x=1-
F 31 %V
7T Thewe must solve
oT4(1-b)*> 8
B —5 s 2 ) 2 {1+2V} (1-x)*=A+Bx*
Je AU A (deff /2) i
WaAmSDO
2008 Department of Materials Science and Engineering




= = J (2400 Al 12 T
Explicit Form --Il e
—wp— d=60um, RRR=100, inHe
6000 O deﬁ =100 um, RRR = 150, inHe
F & dg=60um, RRR = 100 (h=10% W/n’K)
T he rel e\/ant rOOt I S 5000 —A dj = 100 um, RRR = 150 (h=10° W/nK)
S —@— d,,=60um, RRR =10 (h=10° W/m’K)
(&) 4000 — —  dgff =60 mm, RRR = 100, in He
1 \/1_|_ AB — 4AB 5 o gl = 60 M, RRR = 1, inHe
— = _|_ NE' 3000
£
2 B 2 B << 2000
Law)
V1+4B—-4AB-1| ™ °

J_l 0 2 4 6 8 10 12 14

ZB B, T

where
-4 1] 1-v?)

T 12 P, 122 3| A+b?

F=1+%v
T

4 (1 11263

s ZéTCO(l b) 2 {1+82V}
Jo 4o A (deff /2) Z
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Calculation

Results -

J., A/mm?, non-Cu
¥

8000

—— J. (a0 AT 12T)
—o— ddf:GOpm, RRR=10, inHe
—y— d,=60um RRR=100, inHe

@— d,=10um RRR=150, inHe

O d,=60um RRR=100 (10’ WinfK)
—A— d, =100um RRR =150 (h=10° WinfK)
—@— d, =60um RRR=10 (10" WinfK)
— —  dgf=60nm RRR=100, inHe
..... O deff =60 mm RRR=10, inHe
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Dependence on d.«, RRR, and h

P T N

2 1/2
A, A (d—12) o 2 h
300 = Round 7054

— Extracted cable 911

200 g

If ] —0, then v

100 -

15T, (1—0)*% -
‘]Iimit < 2
O Mo

Magnetization, kA/m

|f dynamic component

<& \/f< -300

J =
WhAMSDO C. S8 Field, T
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Influence of RRR - t, not thermal Conductivity

P. Thermal Transport Inside Strand — radial, K-limited
Ps conduction through strand =2 Q = (tA/D)KAT

l

Q =joules, t = time, A = heat flow area, D =heat flow distance,
K =thermal conductivity, W/Km, AT = temperature difference

IfA=~27LR and D ~R,P,= KATA/R = 2nLKAT  [PI=W
Heat Transfer intoLigHe 2 P, = h2zRLAT

P KAT22L K
P hLAT2ZR hR
LT (245x10°WQ/ K 2)(4K)RRR
0 1.5%*10°Qm
6

P 6* RRR A A |
= (h=10°)= e o —12* RRR ;S(h—leo )= RRR

K = 6RRR
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But what about potted Magnets??

If not in direct contact with He, we are either transferring
to neighboring regions, or out to the bath. In either case,
the relevant parameter is <K>

o 27zRL<RK>AT ()= '[Zl—ijl

~ K

Taking 125 um as the insulation thickness, 1 mm as the strand
OD, and 0.3 W/mK as the thermal conductivity of the insulation

15+10°° 1550 s Ig /7 o Anich IS fustag
(K) 15%10°° £ 125x10°° 125x10°° 375 winding-pack-
600 0.3 0.3 fraction normalized
Insulation K
WAMSDO
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Re-configuring Expressions for
case of potted magnets-|

Equation for J, has a factor v which assumes
cooling via pool boiling, and thus - h

Stimulating Induced Volumetric Heat Transfer Coefficient

Heat Pulse _|_ Heat —| Spec. Ht. *AT —|— * Surface Area per Unit

[Im”] Generation | | [Im?K * K] Volume* time *AT
[Im?] | [WImPK m?/m™ sec] K]

In Cryogen heat rem hz2RLATz 2hATz
m’ L7R? R

heat gemoved s Power:time In potted o o Zﬂ?‘KATr OKAT 7
m m system m L& (R
wWaAmsSDo
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Re-configuring Expressions for

case of potted magnets-I
—=h =2 K//¢

Kmagnet 1S the average magnet thermal conductivity
L is the shortest distance to the cooling plane.

K =45W/mK, and L = 0.03 m, then K/L = 103, similar to the case of film
boiling, as described above

e hRu,(1-4) N 7 Kt (1 l)( Rj
P prc 4
—7
Lo K (47:)183 (03:5) ( Rj ey RRR( Rj
1.5x10°8(10°%) | ¢ 7 \ ¢
WaAmSDO
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Is full “full” adiabatic
Stability Possible?

The magnetization limit for pure M-H flux jump is
about 200 kA/m, corresponds to a d_« of about 40 um

 J3CMAT /1y, 1
F e d. 1+3
But, SF instability, at the very least at zero field,
suggeststhat this happy result cannot really be

achieved, so both low dg and high RRR are
required

WhmSDO
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Supergenics Tube
Conductor

Lo

: | —®— 217/RRR = 10 [1505-120h]
|| —v— 217/RRR = 9[1505-100h]

|

|

8000 | —m— 217/RRR = 18[1505-84 h]

» : < 217/RRR =13 [1505-72 h]
BN | —%— 271fil/RRR =4.8[1489-100 ] |...;...

6000 -~

J., Almm2

4000 oA T B 0 0 0

| I
| |
2000 - ———— - [H=—+ Q=
ESURE SO i) : [ O
0 I [ [ I I it ot Magh el B———
= 40 682% < 12.9 T1505:0:mm
4 6 8 10 12 14 16 e
BT

D= 33 wm for 0.7 mm 217 stack

2250 A/mm2 12 T, 217 stack 0.7 mm OD Dy =31 um for 0.7 mm OD 271 stack
WAMSDO Dy = 18 um for 0.4mm OD 271 stack
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Do fOr 0.7 mm OD Tube-Sn

600

T1505-217Re-S1-d070
400 Non Copper Fraction : 0.465

Conductor d
~20 um because
of reaction zone

200 r

-200
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o
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CONCLUSIONS

e In Nb,;Sn HEP conductors, instabilities not seen in M-H
alone are generated by combined effects of magnetization
and transport current induced field profiles

e Lowered d 4 and increased RRR known to improve things
e RRR Degradation seen at cable edges - could be important
e RRR improvement - main influence was not K but 7

e However, RRR values below 10 could begin to impede
thermal transport

e In potted systems, some RRR influence possible even
though the optimal solution would be reduced strand d

e Dependence of J;;,i: On d ¢, RRR, and h explored
e BOTH small d_+ and high RRR seem to be required
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