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IntroductionIntroduction

Strain sensitivity Nb3Sn strands / ITER CICC application:
evaluate sensitivity various applied strands
cabled conductor design (limiting peak strains).

CICC a ial strain periodic trans erse bending strain and periodic contactCICC: axial strain, periodic transverse bending strain and periodic contact 
stress, axial and transverse stiffness.

Besides pacman disc spring for axial I (ε) measurements we used theBesides pacman disc spring for axial Ic(ε) measurements, we used the 
TARSIS test set-up with probes for bending, contact stress and stiffness 
(axial & transverse).

We concentrate on results of high Jc OST RRP type of strand (EU Dipole 
strand, EUDIPO) and make a few comparisons with ITER type strands.

Relation cabling pattern and performance degradation in CICC.



IIc (c (VIVI) and strand deformation in ) and strand deformation in 
TARSISTARSIS

TARSIS test set-up with probes for bending, contact stress and stiffness (axial & transverse).

Bending between contact points, 
various wavelengths.

Crossing strands for contact 
stress characterisation.

Strand tensile stress-strain tests at 
various temperatures (participation in 
VAMAS).VAMAS).
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Reduced Ic vs force for SMI strand 
for 3 wavelengths.

Ic vs stress for crossing strands, 11 T 
and 12 T for EM-LMI strand.

Stress-strain curve for EM-LMI 
(TFMC) strand



OST RRP Nb3Sn Dipole strandOST RRP Nb3Sn Dipole strand

Jc>2060 A/mm2
T Nb Nb 47TiTernary Nb + Nb-47Ti
∅ = 0.81 mm
Cu:nonCu= 1
91 x 84 stack design
billet number 8712

Courtesy of ENEA

A Nijhuis, Y Ilyin and W Abbas, ‘Axial and transverse stress–strain characterization of the EU dipole high current density Nb3Sn strand’
Supercond. Sci. Technol. 21 No 6 (June 2008) 065001 (10pp) 



UniUni--axial strain & axial strain & IIc (Pacman)c (Pacman)

Temperature variations by placing the 
Pacman spring under an insulator cup, 
creating a helium gas volume. g g

With heaters and thermometers arranged 
symmetrically the temperature can be 
balanced within ±20 mK. 

Strand soldered on perimeter 

Sample wireTorque transfer pins

p
disc shaped spring Standard procedure VI curves

I =1000 A,
ε-appl =-0.9 to + 0.9 %
B=6 to 15 TB 6 to 15 T
T=4.2 to 12 K.
First we explore the compressive strain 
range, then B,T dependency and finally the 
tensile range for irreversibility

Pacman spring
tensile range for irreversibility



UniUni--axial axial IIcc--strain (OSTstrain (OST--DIP)DIP)

VI curves for OST-
dipole strand
I > 800 A,
ε-appl =-0.9 to + 0.9 %
B=6 to 14 T
T=4.2 to 10 K.



UniUni--axial axial IIcc((εε,B,T,B,T) (OST) (OST--DIP)DIP)

Measured Ic @ 10 μV/m
OST-dipole strand

General conductor scaling parameters:
Deviatoric strain (~2nd inv.: slope) Ca1 49.05
Deviatoric strain (~3rd inv.: asymmetry) Ca2 13.05
Hydrostatic strain (~1st inv.: peak rounding) eps_0a 0.374%
Thermal pre-strain (axial) eps_m -0.143%

Fit to Dev Strain Model,
30 data points required
for description of entire 

Maximum upper critical field Bc2m(0) 29.40 T
Maximum critical temperature Tcm 15.97 K
Pre-constant [ =(constant*Bc2m(0)^2)/kappa_1m(0) ] C 47095 AT
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IIcc((B,TB,T) () (εεapplappl=0)=0)

Measured Ic @ 10 μV/m
OST-dipole strand
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nn--value (OSTvalue (OST--DIP)DIP)

n-value 10-100 μV/m
OST-dipole strand
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Axial strain irreversibility limitAxial strain irreversibility limit

Irreversibility strain limit determined by intersection of two lines through n-values vs. strain for 
two ITER type of strands (Ic criterion 10 μV/m n value between 10 and 100 μV/m)
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Strain irreversibility limit OSTStrain irreversibility limit OST--DIPDIP
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UniUni--axial axial IIcc((εε,B,T,B,T) (OST) (OST--DIP & DIP & 
HEP prototype DIP)HEP prototype DIP)p yp )p yp )

normalised I c
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Strain irreversibility limit OSTStrain irreversibility limit OST--DIPDIP
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UniUni--axial axial IIcc--strain, overviewstrain, overview

Ic(ε) @ 12 T & 4.2 K of 16 
Nb3Sn strands measused I c
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UniUni--axial axial IIcc--strain sensitivity, strain sensitivity, 
overviewoverview

Normalised Ic
@ 12 T & 4.2 K 1@ 12 T & 4.2 K
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Relative Relative IIcc--strain sensitivitystrain sensitivity

Th l ti t i 1 15The average relative strain 
sensitivity of all strands is 
1.01 and the stdev is 0.08.
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Irreversibility strain limitIrreversibility strain limit
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TARSIS stressTARSIS stress--strain results, 4.2 Kstrain results, 4.2 K

Stress-strain curves on ITER and Model Coil strands at 4.2 K: racture: 0.9 % - 1.2 % strain



TARSIS 4.2 K stressTARSIS 4.2 K stress--strain test strain test 
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Cr layer removed before HT: slightly weaker stiffness. Confirmed with other strand types.
All TARSIS tests are done with Cr layer removed before HT.



TARSIS bendingTARSIS bending



TARSIS bending test OSTTARSIS bending test OST--DipoleDipole
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TARSIS bending, resultsTARSIS bending, results
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TARSIS crossing strands test: TARSIS crossing strands test: IIcc

Probe for X-strands test with periodicity 4.7 mm and 90° angle.
Reacted straight X-strands, are pressed by top plate (not visible).
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TARSIS crossing strands:TARSIS crossing strands:
IIc and nc and n--valuevalue
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n-value OST-II degrades rapidly between 10 and 30 MPa.



Influence of cabling in CICCInfluence of cabling in CICC

Is it possible to use strain sensitive strands like the high 
Jc OST RRP for CICC??



Influence of cabling in CICCInfluence of cabling in CICC

April 2006 (Barcelona), a priori TEMLOP prediction postulating influence characteristic 
bending wavelength (Lw), no experimental data available at that time to prove it.

A Nijhuis and Y Ilyin ‘Transverse Load Optimisation in Nb Sn CICC Design; Influence of Cabling Void Fraction and Strand Stiffness’ Supercond Sci
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A. Nijhuis and Y. Ilyin, Transverse Load Optimisation in Nb3Sn CICC Design; Influence of Cabling, Void Fraction and Strand Stiffness , Supercond. Sci. 
Technol. 19 (2006) 945-962.

vf =0.36
E // = 29 Gpa

IxB =750 kN/m

0.7

0.75

0.8

0.85

ed
uc

ed
 I c

 [-
]

0.8%

1.0%

1.2%

1.4%

be
nd

in
g 

st
ra

in
 [%

`

0.5

0.55

0.6

0.65

re

0.0%

0.2%

0.4%

0.6%

pe
ak

 b

reduced Ic @ peak load

peak strain

0.5
0 0.005 0.01 0.015 0.02

bending wavelength, L w [m]

0.0%

August 2007: relation for Lw and Lp (1st stage twist pitch) ( ) ]1[

2
1

2
1

1

m
L

N
L

L p

Lp

p
w += ( )1Lp

A. Nijhuis, ‘A solution for transverse load degradation in ITER Nb3Sn CICCs, effect of cabling on Lorentz forces response’ Supercond. Sci. Technol. 21 (2008) 
054011 (15pp) 



Influence of cabling in CICCInfluence of cabling in CICC
April 2007 SULTAN test first verification of a priori prediction influence bending 
wavelength for long pitches.
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Influence of cabling in CICCInfluence of cabling in CICC
Required:

Influence current non-uniformity induced at joints and terminations must be excluded
Roughly similar cable design (relevant # strand layers / ratio of copper strands)Roughly similar cable design (relevant # strand layers / ratio of copper strands)

PITSAM5 PITSAM5

PITSAM SULTAN test of 
similar CICC shape but 
diff t bli tt Sample PITSAM2 (LF2) PITSAM5

Short pitches
PITSAM5

Long pitches

EDIPO LF2 LF2 LF2

Cable pattern (3x3)x3x4 3x3x3x4 3x3x3x4

different cabling pattern
PITSAM 2, 5L & 5S
Fully soldered joints

Sc strand number 48 48 48

Sc strand Cr plated OST
dipole 0.81 mm

Cr plated OST
dipole 0.81 mm

Cr plated OST
dipole 0.81 mm

Cu strand number 60 60 60

Twist pitch 58/95/139/213 34/95/139/213 83/140/192/213

Outer conductor 
dimensions (mm) 12.6 x 12.6 12.6 x 12.6 12.6 x 12.6

vf (%)vf (%)
(calculated) 30 30 30



Influence of cabling in CICCInfluence of cabling in CICC

Dipole PITSAM 2 & 5, and ITER TFPRO2 (long pitches) Lw has been determined by:
2LL
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p
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Conductor type 1st stage Lp Lw [m]

PITSAM1, 2, 3, 4 0.058 0.0098

PITSAM5 Long = ITER Option II 0.083 0.0161

PITSAM5 Short 0.033 0.0048

TFPRO2/OST1 = ITER Option I * 0.045 0.007

TFPRO2/OST2, Long Lp 0.116 0.0263

USTF1 (alternate 6x1)* 0 025 0 0011USTF1 (alternate 6x1)* 0.025 0.0011

* For USTF1 the strand properties are not available so the virgin performance, and 
thus the degradation can not be determined For TFPRO2/OST1 Option I influence ofthus the degradation can not be determined. For TFPRO2/OST1 Option I influence of 
the joint non-uniformity can not be excluded.



Influence of cabling in CICCInfluence of cabling in CICC

PITSAM and TFPRO2 (long pitches) performance for (virgin) zero load condition is 
determined by Jackpot Model (Jacket Potential) for ε=0 6 %determined by Jackpot Model (Jacket Potential) for ε=0.6 %.

Measured degradation:
Tcs/Tcs0 vs Lw

1.1

with Tcs0 computed for ε=-0.6 %
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1.0
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JackPot model:
PITSAM 2 5

0.8T c
s/T

cs
0

PITSAM 2, 5
48 SC strands
60 Cu strands

Good agreement with
0.6

0.7 PITSAM LF2 (2 & 5)
TFPRO2/OST2, Long Lp

polyn. fit

Good agreement with 
TEMLOP prediction.

0 0.005 0.01 0.015 0.02 0.025 0.03
characteristic bending wavelength L w [m]



SummarySummary

Ic vs. uni-axial strain, bending, contact stress and stiffness is 
characterised on OST RRP high Jc Nb3Sn strands.g 3
Strain sensitivity ΔI/Δε in the range of ITER Int tin.
Irreversibility strain limits: ~ 0% for OST-DIP, from +0.2% to 
+0 4% for ITER Int tin and > +0 6% for (recent) bronze0.4% for ITER Int tin and  0.6% for (recent) bronze.
Bending behaviour follows the LRL until failure strain is 
reached: 0.5% peak bending strain for OST DIP.
Intermediate twist pitch length in CICC causes degradedIntermediate twist pitch length in CICC causes degraded 
performance: TEMLOP prediction influence pitches further 
confirmed.
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